library(tidyverse)
library(titanic)
library(ggplot2)
library(dplyr)
df <- dplyr::bind_rows(titanic::titanic_test,
                 titanic::titanic_train)
df <- as_tibble(df)

Crear grupo “mujeres pobres”

# crear mujeres,...
mujeres_pobres <- filter(df, Pclass == 3, Sex == "female")
hombres_ricos <- filter(df, Pclass == 1, Sex == "male")
# juntar tablas por filas
lucha_de_clases<-bind_rows(mutate(hombres_ricos, lucha_de_clases = "Hombres ricos"),
                          mutate(mujeres_pobres, lucha_de_clases = "Mujeres pobres"))
lucha_de_clases %>% 
  filter(!is.na(Survived)) %>% 
  ggplot() +
  geom_bar(aes(x =  factor(Survived), fill = "hotpink")) + 
  facet_wrap(~ lucha_de_clases)

select(df, Sex)
filter(df, Sex == "male")
filter(df, Sex == "female", Survived)
mujeres_vivas <- filter(df, Sex == "female", Survived)
filter(df, Sex == "male", Survived)
hombres_vivos <- filter(df, Sex == "male", Survived)
ggplot(data = mujeres_vivas) + 
  geom_bar(mapping = aes(x = Pclass), fill = "hotpink") +
  theme_bw()

ggplot(data = hombres_vivos) + 
  geom_bar(mapping = aes(x = Pclass), fill = "hotpink") +
  theme_bw()

filter(df, Pclass == 1, Survived)
ricos_sobrevivientes <- filter(df, Pclass == 1, Survived)
ggplot(data = ricos_sobrevivientes) + 
  geom_bar(mapping = aes(x = Sex), fill = "hotpink") +
  theme_bw()

LS0tDQp0aXRsZTogIlRhcmVhIFRpdGFuaWMiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpgYGB7cn0NCmxpYnJhcnkodGlkeXZlcnNlKQ0KbGlicmFyeSh0aXRhbmljKQ0KbGlicmFyeShnZ3Bsb3QyKQ0KbGlicmFyeShkcGx5cikNCmBgYA0KDQpgYGB7cn0NCmRmIDwtIGRwbHlyOjpiaW5kX3Jvd3ModGl0YW5pYzo6dGl0YW5pY190ZXN0LA0KICAgICAgICAgICAgICAgICB0aXRhbmljOjp0aXRhbmljX3RyYWluKQ0KDQpkZiA8LSBhc190aWJibGUoZGYpDQpgYGANCg0KDQojQ3JlYXIgZ3J1cG8gIm11amVyZXMgcG9icmVzIg0KYGBge3J9DQojIGNyZWFyIG11amVyZXMsLi4uDQptdWplcmVzX3BvYnJlcyA8LSBmaWx0ZXIoZGYsIFBjbGFzcyA9PSAzLCBTZXggPT0gImZlbWFsZSIpDQpob21icmVzX3JpY29zIDwtIGZpbHRlcihkZiwgUGNsYXNzID09IDEsIFNleCA9PSAibWFsZSIpDQoNCiMganVudGFyIHRhYmxhcyBwb3IgZmlsYXMNCmx1Y2hhX2RlX2NsYXNlczwtYmluZF9yb3dzKG11dGF0ZShob21icmVzX3JpY29zLCBsdWNoYV9kZV9jbGFzZXMgPSAiSG9tYnJlcyByaWNvcyIpLA0KICAgICAgICAgICAgICAgICAgICAgICAgICBtdXRhdGUobXVqZXJlc19wb2JyZXMsIGx1Y2hhX2RlX2NsYXNlcyA9ICJNdWplcmVzIHBvYnJlcyIpKQ0KYGBgDQoNCg0KYGBge3J9DQoNCmx1Y2hhX2RlX2NsYXNlcyAlPiUgDQogIGZpbHRlcighaXMubmEoU3Vydml2ZWQpKSAlPiUgDQogIGdncGxvdCgpICsNCiAgZ2VvbV9iYXIoYWVzKHggPSAgZmFjdG9yKFN1cnZpdmVkKSwgZmlsbCA9ICJob3RwaW5rIikpICsgDQogIGZhY2V0X3dyYXAofiBsdWNoYV9kZV9jbGFzZXMpDQpgYGANCg0KDQoNCmBgYHtyfQ0Kc2VsZWN0KGRmLCBTZXgpDQpmaWx0ZXIoZGYsIFNleCA9PSAibWFsZSIpDQpgYGANCg0KDQoNCmBgYHtyfQ0KZmlsdGVyKGRmLCBTZXggPT0gImZlbWFsZSIsIFN1cnZpdmVkKQ0KDQptdWplcmVzX3ZpdmFzIDwtIGZpbHRlcihkZiwgU2V4ID09ICJmZW1hbGUiLCBTdXJ2aXZlZCkNCg0KYGBgDQoNCmBgYHtyfQ0KZmlsdGVyKGRmLCBTZXggPT0gIm1hbGUiLCBTdXJ2aXZlZCkNCg0KaG9tYnJlc192aXZvcyA8LSBmaWx0ZXIoZGYsIFNleCA9PSAibWFsZSIsIFN1cnZpdmVkKQ0KYGBgDQoNCg0KYGBge3J9DQpnZ3Bsb3QoZGF0YSA9IG11amVyZXNfdml2YXMpICsgDQogIGdlb21fYmFyKG1hcHBpbmcgPSBhZXMoeCA9IFBjbGFzcyksIGZpbGwgPSAiaG90cGluayIpICsNCiAgdGhlbWVfYncoKQ0KYGBgDQoNCg0KYGBge3J9DQpnZ3Bsb3QoZGF0YSA9IGhvbWJyZXNfdml2b3MpICsgDQogIGdlb21fYmFyKG1hcHBpbmcgPSBhZXMoeCA9IFBjbGFzcyksIGZpbGwgPSAiaG90cGluayIpICsNCiAgdGhlbWVfYncoKQ0KYGBgDQoNCg0KDQoNCg0KDQoNCmBgYHtyfQ0KZmlsdGVyKGRmLCBQY2xhc3MgPT0gMSwgU3Vydml2ZWQpDQoNCnJpY29zX3NvYnJldml2aWVudGVzIDwtIGZpbHRlcihkZiwgUGNsYXNzID09IDEsIFN1cnZpdmVkKQ0KYGBgDQoNCg0KDQoNCmBgYHtyfQ0KZ2dwbG90KGRhdGEgPSByaWNvc19zb2JyZXZpdmllbnRlcykgKyANCiAgZ2VvbV9iYXIobWFwcGluZyA9IGFlcyh4ID0gU2V4KSwgZmlsbCA9ICJob3RwaW5rIikgKw0KICB0aGVtZV9idygpDQpgYGANCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQo=