Six New England States

Source of data

  • The primary source of data is the Federal Judicial Center.
  • A tab delimited file was imported from FJC, which includes all files since 1988.
  • This original file was processed in R (CV88on.R) so that it only includes 6 NE states, a few selected variabls, and business-related NOS.

Import

# Import data
data <- read.csv("C:/Users/sclee1/OneDrive/Documents/R/legalAnalytics/data/cv88on.csv", header=TRUE)

library(tidyverse)

# Separte date into year, month, day
data <- separate(data, FILEDATE, c("FILEMONTH", "FILEDAY", "FILEYEAR"), sep = "/", remove = TRUE)
data$FILEYEAR <- as.integer(data$FILEYEAR)
data$FILEMONTH <- NULL
data$FILEDAY <- NULL
# Filter for cases filed after 2010
data <-
  data %>%
  filter(FILEYEAR > 2010) %>%
  droplevels()

# Label state names
data <- 
  data %>%
  mutate(DISTRICT = str_replace(DISTRICT, "10", "VT"),
         DISTRICT = str_replace(DISTRICT, "0", "ME"),
         DISTRICT = str_replace(DISTRICT, "1", "MA"),
         DISTRICT = str_replace(DISTRICT, "2", "NH"),
         DISTRICT = str_replace(DISTRICT, "3", "RI"),
         DISTRICT = str_replace(DISTRICT, "5", "CT"))

# Convert to factors
data$DISTRICT <- factor(data$DISTRICT)
data$NOS <- factor(data$NOS)

# Get a sense of the data
str(data)
## 'data.frame':    36643 obs. of  6 variables:
##  $ DISTRICT      : Factor w/ 6 levels "CT","MA","ME",..: 3 3 3 3 3 3 3 3 3 3 ...
##  $ PLT           : Factor w/ 19900 levels "'DAVIS","'DAVIS, ET AL",..: 6393 3300 5130 19442 7175 3482 6269 4384 12436 13162 ...
##  $ DEF           : Factor w/ 19496 levels "'47 BRAND, LLC",..: 8018 11968 5576 10445 5251 14988 7759 1510 8210 13180 ...
##  $ FILEYEAR      : int  2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 ...
##  $ NOS           : Factor w/ 44 levels "110","140","160",..: 28 22 26 25 25 4 25 26 4 1 ...
##  $ nature_of_suit: Factor w/ 44 levels "ADMINISTRATIVE PROCEDURE ACT/REVIEW OR APPEAL OF AGENCY\nDECISION",..: 7 37 9 28 28 29 28 9 29 19 ...
summary(data)
##  DISTRICT         PLT                                    DEF       
##  CT: 9718   SMITH   :  185   FRESENIUS MEDICAL CARE , ET AL: 3590  
##  MA:18705   SEALED  :  173   ATRIUM MEDICAL CORPORAT, ET AL:  617  
##  ME: 1988   BROWN   :  165   GLAXOSMITHKLINE LLC           :  439  
##  NH: 2556   JOHNSON :  154   FRESENIUS USA, INC., ET AL    :  379  
##  RI: 2628   WILLIAMS:  149   DAVOL, INC., ET AL            :  189  
##  VT: 1048   MARRADI :  146   BOSTON SCIENTIFIC CORP.       :  179  
##             (Other) :35671   (Other)                       :31250  
##     FILEYEAR         NOS                                   nature_of_suit 
##  Min.   :2011   367    : 5145   HEALTH CARE / PHARM               : 5145  
##  1st Qu.:2013   440    : 4101   OTHER CIVIL RIGHTS                : 4101  
##  Median :2014   190    : 3945   OTHER CONTRACT ACTIONS            : 3945  
##  Mean   :2014   442    : 3026   CIVIL RIGHTS JOBS                 : 3026  
##  3rd Qu.:2016   365    : 2988   PERSONAL INJURY -PRODUCT LIABILITY: 2988  
##  Max.   :2018   360    : 2035   OTHER PERSONAL INJURY             : 2035  
##                 (Other):15403   (Other)                           :15403

Top 10 defendants in 6 New England States

data %>%
  group_by(DISTRICT, DEF) %>%
  summarise(n = n()) %>%
  arrange(DISTRICT, desc(n)) %>%
  top_n(10, n) %>%
  data.frame()
##    DISTRICT                            DEF    n
## 1        CT                            DOE  163
## 2        CT                            USA  122
## 3        CT                 PERLITZ, ET AL   76
## 4        CT             CONNECTICUT, ET AL   51
## 5        CT                         SEALED   44
## 6        CT                HARTFORD, ET AL   40
## 7        CT  METRO-NORTH COMMUTER RAILROAD   40
## 8        CT              BRIDGEPORT, ET AL   31
## 9        CT               NEW HAVEN, ET AL   30
## 10       CT DEPUY ORTHOPAEDICS, INC, ET AL   29
## 11       MA FRESENIUS MEDICAL CARE , ET AL 3589
## 12       MA            GLAXOSMITHKLINE LLC  439
## 13       MA     FRESENIUS USA, INC., ET AL  379
## 14       MA        BOSTON SCIENTIFIC CORP.  177
## 15       MA NEW ENGLAND COMPOUNDING, ET AL  171
## 16       MA      HOWMEDICA OSTEONICS CORP.  149
## 17       MA  FRESENIUS U.S.A., INC., ET AL  141
## 18       MA           AMERIDOSE LLC, ET AL  135
## 19       MA           UNIFIRST CORPORATION  105
## 20       MA                         SEALED  104
## 21       ME       JOHNSON & JOHNSON, ET AL   30
## 22       ME CANADIAN PACIFIC RAILWA, ET AL   25
## 23       ME    WESTERN PETROLEUM CO, ET AL   18
## 24       ME             ETHICON INC, ET AL   17
## 25       ME       UNITED STATES OF AMERICA   15
## 26       ME          STATE OF MAINE, ET AL   11
## 27       ME  DEPUY ORTHOPAEDICS INC, ET AL   10
## 28       ME          RAIL WORLD INC, ET AL   10
## 29       ME                            USA   10
## 30       ME              ZIMMER INC, ET AL   10
## 31       NH ATRIUM MEDICAL CORPORAT, ET AL  617
## 32       NH                             -8   26
## 33       NH                            USA   22
## 34       NH     ATRIUM MEDICAL CORP, ET AL   16
## 35       NH     ATRIUM MEDICAL CORPORATION   14
## 36       NH               GUTIERREZ, ET AL   14
## 37       NH           THE DIAL CORPORATION   13
## 38       NH      COLGATE-PALMOLIVE COMPANY    9
## 39       NH PORTFOLIO RECOVERY ASSOCIATES,    9
## 40       NH      SALEM, NH, TOWN OF, ET AL    8
## 41       RI             DAVOL, INC., ET AL  189
## 42       RI               DAVOL INC, ET AL   43
## 43       RI         C.R. BARD, INC., ET AL   36
## 44       RI       JOHNSON & JOHNSON, ET AL   33
## 45       RI              DAVOL INC., ET AL   29
## 46       RI      CITY OF PROVIDENCE, ET AL   23
## 47       RI MORTGAGE ELECTRONIC REG, ET AL   22
## 48       RI   STATE OF RHODE ISLAND, ET AL   17
## 49       RI             CVS PHARMACY, INC.   14
## 50       RI       UNITED STATES OF AMERICA   14
## 51       VT       UNITED STATES OF AMERICA   14
## 52       VT        STATE OF VERMONT, ET AL    9
## 53       VT BUILDING PRODUCTS OF CANADA CO    5
## 54       VT FLETCHER ALLEN HEALTH C, ET AL    5
## 55       VT                 SHUMLIN, ET AL    5
## 56       VT DARTMOUTH-HITCHCOCK MED, ET AL    4
## 57       VT DARTMOUTH HITCHCOCK MED, ET AL    4
## 58       VT       GENERAL ELECTRIC COMPANY    4
## 59       VT             NORWICH UNIVERSITY    4
## 60       VT                         SEALED    4
## 61       VT                 STILLER, ET AL    4
## 62       VT   UNITED STATES POSTAL SERVICE    4
## 63       VT  UNIVERSITY OF VERMONT MEDICAL    4

Top 10 plaintiffs in 6 New England States

data %>%
  group_by(DISTRICT, PLT) %>%
  summarise(n = n()) %>%
  arrange(DISTRICT, desc(n)) %>%
  top_n(10, n) %>%
  data.frame()
##    DISTRICT                            PLT   n
## 1        CT              MALIBU MEDIA, LLC 109
## 2        CT         STRIKE 3 HOLDINGS, LLC  47
## 3        CT                          BROWN  44
## 4        CT                         SEALED  44
## 5        CT                       WILLIAMS  44
## 6        CT      SUBWAY INTERNATIONAL B.V.  40
## 7        CT                            DOE  39
## 8        CT                            USA  38
## 9        CT                        JOHNSON  32
## 10       CT                          SMITH  31
## 11       MA                        MARRADI 146
## 12       MA                          SMITH 105
## 13       MA                         SEALED 104
## 14       MA                          BROWN  96
## 15       MA                        JOHNSON  94
## 16       MA                       WILLIAMS  88
## 17       MA       UNITED STATES OF AMERICA  85
## 18       MA                          JONES  81
## 19       MA UNITED STATES OF AMERIC, ET AL  73
## 20       MA          FORWARD FINANCING LLC  70
## 21       ME                         SHUPER  27
## 22       ME                           HURT  16
## 23       ME                          SMITH  15
## 24       ME                            USA  11
## 25       ME                          BROWN   9
## 26       ME                       WILLIAMS   9
## 27       ME                          ADAMS   8
## 28       ME                         MURPHY   8
## 29       ME                         MARTIN   7
## 30       ME                            ROY   7
## 31       ME                         SEALED   7
## 32       NH                            USA  34
## 33       NH                       AMATUCCI  21
## 34       NH                          SMITH  14
## 35       NH                        JOHNSON  13
## 36       NH                THEODORE, ET AL  10
## 37       NH                         TAYLOR   9
## 38       NH                        TOMPSON   9
## 39       NH                         BERSAW   8
## 40       NH                        COLEMAN   8
## 41       NH                          BROWN   7
## 42       RI                      LACCINOLE  27
## 43       RI                          SMITH  16
## 44       RI       UNITED STATES OF AMERICA  11
## 45       RI                         SEALED   9
## 46       RI                            DOE   8
## 47       RI                       MARSHALL   8
## 48       RI                         SILVIA   8
## 49       RI     ALLSTATE INSURANCE COMPANY   7
## 50       RI AMICA MUTUAL INSURANCE COMPANY   7
## 51       RI                          BROWN   7
## 52       RI                        GARLICK   7
## 53       RI                         HORSCH   7
## 54       RI              JACOBOWITZ, ET AL   7
## 55       VT       UNITED STATES OF AMERICA   8
## 56       VT                         PORTER   7
## 57       VT                       CHANDLER   6
## 58       VT                          DAVIS   6
## 59       VT                            DOE   4
## 60       VT                        JOHNSON   4
## 61       VT                         MARINO   4
## 62       VT                         MCCAIN   4
## 63       VT                          MOORE   4
## 64       VT                       PAPAZONI   4
## 65       VT                       REYNOLDS   4
## 66       VT                           RYAN   4
## 67       VT                         SEALED   4
## 68       VT                          SMITH   4
## 69       VT               STATE OF VERMONT   4
## 70       VT UNITED STATES OF AMERIC, ET AL   4
## 71       VT VERMONT MUTUAL INSURANCE COMPA   4

New Hampshire

Import

# Import data
data <- read.csv("C:/Users/sclee1/OneDrive/Documents/R/legalAnalytics/data/data_merged.csv", header=TRUE)

library(tidyverse)

# Separte date into year, month, day
data <- separate(data, FILEDATE, c("FILEMONTH", "FILEDAY", "FILEYEAR"), sep = "/", remove = TRUE)
data$FILEYEAR <- as.integer(data$FILEYEAR)
data$FILEMONTH <- NULL
data$FILEDAY <- NULL
# Filter for cases filed after 2010
data <-
  data %>%
  filter(FILEYEAR > 2010) %>%
  droplevels()

# Convert to factors
data$NOS <- factor(data$NOS)

# Get a sense of the data
str(data)
## 'data.frame':    1510 obs. of  50 variables:
##  $ CIRCUIT       : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ DISTRICT      : int  2 2 2 2 2 2 2 2 2 2 ...
##  $ OFFICE        : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ DOCKET        : int  900365 1000489 1000529 1000607 1100014 1100025 1100033 1100039 1100049 1100054 ...
##  $ ORIGIN        : int  4 4 4 1 2 1 1 2 1 1 ...
##  $ FILEYEAR      : int  2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 ...
##  $ FDATEUSE      : Factor w/ 84 levels "1/1/2011","1/1/2012",..: 64 64 78 1 1 1 1 1 29 29 ...
##  $ JURIS         : int  3 4 3 3 4 1 3 4 4 4 ...
##  $ NOS           : Factor w/ 42 levels "110","140","160",..: 40 12 40 31 12 32 38 4 18 1 ...
##  $ TITLE         : Factor w/ 18 levels "12","15","17",..: 13 7 13 2 7 8 7 7 10 7 ...
##  $ SECTION       : Factor w/ 87 levels "1","10","1001",..: 50 24 60 35 24 76 15 24 63 12 ...
##  $ SUBSECT       : Factor w/ 53 levels "-8","1","AT",..: 1 49 1 1 37 1 51 34 1 16 ...
##  $ RESIDENC      : int  -8 12 -8 -8 12 -8 -8 15 24 55 ...
##  $ CLASSACT      : int  -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 ...
##  $ DEMANDED      : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FILEJUDG      : logi  NA NA NA NA NA NA ...
##  $ FILEMAG       : logi  NA NA NA NA NA NA ...
##  $ COUNTY        : int  88888 33001 88888 33011 33009 33005 88888 33009 33007 88888 ...
##  $ ARBIT         : Factor w/ 4 levels "-8","E","M","V": 1 1 1 1 1 1 1 1 1 1 ...
##  $ MDLDOCK       : int  -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 ...
##  $ PLT           : Factor w/ 1252 levels "-8","17 OUTLETS, LLC",..: 566 442 828 785 577 1176 1061 990 686 256 ...
##  $ DEF           : Factor w/ 1234 levels "-8","10 IRON HORSE DRIVE, LL, ET AL",..: 123 663 969 824 663 322 10 1199 26 872 ...
##  $ TRANSDAT      : logi  NA NA NA NA NA NA ...
##  $ TRANSOFF      : int  -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 ...
##  $ TRANSDOC      : int  -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 ...
##  $ TRANSORG      : int  -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 ...
##  $ TERMDATE      : Factor w/ 965 levels "1/10/2012","1/10/2013",..: 751 783 933 804 962 883 420 374 576 841 ...
##  $ TDATEUSE      : Factor w/ 83 levels "1/1/2012","1/1/2013",..: 63 63 77 70 77 70 35 28 49 70 ...
##  $ TRCLACT       : int  -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 ...
##  $ TERMJUDG      : logi  NA NA NA NA NA NA ...
##  $ TERMMAG       : logi  NA NA NA NA NA NA ...
##  $ PROCPROG      : int  5 5 2 4 5 1 2 3 3 12 ...
##  $ DISP          : int  14 18 14 6 13 4 12 1 13 6 ...
##  $ NOJ           : int  0 0 0 0 0 1 0 0 0 0 ...
##  $ AMTREC        : int  0 0 0 0 0 16 0 0 0 0 ...
##  $ JUDGMENT      : int  0 0 0 2 0 1 0 0 0 2 ...
##  $ DJOINED       : Factor w/ 663 levels "","1/11/2012",..: 507 537 644 277 34 1 1 238 309 1 ...
##  $ PRETRIAL      : Factor w/ 211 levels "","1/10/2012",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ TRIBEGAN      : Factor w/ 20 levels "","1/20/2016",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ TRIALEND      : Factor w/ 28 levels "","1/20/2016",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ TRMARB        : int  -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 ...
##  $ PROSE         : int  0 0 0 3 0 0 0 0 2 0 ...
##  $ IFP           : Factor w/ 2 levels "-8","FP": 1 1 1 2 1 1 1 1 1 1 ...
##  $ STATUSCD      : Factor w/ 1 level "L": 1 1 1 1 1 1 1 1 1 1 ...
##  $ TAPEYEAR      : int  2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 ...
##  $ nature_of_suit: Factor w/ 42 levels "ADMINISTRATIVE PROCEDURE ACT/REVIEW OR APPEAL OF AGENCY DECISION",..: 33 22 33 10 22 25 41 27 28 18 ...
##  $ busType_def   : Factor w/ 5 levels "CORP","LLC","PARTNERSHIP",..: 2 NA NA NA NA 1 NA 1 NA NA ...
##  $ busType_plt   : Factor w/ 4 levels "CORP","LLC","PARTNERSHIP",..: NA NA 2 NA NA NA 1 NA NA NA ...
##  $ busType       : Factor w/ 3 levels "Both","Neither",..: 3 2 3 2 2 3 3 3 2 2 ...
##  $ cause         : Factor w/ 124 levels "","05:551 Administrative Procedure Act",..: 123 NA NA 12 NA 110 59 NA NA 39 ...
summary(data)
##     CIRCUIT     DISTRICT     OFFICE      DOCKET            ORIGIN      
##  Min.   :1   Min.   :2   Min.   :1   Min.   : 500145   Min.   : 1.000  
##  1st Qu.:1   1st Qu.:2   1st Qu.:1   1st Qu.:1200153   1st Qu.: 1.000  
##  Median :1   Median :2   Median :1   Median :1300403   Median : 1.000  
##  Mean   :1   Mean   :2   Mean   :1   Mean   :1337053   Mean   : 1.423  
##  3rd Qu.:1   3rd Qu.:2   3rd Qu.:1   3rd Qu.:1500192   3rd Qu.: 2.000  
##  Max.   :1   Max.   :2   Max.   :1   Max.   :1700670   Max.   :13.000  
##                                                                        
##     FILEYEAR         FDATEUSE        JURIS            NOS     
##  Min.   :2011   4/1/2013 :  36   Min.   :1.000   440    :200  
##  1st Qu.:2012   10/1/2014:  32   1st Qu.:3.000   190    :193  
##  Median :2013   8/1/2011 :  32   Median :3.000   442    :160  
##  Mean   :2013   5/1/2011 :  31   Mean   :3.328   360    :110  
##  3rd Qu.:2015   3/1/2012 :  29   3rd Qu.:4.000   890    :109  
##  Max.   :2017   3/1/2013 :  28   Max.   :4.000   480    :100  
##                 (Other)  :1322                   (Other):638  
##      TITLE        SECTION       SUBSECT       RESIDENC     
##  28     :977   1332   :386   -8     :336   Min.   :-8.000  
##  42     :230   1441   :373   CV     :196   1st Qu.:-8.000  
##  15     :182   1983   :130   ED     :117   Median :-8.000  
##  29     : 45   1692   :123   PI     :115   Mean   : 5.677  
##  CO     : 19   1331   :111   BC     :110   3rd Qu.:15.000  
##  47     : 15   1210   : 47   PL     : 63   Max.   :64.000  
##  (Other): 42   (Other):340   (Other):573                   
##     CLASSACT         DEMANDED        FILEJUDG       FILEMAG       
##  Min.   :-8.000   Min.   : 0.00000   Mode:logical   Mode:logical  
##  1st Qu.:-8.000   1st Qu.: 0.00000   NA's:1510      NA's:1510     
##  Median :-8.000   Median : 0.00000                                
##  Mean   :-7.928   Mean   : 0.03311                                
##  3rd Qu.:-8.000   3rd Qu.: 0.00000                                
##  Max.   : 1.000   Max.   :25.00000                                
##                                                                   
##      COUNTY      ARBIT        MDLDOCK                     PLT      
##  Min.   :33001   -8:1490   Min.   :  -8.00   USA            :  32  
##  1st Qu.:33011   E :   7   1st Qu.:  -8.00   AMATUCCI       :  17  
##  Median :33013   M :   5   Median :  -8.00   BERSAW         :   8  
##  Mean   :42950   V :   8   Mean   :  11.85   JOHNSON        :   8  
##  3rd Qu.:33017             3rd Qu.:  -8.00   THEODORE, ET AL:   8  
##  Max.   :99999             Max.   :2320.00   COLEMAN        :   7  
##                                              (Other)        :1430  
##                              DEF       TRANSDAT          TRANSOFF 
##  -8                            :  25   Mode:logical   Min.   :-8  
##  USA                           :  16   NA's:1510      1st Qu.:-8  
##  GUTIERREZ, ET AL              :  12                  Median :-8  
##  COLGATE-PALMOLIVE COMPANY     :   9                  Mean   :-8  
##  PORTFOLIO RECOVERY ASSOCIATES,:   9                  3rd Qu.:-8  
##  DEPUY ORTHOPAEDICS, INC, ET AL:   7                  Max.   :-8  
##  (Other)                       :1432                              
##     TRANSDOC     TRANSORG        TERMDATE         TDATEUSE   
##  Min.   :-8   Min.   :-8   2/4/2015  :  13   5/1/2013 :  33  
##  1st Qu.:-8   1st Qu.:-8   2/1/2016  :   7   2/1/2015 :  31  
##  Median :-8   Median :-8   12/16/2013:   6   1/1/2013 :  29  
##  Mean   :-8   Mean   :-8   2/28/2014 :   6   10/1/2014:  27  
##  3rd Qu.:-8   3rd Qu.:-8   11/18/2014:   5   11/1/2017:  27  
##  Max.   :-8   Max.   :-8   5/13/2013 :   5   12/1/2015:  27  
##                            (Other)   :1468   (Other)  :1336  
##     TRCLACT       TERMJUDG       TERMMAG           PROCPROG     
##  Min.   :-8.000   Mode:logical   Mode:logical   Min.   : 1.000  
##  1st Qu.:-8.000   NA's:1510      NA's:1510      1st Qu.: 2.000  
##  Median :-8.000                                 Median : 5.000  
##  Mean   :-7.779                                 Mean   : 4.103  
##  3rd Qu.:-8.000                                 3rd Qu.: 5.000  
##  Max.   : 3.000                                 Max.   :12.000  
##                                                                 
##       DISP            NOJ              AMTREC           JUDGMENT    
##  Min.   : 0.00   Min.   :0.00000   Min.   :   0.00   Min.   :0.000  
##  1st Qu.: 6.00   1st Qu.:0.00000   1st Qu.:   0.00   1st Qu.:0.000  
##  Median :12.00   Median :0.00000   Median :   0.00   Median :0.000  
##  Mean   :10.65   Mean   :0.03377   Mean   :  41.45   Mean   :0.398  
##  3rd Qu.:13.00   3rd Qu.:0.00000   3rd Qu.:   0.00   3rd Qu.:0.000  
##  Max.   :20.00   Max.   :2.00000   Max.   :9999.00   Max.   :4.000  
##                                                                     
##        DJOINED          PRETRIAL          TRIBEGAN          TRIALEND   
##            :631             :1261             :1490             :1483  
##  7/1/2013  :  8   10/12/2011:   7   2/17/2016 :   2   1/20/2016 :   1  
##  11/14/2011:  5   3/5/2012  :   4   1/20/2016 :   1   1/27/2016 :   1  
##  12/20/2012:  4   10/24/2011:   3   1/6/2015  :   1   1/7/2015  :   1  
##  8/7/2012  :  4   12/16/2011:   3   1/6/2016  :   1   1/7/2016  :   1  
##  1/13/2014 :  3   1/19/2012 :   2   10/20/2017:   1   10/24/2014:   1  
##  (Other)   :855   (Other)   : 230   (Other)   :  14   (Other)   :  22  
##      TRMARB       PROSE        IFP       STATUSCD    TAPEYEAR   
##  Min.   :-8   Min.   :0.0000   -8:1383   L:1510   Min.   :2011  
##  1st Qu.:-8   1st Qu.:0.0000   FP: 127            1st Qu.:2013  
##  Median :-8   Median :0.0000                      Median :2014  
##  Mean   :-8   Mean   :0.2225                      Mean   :2015  
##  3rd Qu.:-8   3rd Qu.:0.0000                      3rd Qu.:2016  
##  Max.   :-8   Max.   :3.0000                      Max.   :2018  
##                                                                 
##                  nature_of_suit      busType_def       busType_plt  
##  OTHER CIVIL RIGHTS     :200    CORP       :338   CORP       :  88  
##  OTHER CONTRACT ACTIONS :193    LLC        :167   LLC        :  95  
##  CIVIL RIGHTS JOBS      :160    PARTNERSHIP: 21   PARTNERSHIP:   2  
##  OTHER PERSONAL INJURY  :110    PC         :  1   PC         :   5  
##  OTHER STATUTORY ACTIONS:109    PLLC       :  1   NA's       :1320  
##  CONSUMER CREDIT        :100    NA's       :982                     
##  (Other)                :638                                        
##      busType                                                   cause    
##  Both    : 77   42:1983 Civil Rights Act                          : 84  
##  Neither :869   15:1692 Fair Debt Collection Act                  : 40  
##  Only one:564   28:1441  Petition for Removal - Employment Discrim: 33  
##                 28:1332 Diversity-Breach of Contract              : 32  
##                 28:1331 Federal Question: Other Civil Rights      : 31  
##                 (Other)                                           :534  
##                 NA's                                              :756

Top 10 defendants in New Hampshire

data %>%
  group_by(DISTRICT, DEF) %>%
  summarise(n = n()) %>%
  arrange(DISTRICT, desc(n)) %>%
  top_n(10, n) %>%
  data.frame()
##    DISTRICT                            DEF  n
## 1         2                             -8 25
## 2         2                            USA 16
## 3         2               GUTIERREZ, ET AL 12
## 4         2      COLGATE-PALMOLIVE COMPANY  9
## 5         2 PORTFOLIO RECOVERY ASSOCIATES,  9
## 6         2 DEPUY ORTHOPAEDICS, INC, ET AL  7
## 7         2      SALEM, NH, TOWN OF, ET AL  6
## 8         2            ZIMMER, INC., ET AL  6
## 9         2          BANK OF AMERICA, N.A.  5
## 10        2 MIDLAND CREDIT MANAGEME, ET AL  5
## 11        2                     USA, ET AL  5

Top 10 plaintiffs in New Hampshire

data %>%
  group_by(DISTRICT, PLT) %>%
  summarise(n = n()) %>%
  arrange(DISTRICT, desc(n)) %>%
  top_n(10, n) %>%
  data.frame()
##    DISTRICT                          PLT  n
## 1         2                          USA 32
## 2         2                     AMATUCCI 17
## 3         2                       BERSAW  8
## 4         2                      JOHNSON  8
## 5         2              THEODORE, ET AL  8
## 6         2                      COLEMAN  7
## 7         2                      FISCHER  6
## 8         2                       TAYLOR  6
## 9         2 BROADCAST MUSIC, INC., ET AL  5
## 10        2                      TOMPSON  5

Who are top defendants in New Hampshire and for what are they getting sued?

The table below shows break-outs of defendants by type of suits. The type of suits is represented by the nature of suit and the causes of action. For example, GUTIERREZ, ET AL had been sued 12 times since 2010. All 12 were SECURITIES, COMMODITIES, EXCHANGE in the nature of suit. In terms of the causes of action, 2 of 12 were 15:78m(a) Securities Exchange Act, while the rest is unknown.

The table is sorted so that top defendants show at the top of the table.

# Calculate total number of cases per defendant
data_Total <-
  data %>%
  count(DEF, sort = TRUE) %>%
  rename(Total = n)

library(DT)

table <- data %>%
  count(DEF, nature_of_suit, cause, sort = TRUE) %>%
  left_join(data_Total) %>%
  mutate(percent = format((n / Total * 100), digits = 2)) %>%
  arrange(desc(Total), DEF) %>%
  filter(DEF != "-8") 

datatable(table, options = list(pageLength = 10))

Who are top plaintiffs in New Hampshire and for what are they suing?

# Calculate total number of cases per defendant
data_Total <-
  data %>%
  count(PLT, sort = TRUE) %>%
  rename(Total = n)

library(DT)

table <- data %>%
  count(PLT, nature_of_suit, cause, sort = TRUE) %>%
  left_join(data_Total) %>%
  mutate(percent = format((n / Total * 100), digits = 2)) %>%
  arrange(desc(Total), PLT) %>%
  filter(PLT != "-8") 

datatable(table, options = list(pageLength = 10))