Ricardo Alves de Olinda

ricardo.estat@yahoo.com.br

http://lattes.cnpq.br/7767223263366578

Universidad del Estado de Paraíba

http://departamentos.uepb.edu.br/estatistica/corpo-docente/



Universidad de San Carlos de Guatemala

Instituto de Ciencia y Tecnologías Agrícolas

ICTA



Use R!

Use R!

R Markdown



Sobre Programación básica en R, puede ser consultada Aqui



Análisis multivariante

require(lattice)
## Loading required package: lattice
library(psych)
library(GPArotation)
library(corrplot)
## corrplot 0.84 loaded
library(vegan)
## Loading required package: permute
## This is vegan 2.5-2
library(ade4)
library(ggplot2)
## 
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
## 
##     %+%, alpha
library(factoextra)
## Welcome! Related Books: `Practical Guide To Cluster Analysis in R` at https://goo.gl/13EFCZ
suelo = read.table('regiones.txt', head=TRUE)
head(suelo)
##   este norte altitud ca20 mg20 ctc20 ca40 mg40 ctc40 muestra region
## 1 5710  4829    6.10   52   18 106.0   40   16  86.3      a1     R3
## 2 5727  4875    6.05   57   20 131.1   49   21 123.1      a2     R3
## 3 5745  4922    6.30   72   22 114.6   63   22 101.7      a3     R3
## 4 5764  4969    6.60   74   11 114.4   74   12  95.6      a4     R3
## 5 5781  5015    6.60   68   34 124.4   44   36 106.3      a5     R3
## 6 5799  5062    5.75   45   27 132.9   27   22 105.3      a6     R3
ACP<-suelo[,c(-1,-2,-3,-10,-11)]

head(ACP)
##   ca20 mg20 ctc20 ca40 mg40 ctc40
## 1   52   18 106.0   40   16  86.3
## 2   57   20 131.1   49   21 123.1
## 3   72   22 114.6   63   22 101.7
## 4   74   11 114.4   74   12  95.6
## 5   68   34 124.4   44   36 106.3
## 6   45   27 132.9   27   22 105.3

Calculando a matriz de covariâncias

(S <- round(cov(ACP),2))
##         ca20  mg20  ctc20   ca40  mg40  ctc40
## ca20  122.10 22.78  37.22 113.05 30.67  27.98
## mg20   22.78 39.28  25.74  18.26 28.51   9.00
## ctc20  37.22 25.74 335.64  44.31 31.93 313.39
## ca40  113.05 18.26  44.31 182.22 41.49 105.72
## mg40   30.67 28.51  31.93  41.49 47.88  55.62
## ctc40  27.98  9.00 313.39 105.72 55.62 497.31

Calculando a matriz de correlações

R <- round(cor(ACP), 2)

R
##       ca20 mg20 ctc20 ca40 mg40 ctc40
## ca20  1.00 0.33  0.18 0.76 0.40  0.11
## mg20  0.33 1.00  0.22 0.22 0.66  0.06
## ctc20 0.18 0.22  1.00 0.18 0.25  0.77
## ca40  0.76 0.22  0.18 1.00 0.44  0.35
## mg40  0.40 0.66  0.25 0.44 1.00  0.36
## ctc40 0.11 0.06  0.77 0.35 0.36  1.00

Centralizando as escalas da matriz ACP

(z <- scale(ACP))
##               ca20       mg20        ctc20          ca40        mg40
##   [1,]  0.12032852 -1.4858567 -1.431861279 -0.3708156595 -1.40808260
##   [2,]  0.57282441 -1.1667585 -0.061810691  0.2959075855 -0.68547140
##   [3,]  1.93031208 -0.8476603 -0.962441556  1.3330326332 -0.54094916
##   [4,]  2.11131043 -2.6027005 -0.973358293  2.1479165993 -1.98617155
##   [5,]  1.56831537  1.0669289 -0.427521406 -0.0744942173  1.48236218
##   [6,] -0.51316573 -0.0499148  0.036439949 -1.3338603467 -0.54094916
##   [7,] -0.33216737 -0.0499148 -0.198269913 -0.7412174623 -0.10738245
##   [8,] -0.15116902  0.4287325 -0.580355734 -0.7412174623 -0.10738245
##   [9,] -1.14665998 -0.3690130 -0.569438997 -1.1856996256  0.32618427
##  [10,]  0.21082769 -0.2094639 -0.989733400 -1.6301817890 -1.11903812
##  [11,]  0.84432194  1.2264780 -0.121852749  1.0367111910  1.19331770
##  [12,] -0.33216737 -0.2094639 -3.047538466 -1.7042621495  0.61522875
##  [13,] -1.50865669  1.0669289 -2.458034627 -0.9634585440  0.32618427
##  [14,]  0.48232523 -0.8476603 -0.711356587 -0.2967352990 -0.54094916
##  [15,]  1.38731701 -1.0072094 -0.454813250  1.2589522727 -0.68547140
##  [16,]  0.21082769  0.4287325 -0.056352322  0.5922290277  1.77140666
##  [17,] -0.69416409 -0.5285621 -0.170978069  0.2218272249  0.32618427
##  [18,] -0.78466327 -1.0072094 -0.132769486 -1.0375389045 -0.39642692
##  [19,] -0.15116902 -0.2094639 -0.203728282 -0.5189763806 -0.25190468
##  [20,] -0.51316573  0.4287325  0.140148957 -0.1485745779  0.61522875
##  [21,]  0.21082769  1.3860271  0.560443361  1.3330326332  1.48236218
##  [22,] -1.14665998 -0.5285621 -0.640397792 -0.5930567412 -0.39642692
##  [23,] -0.33216737 -0.0499148 -0.673148005 -0.2967352990  0.18166203
##  [24,] -1.41815751 -0.2094639 -0.842357440 -1.0375389045 -0.68547140
##  [25,]  0.84432194  0.4287325 -0.924232973  1.4071129938  0.90427323
##  [26,] -0.51316573 -1.1667585 -1.644737665 -0.5189763806  0.47070651
##  [27,]  0.84432194 -0.5285621  0.254774704  1.0367111910 -0.25190468
##  [28,]  0.93482112 -1.1667585 -2.627244063  2.5183184021 -1.11903812
##  [29,]  0.66332358  1.0669289  0.773319747 -0.1485745779  1.33783994
##  [30,] -0.60366491 -0.8476603  1.128113724 -0.5189763806 -0.68547140
##  [31,] -0.06066984 -0.3690130  0.325733499  0.1477468643 -0.25190468
##  [32,] -0.33216737 -0.6881112 -0.154602962 -0.0004138568 -0.39642692
##  [33,] -0.15116902  0.7478307 -0.231020126 -0.5930567412  0.18166203
##  [34,] -0.42266655  0.4287325  0.112857113 -1.3338603467  0.18166203
##  [35,] -0.69416409 -0.3690130 -0.558522259 -0.9634585440  0.32618427
##  [36,]  0.48232523  1.2264780 -0.580355734 -0.8893781834 -0.39642692
##  [37,] -0.69416409  0.9073798 -1.251735106  0.8144701093  0.32618427
##  [38,] -0.06066984 -0.3690130 -1.448236385 -1.1116192651  0.03713979
##  [39,]  0.93482112  0.4287325  0.560443361  0.9626308304  0.75975099
##  [40,]  0.57282441  0.2691834  1.548408127  0.4440683066 -0.39642692
##  [41,]  0.57282441 -0.5285621  2.661915378  0.6663093882 -0.10738245
##  [42,] -0.78466327 -1.0072094  2.236162605 -1.4079407073 -0.97451588
##  [43,] -0.87516244 -0.8476603  2.077869908 -1.4079407073 -1.26356036
##  [44,]  0.30132687  0.7478307 -0.012685371  0.2218272249  0.75975099
##  [45,] -0.42266655  0.7478307 -0.165519700 -1.2597799862  0.18166203
##  [46,] -0.06066984  1.5455762 -0.389312824 -0.8152978229  0.18166203
##  [47,] -0.69416409  0.2691834 -1.562862132 -1.1116192651  0.47070651
##  [48,]  1.93031208  0.4287325 -1.459153123  1.2589522727  0.47070651
##  [49,]  0.48232523  0.4287325 -2.305200299 -1.4820210679 -1.11903812
##  [50,] -1.14665998 -1.1667585 -1.388194328 -1.1856996256 -0.82999364
##  [51,]  1.20631865 -0.5285621 -1.087984040  1.9256755177 -0.68547140
##  [52,]  0.48232523 -0.6881112 -0.280145446  0.8144701093 -0.54094916
##  [53,]  1.56831537  1.0669289  0.866112018  1.7034344360  1.04879547
##  [54,]  0.93482112  0.4287325  0.342108606 -0.1485745779  0.47070651
##  [55,] -0.06066984 -1.3263076  0.091023637 -0.2967352990 -0.54094916
##  [56,] -0.33216737 -0.2094639 -0.083644167 -0.2967352990 -0.68547140
##  [57,]  0.66332358  0.5882816  0.091023637  0.7403897488  0.47070651
##  [58,]  0.21082769  1.7051253  0.374858819 -0.7412174623  0.61522875
##  [59,] -0.33216737  1.0669289 -0.394771193 -0.5189763806  0.75975099
##  [60,] -1.32765833  0.2691834 -1.317235532 -0.8893781834  0.03713979
##  [61,] -0.87516244  1.0669289 -0.094560904 -0.4448960201 -0.10738245
##  [62,]  1.83981290 -0.0499148  0.336650237  1.1107915516  1.33783994
##  [63,] -0.60366491 -0.8476603  0.107398744 -0.0004138568 -1.11903812
##  [64,]  1.56831537 -1.0072094 -0.776857014  1.6293540754 -0.25190468
##  [65,]  1.47781619 -0.8476603 -0.214645020  0.7403897488 -0.39642692
##  [66,]  0.66332358 -0.3690130  0.325733499  0.3699879460 -0.68547140
##  [67,]  0.12032852 -0.0499148  0.047356686 -0.9634585440 -1.55260484
##  [68,]  1.20631865 -0.6881112  0.222024490  0.7403897488  0.18166203
##  [69,]  0.30132687  0.2691834 -0.072727429 -1.4820210679 -1.55260484
##  [70,]  0.12032852  0.9073798  0.129232220  0.3699879460  1.04879547
##  [71,] -0.42266655  1.8646744 -0.143686224 -1.1856996256  0.75975099
##  [72,] -0.96566162  0.9073798 -0.241936864 -1.7783425101 -0.54094916
##  [73,] -1.05616080 -0.3690130 -1.382735959 -0.5930567412 -0.10738245
##  [74,]  1.02532030 -0.6881112  1.057154928 -1.1116192651 -1.26356036
##  [75,] -0.15116902 -0.6881112  0.456734352 -0.0004138568  4.08376248
##  [76,]  0.66332358 -1.0072094 -0.804148858  0.6663093882 -0.82999364
##  [77,]  1.38731701 -0.3690130  0.009148104  1.1848719121  0.18166203
##  [78,] -0.06066984 -0.0499148  0.145607326 -0.3708156595 -0.39642692
##  [79,] -0.06066984 -0.6881112 -0.176436438 -0.0004138568 -0.10738245
##  [80,]  0.93482112 -0.0499148  0.702360951 -0.9634585440 -0.39642692
##  [81,]  0.93482112  1.2264780  1.149947199  0.8885504699  0.75975099
##  [82,]  0.66332358  1.2264780  0.991654502  0.8885504699  0.75975099
##  [83,] -0.96566162 -0.0499148 -1.055233826 -0.0004138568 -1.26356036
##  [84,] -0.60366491  0.2691834  0.052815055 -1.6301817890 -1.55260484
##  [85,] -1.59915587 -1.3263076  0.096482006 -0.9634585440 -1.11903812
##  [86,] -2.05165176 -1.3263076  1.209989257 -0.0744942173 -0.54094916
##  [87,]  0.75382276 -0.5285621  2.285287925 -0.0004138568 -0.82999364
##  [88,]  1.38731701 -0.6881112 -0.214645020  1.1107915516 -0.54094916
##  [89,]  1.29681783 -0.6881112 -0.307437291  1.3330326332  0.18166203
##  [90,]  0.30132687 -0.2094639 -0.307437291 -1.3338603467 -1.26356036
##  [91,]  1.38731701  0.9073798  1.068071666  1.1107915516  0.32618427
##  [92,]  1.83981290  0.9073798  1.133572093  1.7034344360  0.61522875
##  [93,]  1.65881454  1.0669289  0.615027049  1.7034344360  1.19331770
##  [94,]  0.75382276  1.5455762  0.795153222  1.0367111910  1.77140666
##  [95,] -0.69416409  1.0669289 -0.072727429 -1.3338603467 -2.13069379
##  [96,] -0.87516244 -0.0499148 -0.793232120 -0.4448960201 -1.26356036
##  [97,] -1.96115258 -0.6881112  1.477449332 -1.2597799862  0.03713979
##  [98,]  1.93031208  0.9073798  1.848618415  1.5552737149  0.90427323
##  [99,] -0.15116902 -0.3690130  0.129232220  0.5922290277 -0.82999364
## [100,]  0.21082769  0.1096343  0.849736911  0.5922290277  0.32618427
## [101,]  0.66332358  1.3860271  0.500401303  0.6663093882  1.62688442
## [102,]  0.39182605  2.3433218  0.260233073  0.3699879460  1.48236218
## [103,]  0.30132687  2.1837727  0.145607326  0.5922290277  2.20497338
## [104,]  0.48232523  1.2264780  0.189274277  0.8144701093  1.91592890
## [105,] -0.33216737  1.3860271  0.282066548 -1.6301817890 -0.54094916
## [106,] -0.69416409  1.2264780  0.866112018 -0.5189763806  1.04879547
## [107,] -0.24166820  1.2264780 -0.411146299 -0.2226549384  0.61522875
## [108,] -0.33216737  0.4287325  0.336650237 -0.2967352990 -0.10738245
## [109,] -1.14665998 -1.1667585 -1.857614051 -0.1485745779 -1.55260484
## [110,]  0.66332358 -0.8476603 -0.280145446  0.7403897488 -0.54094916
## [111,]  0.21082769 -0.3690130 -0.001768633  0.5922290277  0.32618427
## [112,]  0.12032852  0.4287325  0.429442508  0.5922290277  0.47070651
## [113,]  0.48232523  1.5455762  0.413067401 -0.0744942173  0.47070651
## [114,]  0.21082769  1.3860271  0.380317188  0.5922290277  1.62688442
## [115,] -0.06066984  0.9073798 -0.274687077  0.8144701093  1.19331770
## [116,] -0.33216737  0.5882816  0.303900024  0.4440683066  0.90427323
## [117,] -0.69416409  1.3860271  0.243857966 -1.7783425101 -0.82999364
## [118,] -0.96566162  0.2691834 -0.689523112 -0.7412174623 -0.10738245
## [119,] -1.14665998 -0.5285621 -0.553063890 -1.6301817890 -1.55260484
## [120,]  0.66332358 -0.2094639 -0.220103389  0.9626308304 -0.25190468
## [121,]  0.39182605 -0.5285621  0.047356686  0.9626308304 -0.10738245
## [122,]  1.29681783  0.2691834 -0.187353175  1.5552737149 -0.54094916
## [123,]  0.21082769  0.1096343  0.183815908  0.2959075855  0.18166203
## [124,]  0.66332358 -0.0499148  0.003689735  0.8144701093  0.32618427
## [125,] -0.78466327 -0.8476603 -0.203728282 -0.3708156595 -1.11903812
## [126,] -0.42266655 -1.3263076  0.172899171 -0.2967352990 -0.54094916
## [127,] -1.41815751  0.2691834  1.204530888 -0.8152978229  0.47070651
## [128,] -2.14215094 -2.2836023 -1.890364264 -1.7783425101 -1.98617155
## [129,]  0.66332358 -0.2094639  1.946869055  1.0367111910  0.18166203
## [130,]  0.48232523  0.4287325 -0.001768633  0.2959075855  0.61522875
## [131,]  0.48232523 -0.0499148 -0.498480201  0.5922290277  0.18166203
## [132,]  1.38731701 -2.1240532 -0.105477642  0.3699879460  1.19331770
## [133,]  0.66332358  1.3860271  0.074648531  0.6663093882  2.49401786
## [134,] -0.51316573  0.4287325 -0.083644167 -0.0744942173  0.90427323
## [135,] -0.96566162  0.4287325  0.074648531 -0.2967352990 -0.39642692
## [136,] -0.24166820  0.1096343 -0.356562610  0.0736665038  0.18166203
## [137,]  0.12032852 -0.0499148 -0.989733400  0.5181486671  0.18166203
## [138,] -1.78015422 -0.5285621  0.003689735 -1.5561014284  0.61522875
## [139,] -2.32314929 -1.8049550 -3.287706696 -1.7042621495 -2.27521603
## [140,] -0.96566162 -0.8476603  2.307121401 -0.0744942173 -0.39642692
## [141,] -0.33216737  0.2691834 -0.247395233 -0.0744942173  0.47070651
## [142,] -0.78466327  0.2691834 -0.100019273 -0.1485745779  0.32618427
## [143,]  1.11581948  2.9815182  1.204530888  1.1107915516  2.20497338
## [144,]  1.11581948  1.5455762  1.089905142  0.9626308304  1.04879547
## [145,]  0.12032852  0.9073798  0.937070813  0.4440683066  0.90427323
## [146,] -1.05616080 -0.8476603 -1.027941982 -0.3708156595 -0.25190468
## [147,] -0.33216737  0.4287325  0.396692294 -0.2226549384 -0.10738245
## [148,] -0.78466327 -0.6881112  0.800611591 -0.2226549384  0.03713979
## [149,] -1.96115258 -2.1240532 -1.333610639 -1.2597799862 -1.84164931
## [150,] -1.23715916 -1.1667585  1.723075931 -0.2967352990 -0.97451588
## [151,] -0.96566162 -1.8049550  0.347566975 -1.1856996256 -0.54094916
## [152,]  0.12032852  0.4287325  1.237281101 -1.1116192651  0.18166203
## [153,]  0.84432194  0.4287325 -0.345645873  1.2589522727  0.75975099
## [154,] -0.06066984  0.5882816  0.205649384  0.3699879460  0.75975099
## [155,]  0.57282441  0.5882816  0.554984992  0.8144701093  0.18166203
## [156,]  1.56831537  2.0242236  1.297323159  1.7034344360  2.06045114
## [157,]  0.66332358  1.5455762  1.401032167  1.3330326332  1.04879547
## [158,] -0.69416409 -0.3690130 -0.667689636 -0.5189763806 -0.54094916
## [159,] -1.87065340 -0.2094639  0.238399597 -0.8893781834  0.61522875
## [160,] -2.05165176 -1.3263076 -0.673148005 -1.4820210679 -1.11903812
## [161,] -1.59915587 -1.8049550 -1.939489584 -1.1116192651 -1.55260484
## [162,] -2.68514601 -1.4858567 -0.787773752 -1.7042621495 -1.84164931
## [163,] -1.05616080 -1.6454058  1.919577211 -0.8152978229 -1.26356036
## [164,] -1.32765833 -1.1667585  2.945750559 -1.5561014284 -0.97451588
## [165,] -0.24166820 -0.0499148 -0.531230414  0.3699879460  0.03713979
## [166,]  0.66332358 -1.1667585  0.140148957  0.4440683066 -0.39642692
## [167,]  1.38731701  1.0669289  0.522234779  2.0738362388  1.77140666
## [168,]  0.02982934  0.5882816  0.636860525  0.2959075855  0.47070651
## [169,] -0.33216737 -0.0499148 -0.875107654 -0.2967352990 -0.25190468
## [170,] -0.42266655 -0.8476603 -0.443896512 -0.2967352990 -0.54094916
## [171,] -0.60366491 -1.1667585 -0.613105948 -0.0744942173 -1.26356036
## [172,] -1.41815751 -1.4858567  1.521116283 -1.0375389045 -1.26356036
## [173,] -1.68965505 -1.9645041  0.134690588  0.1477468643 -1.26356036
## [174,]  1.20631865 -1.0072094 -1.017025244  0.8144701093 -0.82999364
## [175,]  0.30132687  0.1096343  0.505859672  0.8144701093  0.32618427
## [176,]  1.02532030  0.9073798  1.253656208  0.8885504699  0.75975099
## [177,]  1.11581948  0.5882816  0.342108606  1.2589522727  1.33783994
## [178,]  2.47330715  0.9073798  1.051696559  2.2960773204  1.33783994
## [179,]  0.12032852  0.4287325  0.527693147  0.9626308304 -0.82999364
##              ctc40
##   [1,] -1.83660553
##   [2,] -0.18640871
##   [3,] -1.14603404
##   [4,] -1.41957210
##   [5,] -0.93975943
##   [6,] -0.98460174
##   [7,] -0.74693752
##   [8,] -1.28952941
##   [9,] -1.13258134
##  [10,] -1.99803783
##  [11,]  0.01986589
##  [12,] -2.42852396
##  [13,] -2.17292282
##  [14,] -0.82765367
##  [15,] -0.24470371
##  [16,]  0.14094012
##  [17,] -0.03394487
##  [18,] -0.56308407
##  [19,] -0.31645139
##  [20,]  0.19026665
##  [21,]  0.54900509
##  [22,] -0.58550522
##  [23,] -0.29851447
##  [24,] -0.83662213
##  [25,] -0.24021948
##  [26,] -0.76935867
##  [27,]  0.08264512
##  [28,] -1.22226595
##  [29,]  0.78666931
##  [30,]  1.29338735
##  [31,] -0.02946064
##  [32,] -0.07878718
##  [33,] -0.12362948
##  [34,] -0.10120833
##  [35,] -0.30748293
##  [36,] -1.73346823
##  [37,] -0.76039021
##  [38,] -0.49133638
##  [39,]  0.58936317
##  [40,]  1.38307196
##  [41,]  2.08709615
##  [42,] -0.18192448
##  [43,]  0.22165626
##  [44,]  0.23062473
##  [45,] -1.04738097
##  [46,] -2.01597475
##  [47,] -0.69312676
##  [48,] -0.34784101
##  [49,] -2.05184860
##  [50,] -0.77384291
##  [51,] -0.55411561
##  [52,] -0.11017679
##  [53,]  0.72389008
##  [54,] -0.76487444
##  [55,]  0.06022397
##  [56,] -0.53617869
##  [57,]  0.17232973
##  [58,] -0.47339946
##  [59,]  0.09161358
##  [60,] -1.41508787
##  [61,] -0.18192448
##  [62,]  0.48174163
##  [63,]  0.39205702
##  [64,] -0.49582061
##  [65,] -0.02049218
##  [66,] -0.41958870
##  [67,] -1.92180591
##  [68,]  0.44586779
##  [69,] -2.27157589
##  [70,]  0.55797355
##  [71,] -1.09222327
##  [72,] -1.43302479
##  [73,] -0.80074829
##  [74,]  0.06470820
##  [75,]  2.23059153
##  [76,] -0.69312676
##  [77,]  0.39205702
##  [78,]  0.17232973
##  [79,]  0.03331858
##  [80,] -1.11912865
##  [81,]  0.36515164
##  [82,]  1.07366006
##  [83,] -0.80523252
##  [84,]  2.17678076
##  [85,]  0.29788818
##  [86,]  0.86738546
##  [87,]  1.95705347
##  [88,] -0.28506178
##  [89,]  0.34273049
##  [90,] -0.97563328
##  [91,]  0.54900509
##  [92,]  0.84048007
##  [93,]  0.49967856
##  [94,]  0.65214239
##  [95,] -1.84557399
##  [96,] -0.54066292
##  [97,]  1.67454695
##  [98,]  1.64315733
##  [99,] -0.09672410
## [100,]  0.93016468
## [101,]  0.49967856
## [102,]  0.50864702
## [103,]  0.51313125
## [104,]  0.55348932
## [105,] -0.73796906
## [106,]  0.93016468
## [107,] -0.10120833
## [108,]  0.47277317
## [109,]  0.07367666
## [110,]  0.03331858
## [111,]  0.36066741
## [112,]  0.75527969
## [113,] -0.07430295
## [114,]  0.47277317
## [115,]  0.30237241
## [116,]  0.19475088
## [117,] -1.98906937
## [118,] -0.45546254
## [119,] -1.24468711
## [120,] -0.10120833
## [121,]  0.14542435
## [122,]  0.42793087
## [123,]  0.24407742
## [124,]  0.02435012
## [125,] -0.04291333
## [126,]  0.48174163
## [127,]  1.08711275
## [128,] -0.58102099
## [129,]  2.31130768
## [130,] -0.35680947
## [131,] -0.03842910
## [132,]  0.19026665
## [133,]  0.46380471
## [134,]  0.12748742
## [135,]  0.24407742
## [136,]  0.22614050
## [137,] -0.38371485
## [138,]  1.05572314
## [139,] -2.32090243
## [140,]  2.50861382
## [141,] -0.48236792
## [142,]  0.26201434
## [143,]  0.79115354
## [144,]  0.69698470
## [145,]  0.89429084
## [146,] -0.46891523
## [147,]  0.15439281
## [148,]  1.05123891
## [149,] -0.54514715
## [150,]  1.63867310
## [151,]  0.49519433
## [152,]  0.11403473
## [153,]  0.08712935
## [154,]  0.28443549
## [155,]  0.50416279
## [156,]  1.38755619
## [157,]  1.32926120
## [158,] -0.89043290
## [159,]  0.80909046
## [160,] -0.54514715
## [161,] -1.38369825
## [162,] -0.67070560
## [163,]  2.00189577
## [164,]  3.81800912
## [165,] -0.11466102
## [166,]  0.13197166
## [167,]  1.14989198
## [168,]  0.58039470
## [169,] -0.71554791
## [170,] -0.27160909
## [171,] -0.33887255
## [172,]  1.44585119
## [173,]  0.72389008
## [174,] -0.72003214
## [175,]  0.71043739
## [176,]  0.92568045
## [177,]  0.78666931
## [178,]  1.23957659
## [179,]  0.89877507
## attr(,"scaled:center")
##      ca20      mg20     ctc20      ca40      mg40     ctc40 
##  50.67039  27.31285 132.23240  45.00559  25.74302 127.25698 
## attr(,"scaled:scale")
##      ca20      mg20     ctc20      ca40      mg40     ctc40 
## 11.049824  6.267663 18.320491 13.498854  6.919350 22.300370

Autovalores e autovetores

autovalor.autovetor<- eigen(R)

Recebendo porcentual das variâncias e porcentagem acumulativa

var.porc = autovalor.autovetor$values/       sum(autovalor.autovetor$values)*100
var.acum = cumsum(var.porc)
(porc.explic <- round(data.frame(autovalores = autovalor.autovetor$values,var.porc = var.porc, 
                var.acum = var.acum), 2))
##   autovalores var.porc var.acum
## 1        2.78    46.41    46.41
## 2        1.43    23.79    70.20
## 3        1.04    17.27    87.46
## 4        0.45     7.55    95.02
## 5        0.21     3.43    98.45
## 6        0.09     1.55   100.00

———————————————————————

Análise dos Componentes principais, indicando a variabilidade dcada componente

res.pca <- dudi.pca(ACP, scannf =FALSE,nf=4)
names(res.pca)
##  [1] "tab"  "cw"   "lw"   "eig"  "rank" "nf"   "c1"   "li"   "co"   "l1"  
## [11] "call" "cent" "norm"
class(res.pca)
## [1] "pca"  "dudi"

Gerando os componnetes principais

res.pca$co
##            Comp1      Comp2       Comp3      Comp4
## ca20  -0.7050957  0.4477202 -0.40898150 -0.2849303
## mg20  -0.6044184  0.3177066  0.65632861 -0.2281672
## ctc20 -0.6027916 -0.7013317  0.04620424 -0.3373448
## ca40  -0.7490467  0.2831557 -0.51216358  0.1548070
## mg40  -0.7781832  0.1937608  0.40213681  0.3741113
## ctc40 -0.6290841 -0.7118836 -0.10408655  0.2147176
summary(res.pca)
## Class: pca dudi
## Call: dudi.pca(df = ACP, scannf = FALSE, nf = 4)
## 
## Total inertia: 6
## 
## Eigenvalues:
##     Ax1     Ax2     Ax3     Ax4     Ax5 
##  2.7882  1.4178  1.0350  0.4571  0.2055 
## 
## Projected inertia (%):
##     Ax1     Ax2     Ax3     Ax4     Ax5 
##  46.470  23.629  17.250   7.618   3.425 
## 
## Cumulative projected inertia (%):
##     Ax1   Ax1:2   Ax1:3   Ax1:4   Ax1:5 
##   46.47   70.10   87.35   94.97   98.39 
## 
## (Only 5 dimensions (out of 6) are shown)

Extraindo os autovalores

eig.val <- get_eigenvalue(res.pca)

head(eig.val)
##       eigenvalue variance.percent cumulative.variance.percent
## Dim.1  2.7882263        46.470438                    46.47044
## Dim.2  1.4177558        23.629263                    70.09970
## Dim.3  1.0350275        17.250458                    87.35016
## Dim.4  0.4570752         7.617920                    94.96808
## Dim.5  0.2055249         3.425415                    98.39349
## Dim.6  0.0963903         1.606505                   100.00000

par(mar=c(4,4,1,1))

Visualizando a variabilidade dos componentes principais

par(mfrow=c(1,2))
screeplot(res.pca, main = "",las=2)


barplot(eig.val[, 2], names.arg=1:nrow(eig.val), 
        main = "",
        xlab = "Componentes Principais",
        ylab = "Porcentagem de variância",
        col ="gray80",las=2)
# Add connected line segments to the plot
lines(x = 1:nrow(eig.val), eig.val[, 2], 
      type="b", pch=19, col = "black")

# Gráfico das variáveis
s.corcircle(res.pca$co)

# Default plot
fviz_pca_var(res.pca)

# Contribuição relativa a cada coluna

head(res.pca$co^2)
##           Comp1      Comp2       Comp3      Comp4
## ca20  0.4971600 0.20045341 0.167265865 0.08118526
## mg20  0.3653216 0.10093751 0.430767245 0.05206029
## ctc20 0.3633577 0.49186619 0.002134832 0.11380154
## ca40  0.5610710 0.08017713 0.262311537 0.02396520
## mg40  0.6055692 0.03754324 0.161714014 0.13995930
## ctc40 0.3957469 0.50677829 0.010834010 0.04610363

Representação gráfica da contribuição relativa a cada coluna

fviz_pca_var(res.pca, col.var="contrib")+
  scale_color_gradient2(low="white", mid="blue", 
                        high="red", midpoint=8) + theme_minimal()

fviz_pca_var(res.pca, col.var="cos2")+
  scale_color_gradient2(low="white", mid="blue", 
                        high="red", midpoint=0.5) + theme_minimal()

Plotando o Biplot individual

fviz_pca_biplot(res.pca, geom = "text") +
  theme_minimal()

———————————————————————–

Teste de Esfericidade de Bartlett

correlation matrix

R = cor(suelo[,c(-1,-2,-3,-10,-11)])
print(R)
##            ca20       mg20     ctc20      ca40      mg40      ctc40
## ca20  1.0000000 0.32889087 0.1838628 0.7578897 0.4011063 0.11353503
## mg20  0.3288909 1.00000000 0.2241574 0.2158503 0.6574740 0.06437925
## ctc20 0.1838628 0.22415738 1.0000000 0.1791775 0.2519149 0.76707359
## ca40  0.7578897 0.21585029 0.1791775 1.0000000 0.4442049 0.35120389
## mg40  0.4011063 0.65747396 0.2519149 0.4442049 1.0000000 0.36048846
## ctc40 0.1135350 0.06437925 0.7670736 0.3512039 0.3604885 1.00000000
n = nrow(suelo[,c(-1,-2,-3,-10,-11)])
p = ncol(suelo[,c(-1,-2,-3,-10,-11)])
chi2 = -(n-1-(2*p+5)/6)*log(det(R))
ddl = p*(p-1)/2
print(chi2)
## [1] 577.2681
print(ddl)
## [1] 15
print(pchisq(chi2,ddl,lower.tail=F))
## [1] 2.386775e-113

Rejeitamos a hipótese nula ao nível de significância 5%,

concluindo assim, que podemos realizar com eficiência PCA

em nosso conjunto de dados

dim(suelo)
## [1] 179  11
# Visualização da classificação por Grupo
quali.sup <- as.factor(suelo[1:179, 11])

head(quali.sup)
## [1] R3 R3 R3 R3 R3 R3
## Levels: R1 R2 R3
#par(mar=c(5,5,5,5))
s.class(res.pca$li, fac = quali.sup, xax = 1, yax = 2)

# Change the colors
s.class(res.pca$li, fac = quali.sup, 
        col = c("blue","red","green","black"))

O Biplot é um método para representar de forma bidimensional

dados multivariados

res <- scatter(res.pca, clab.row = 0, posieig = "none")
s.class(res.pca$li, fac = quali.sup, col = c("blue","red",
                                  "green","black"),add.plot = TRUE)

Customize the biplot

- remove row labels (clab.row = 0)

- hide the scree plot (posieig = 0)

- remove stars (cstar = 0)

- remove ellipse (cellipse = 0)

res <- scatter(res.pca, clab.row = 0, posieig = "none")
s.class(res.pca$li, fac = quali.sup, col = c("blue","red",
                                "green","black"),
        add.plot = TRUE, cstar = 0, cellipse = 0)

remove labels for classes (clabel = 0)

res <- scatter(res.pca, clab.row = 0, posieig = "none")
s.class(res.pca$li, fac = quali.sup, col = c("blue","red",
                                    "green","black"),
        add.plot = TRUE, cstar = 0, cellipse = 0, clabel = 0)

Cada observação é representada pelo par de escores dos dois

primeiros componentes principais. Os ângulos entre os vetores

estão relacionados às correlações entre as variáveis, sendo

que quanto menor o ângulo, mais correlacionadas estão.

fviz_pca_ind(res.pca, habillage = quali.sup, addEllipses =TRUE, 
             ellipse.level = 0.70,cex.lab=0.1) + theme_minimal()

fviz_pca_biplot(res.pca, 
                habillage =suelo$region, 
                addEllipses = TRUE,
                col.var = "black", alpha.var ="contrib",
                label = "var") +
  scale_color_brewer(palette="Dark2")+
  theme_minimal()