Rich teams can afford the all-star players
How do the poor teams compete?
The A’s started using a different method to select players
The A’s selected players based on their statistics, not on their looks
The A’s calculated that they needed to score 155 more runs than they allowed during the regular season to expect to win 95 games
Now, let’s verify this statement with Linear Regression
How does a team score more runs?
The A’s discovered that two baseball statistics were significantly more important than anything else
Most teams focused on Batting Average (BA)
\[RunsAllowed = -837.38 + 2913.60(OOBP) + 1514.29(OSLG)\]
Can we predict how many games the 2002 Oakland A’s will win using our models
The models for runs use team statistics
We can estimate the team statistics for 2002 by using the 2001 player statistics
\[RunsScored = -804.63 + 2737.77(OBP) + 1584.91(SLG)\]
\[RunsScored = -804.63 + 2737.77(0.339) + 1584.91(0.430) = 805\]
\[RunsAllowed = -837.38 + 2913.60(OOBP) + 1514.29(OSLG)\]
\[RunsAllowed = -837.38 + 2913.60(0.307) + 1514.29 (0.373) = 622\]
\[Wins = 80.8814 + 0.1058(RS - RA)\]
\[Wins = 80.8814 + 0.1058(805 - 622) = 100\]
Models allow managers to more accurately value players and minimize risk
Relatively simple models can be useful
# Load the dataset
baseball = read.csv("baseball.csv")
# Output the string
str(baseball)
## 'data.frame': 1232 obs. of 15 variables:
## $ Team : Factor w/ 39 levels "ANA","ARI","ATL",..: 2 3 4 5 7 8 9 10 11 12 ...
## $ League : Factor w/ 2 levels "AL","NL": 2 2 1 1 2 1 2 1 2 1 ...
## $ Year : int 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 ...
## $ RS : int 734 700 712 734 613 748 669 667 758 726 ...
## $ RA : int 688 600 705 806 759 676 588 845 890 670 ...
## $ W : int 81 94 93 69 61 85 97 68 64 88 ...
## $ OBP : num 0.328 0.32 0.311 0.315 0.302 0.318 0.315 0.324 0.33 0.335 ...
## $ SLG : num 0.418 0.389 0.417 0.415 0.378 0.422 0.411 0.381 0.436 0.422 ...
## $ BA : num 0.259 0.247 0.247 0.26 0.24 0.255 0.251 0.251 0.274 0.268 ...
## $ Playoffs : int 0 1 1 0 0 0 1 0 0 1 ...
## $ RankSeason : int NA 4 5 NA NA NA 2 NA NA 6 ...
## $ RankPlayoffs: int NA 5 4 NA NA NA 4 NA NA 2 ...
## $ G : int 162 162 162 162 162 162 162 162 162 162 ...
## $ OOBP : num 0.317 0.306 0.315 0.331 0.335 0.319 0.305 0.336 0.357 0.314 ...
## $ OSLG : num 0.415 0.378 0.403 0.428 0.424 0.405 0.39 0.43 0.47 0.402 ...# Subset to the moneyball team
moneyball = subset(baseball, Year < 2002)
# Output the string
str(moneyball)
## 'data.frame': 902 obs. of 15 variables:
## $ Team : Factor w/ 39 levels "ANA","ARI","ATL",..: 1 2 3 4 5 7 8 9 10 11 ...
## $ League : Factor w/ 2 levels "AL","NL": 1 2 2 1 1 2 1 2 1 2 ...
## $ Year : int 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 ...
## $ RS : int 691 818 729 687 772 777 798 735 897 923 ...
## $ RA : int 730 677 643 829 745 701 795 850 821 906 ...
## $ W : int 75 92 88 63 82 88 83 66 91 73 ...
## $ OBP : num 0.327 0.341 0.324 0.319 0.334 0.336 0.334 0.324 0.35 0.354 ...
## $ SLG : num 0.405 0.442 0.412 0.38 0.439 0.43 0.451 0.419 0.458 0.483 ...
## $ BA : num 0.261 0.267 0.26 0.248 0.266 0.261 0.268 0.262 0.278 0.292 ...
## $ Playoffs : int 0 1 1 0 0 0 0 0 1 0 ...
## $ RankSeason : int NA 5 7 NA NA NA NA NA 6 NA ...
## $ RankPlayoffs: int NA 1 3 NA NA NA NA NA 4 NA ...
## $ G : int 162 162 162 162 161 162 162 162 162 162 ...
## $ OOBP : num 0.331 0.311 0.314 0.337 0.329 0.321 0.334 0.341 0.341 0.35 ...
## $ OSLG : num 0.412 0.404 0.384 0.439 0.393 0.398 0.427 0.455 0.417 0.48 ...# Compute Run Differences
moneyball$RD = moneyball$RS - moneyball$RA
# Output the string
str(moneyball)
## 'data.frame': 902 obs. of 16 variables:
## $ Team : Factor w/ 39 levels "ANA","ARI","ATL",..: 1 2 3 4 5 7 8 9 10 11 ...
## $ League : Factor w/ 2 levels "AL","NL": 1 2 2 1 1 2 1 2 1 2 ...
## $ Year : int 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 ...
## $ RS : int 691 818 729 687 772 777 798 735 897 923 ...
## $ RA : int 730 677 643 829 745 701 795 850 821 906 ...
## $ W : int 75 92 88 63 82 88 83 66 91 73 ...
## $ OBP : num 0.327 0.341 0.324 0.319 0.334 0.336 0.334 0.324 0.35 0.354 ...
## $ SLG : num 0.405 0.442 0.412 0.38 0.439 0.43 0.451 0.419 0.458 0.483 ...
## $ BA : num 0.261 0.267 0.26 0.248 0.266 0.261 0.268 0.262 0.278 0.292 ...
## $ Playoffs : int 0 1 1 0 0 0 0 0 1 0 ...
## $ RankSeason : int NA 5 7 NA NA NA NA NA 6 NA ...
## $ RankPlayoffs: int NA 1 3 NA NA NA NA NA 4 NA ...
## $ G : int 162 162 162 162 161 162 162 162 162 162 ...
## $ OOBP : num 0.331 0.311 0.314 0.337 0.329 0.321 0.334 0.341 0.341 0.35 ...
## $ OSLG : num 0.412 0.404 0.384 0.439 0.393 0.398 0.427 0.455 0.417 0.48 ...
## $ RD : int -39 141 86 -142 27 76 3 -115 76 17 ...# Scatterplot
plot(moneyball$RD, moneyball$W)# Linear Regression model
WinsReg = lm(W ~ RD, data=moneyball)
# Output the summary
summary(WinsReg)
##
## Call:
## lm(formula = W ~ RD, data = moneyball)
##
## Residuals:
## Min 1Q Median 3Q Max
## -14.2662 -2.6509 0.1234 2.9364 11.6570
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 80.881375 0.131157 616.67 <2e-16 ***
## RD 0.105766 0.001297 81.55 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.939 on 900 degrees of freedom
## Multiple R-squared: 0.8808, Adjusted R-squared: 0.8807
## F-statistic: 6651 on 1 and 900 DF, p-value: < 2.2e-16# Linear Regression model
RunsReg = lm(RS ~ OBP + SLG + BA, data=moneyball)
# Output the summary
summary(RunsReg)
##
## Call:
## lm(formula = RS ~ OBP + SLG + BA, data = moneyball)
##
## Residuals:
## Min 1Q Median 3Q Max
## -70.941 -17.247 -0.621 16.754 90.998
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -788.46 19.70 -40.029 < 2e-16 ***
## OBP 2917.42 110.47 26.410 < 2e-16 ***
## SLG 1637.93 45.99 35.612 < 2e-16 ***
## BA -368.97 130.58 -2.826 0.00482 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 24.69 on 898 degrees of freedom
## Multiple R-squared: 0.9302, Adjusted R-squared: 0.93
## F-statistic: 3989 on 3 and 898 DF, p-value: < 2.2e-16