setwd("~/Dropbox/Fernando 2018/archives/data")
library("lme4", lib.loc="/Library/Frameworks/R.framework/Versions/3.5/Resources/library")
## Loading required package: Matrix
enemy<- read.table("todos_2.csv", sep = ",", header = T)
attach(enemy)
damage<-as.factor(damage)
fam<-as.factor(fam)
##Modelo general
fit1<-glmer(seeds.2~damage*pop+(1|pop:fam), family = "poisson")
summary(fit1)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: poisson  ( log )
## Formula: seeds.2 ~ damage * pop + (1 | pop:fam)
## 
##      AIC      BIC   logLik deviance df.resid 
##   5026.9   5061.6  -2504.4   5008.9      342 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.9459 -1.2132  0.1518  1.4238 11.1978 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  pop:fam (Intercept) 0.0402   0.2005  
## Number of obs: 351, groups:  pop:fam, 50
## 
## Fixed effects:
##                        Estimate Std. Error z value Pr(>|z|)    
## (Intercept)             4.03226    0.05701  70.730  < 2e-16 ***
## damage1                -0.10931    0.02705  -4.041 5.33e-05 ***
## popteotihuacan         -0.02886    0.07527  -0.383  0.70138    
## popvaldeflores         -0.27353    0.08885  -3.079  0.00208 ** 
## popzubia               -0.21966    0.09911  -2.216  0.02667 *  
## damage1:popteotihuacan  0.08099    0.03634   2.229  0.02583 *  
## damage1:popvaldeflores  0.02171    0.04602   0.472  0.63711    
## damage1:popzubia       -0.14501    0.05233  -2.771  0.00559 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) damag1 pptthc ppvldf popzub dmg1:ppt dmg1:ppv
## damage1     -0.242                                              
## popteotihcn -0.757  0.183                                       
## popvaldflrs -0.642  0.155  0.486                                
## popzubia    -0.575  0.139  0.436  0.369                         
## dmg1:pptthc  0.180 -0.744 -0.243 -0.116 -0.104                  
## dmg1:ppvldf  0.142 -0.588 -0.108 -0.241 -0.082  0.438           
## damag1:ppzb  0.125 -0.517 -0.095 -0.080 -0.230  0.385    0.304
##Modelo nulo
fit2<-glm(seeds.2~1, family="poisson")
##Significancia modelo completo
anova(fit1, fit2)
## Data: NULL
## Models:
## fit2: seeds.2 ~ 1
## fit1: seeds.2 ~ damage * pop + (1 | pop:fam)
##      Df    AIC    BIC  logLik deviance Chisq Chi Df Pr(>Chisq)    
## fit2  1 5905.3 5909.1 -2951.6   5903.3                            
## fit1  9 5026.9 5061.6 -2504.4   5008.9 894.4      8  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Significancia de la interacción
drop1(fit1, test = "Chisq")
## Single term deletions
## 
## Model:
## seeds.2 ~ damage * pop + (1 | pop:fam)
##            Df    AIC  LRT   Pr(Chi)    
## <none>        5026.9                   
## damage:pop  3 5041.4 20.5 0.0001337 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Significancia del daño
fit3<-glmer(seeds.2~pop+damage:pop+(1|pop:fam), family="poisson")
drop1(fit3, test = "Chisq")
## Single term deletions
## 
## Model:
## seeds.2 ~ pop + damage:pop + (1 | pop:fam)
##            Df    AIC    LRT  Pr(Chi)    
## <none>        5026.9                    
## pop:damage  4 5074.6 55.725 2.29e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Significancia de la población
fit4<-glmer(seeds.2~damage+damage:pop+(1|pop:fam), family="poisson")
drop1(fit4, test = "Chisq")
## Single term deletions
## 
## Model:
## seeds.2 ~ damage + damage:pop + (1 | pop:fam)
##            Df    AIC    LRT   Pr(Chi)    
## <none>        5026.9                     
## damage:pop  6 5052.1 37.229 1.589e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Significancia efecto aleatorio fam
modsinfam<-glm(seeds.2~damage*pop, family="poisson")
anova(fit1, modsinfam)
## Data: NULL
## Models:
## modsinfam: seeds.2 ~ damage * pop
## fit1: seeds.2 ~ damage * pop + (1 | pop:fam)
##           Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)    
## modsinfam  8 5581.0 5611.9 -2782.5   5565.0                             
## fit1       9 5026.9 5061.6 -2504.4   5008.9 556.16      1  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Bootstrap paramétrico para confirmar significancia efecto fam (ho: la varianza es distinta de cero)
library(pbnm)
bootfam<-pbnm(fit1,modsinfam,nsim = 1000, tasks = 10, cores=2, seed=3400835)
summary(bootfam)
## Parametric bootstrap testing: (Intercept) | pop:fam = 0 
## from: glmer(formula = seeds.2 ~ damage * pop + (1 | pop:fam), family = "poisson") 
## 1000 samples were taken Mon Oct 29 16:32:41 2018 
## 1 samples had warnings, 1 in alternate model 0 in null model 
## 1 unused samples.  0 <= P(abs((Intercept) | pop:fam) > |0.04020354|) <= 0.001
#Finalmente el diagnostico de residuales del modelo...
plot(residuals(fit1)~predict(fit1,type="link"), xlab=expression(hat(eta)), ylab="Deviance residuals")

##Graficando las normas de reacción para pop con intervalos de confianza al 95% (inferencia directa)
fit1fit<-fitted(fit1)
enemy$Seeds2<-fit1fit
library(ggplot2)
p<-ggplot(enemy,aes(damage,Seeds2, linetype=pop, color=pop))
p + geom_smooth(method = "lm", se=F)+scale_linetype_manual(values=c("twodash","solid","dotdash","dotted"))+theme(legend.position="top")+stat_smooth(method = "lm",level = 0.95)

##ESFUERZO REPRODUCTIVO: Modelo general 
fit1<-lmer(arep~damage*pop+(1|pop:fam))
summary(fit1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: arep ~ damage * pop + (1 | pop:fam)
## 
## REML criterion at convergence: 2093.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1959 -0.5442  0.0933  0.6017  2.5686 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pop:fam  (Intercept)  6.764   2.601   
##  Residual             20.451   4.522   
## Number of obs: 351, groups:  pop:fam, 50
## 
## Fixed effects:
##                        Estimate Std. Error t value
## (Intercept)             33.4087     0.9573  34.900
## damage1                 -0.3992     0.8993  -0.444
## popteotihuacan          -1.2379     1.2669  -0.977
## popvaldeflores           1.8114     1.4622   1.239
## popzubia                 0.7939     1.6273   0.488
## damage1:popteotihuacan   0.3644     1.2117   0.301
## damage1:popvaldeflores   0.3941     1.4053   0.280
## damage1:popzubia         0.6932     1.5673   0.442
## 
## Correlation of Fixed Effects:
##             (Intr) damag1 pptthc ppvldf popzub dmg1:ppt dmg1:ppv
## damage1     -0.503                                              
## popteotihcn -0.756  0.380                                       
## popvaldflrs -0.655  0.330  0.495                                
## popzubia    -0.588  0.296  0.444  0.385                         
## dmg1:pptthc  0.374 -0.742 -0.498 -0.245 -0.220                  
## dmg1:ppvldf  0.322 -0.640 -0.243 -0.473 -0.189  0.475           
## damag1:ppzb  0.289 -0.574 -0.218 -0.189 -0.473  0.426    0.367
##Modelo nulo
fit2<-lm(arep~1)
##Significancia modelo completo
anova(fit1, fit2)
## refitting model(s) with ML (instead of REML)
## Data: NULL
## Models:
## fit2: arep ~ 1
## fit1: arep ~ damage * pop + (1 | pop:fam)
##      Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)    
## fit2  2 2163.4 2171.1 -1079.7   2159.4                             
## fit1 10 2126.9 2165.5 -1053.5   2106.9 52.464      8  1.369e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Significancia interacción
drop1(fit1, test = "Chisq")
## Single term deletions
## 
## Model:
## arep ~ damage * pop + (1 | pop:fam)
##            Df    AIC     LRT Pr(Chi)
## <none>        2126.9                
## damage:pop  3 2121.1 0.22028  0.9743
##Significancia del daño
fit3<-lmer(arep~pop+damage:pop+(1|pop:fam))
drop1(fit3, test = "Chisq")
## Single term deletions
## 
## Model:
## arep ~ pop + damage:pop + (1 | pop:fam)
##            Df    AIC     LRT Pr(Chi)
## <none>        2126.9                
## pop:damage  4 2119.2 0.25285  0.9927
##Significancia de la población
fit4<-lmer(arep~damage+damage:pop+(1|pop:fam))
drop1(fit4, test = "Chisq")
## Single term deletions
## 
## Model:
## arep ~ damage + damage:pop + (1 | pop:fam)
##            Df    AIC    LRT Pr(Chi)
## <none>        2126.9               
## damage:pop  6 2122.3 7.3517  0.2895
##Significancia efecto aleatorio fam
modsinfam<-lm(arep~damage*pop)
anova(fit1, modsinfam)
## refitting model(s) with ML (instead of REML)
## Data: NULL
## Models:
## modsinfam: arep ~ damage * pop
## fit1: arep ~ damage * pop + (1 | pop:fam)
##           Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)    
## modsinfam  9 2158.0 2192.8 -1070.0   2140.0                             
## fit1      10 2126.9 2165.5 -1053.5   2106.9 33.129      1  8.625e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Bootstrap paramétrico para reconfirmar significancia efecto del daño*fam (ho: la varianza es distinta de cero)
library(pbnm)
fit1f<-lmer(arep~damage*pop+(1|pop:fam), REML = F)
bootfam<-pbnm(fit1f,modsinfam,nsim = 1000, tasks = 10, cores=2, seed=3400835)
summary(bootfam)
## Parametric bootstrap testing: (Intercept) | pop:fam = 0 
## from: lmer(formula = arep ~ damage * pop + (1 | pop:fam), REML = F) 
## 1000 samples were taken Mon Oct 29 16:33:00 2018 
## 2 samples had warnings, 2 in alternate model 0 in null model 
## 2 unused samples.  0 <= P(abs((Intercept) | pop:fam) > |5.998127|) <= 0.002
#Finalmente el diagnostico de residuales del modelo...
plot(residuals(fit1)~predict(fit1,type="link"), xlab=expression(hat(eta)), ylab="Deviance residuals")

##Graficando las normas de reacción para pop con intervalos de confianza al 95% (inferencia directa)
fit1fit<-fitted(fit1)
enemy$arepfit2<-fit1fit
library(ggplot2)
p<-ggplot(enemy,aes(damage,arepfit2, color=pop))
p + geom_smooth(method = "lm", se=F)+scale_linetype_manual(values=c("twodash","solid","dotdash","dotted"))+theme(legend.position="top")+stat_smooth(method = "lm",level = 0.95)

##LMF: Modelo general 
fit1<-lmer(almf~damage*pop+(1|pop:fam))
summary(fit1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: almf ~ damage * pop + (1 | pop:fam)
## 
## REML criterion at convergence: 1968
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4327 -0.5178 -0.0134  0.3997  8.0859 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pop:fam  (Intercept)  0.7146  0.8454  
##  Residual             16.0657  4.0082  
## Number of obs: 351, groups:  pop:fam, 50
## 
## Fixed effects:
##                        Estimate Std. Error t value
## (Intercept)             18.8663     0.6225  30.306
## damage1                 -1.1648     0.7935  -1.468
## popteotihuacan          -0.8608     0.8259  -1.042
## popvaldeflores          -1.1429     0.9398  -1.216
## popzubia                -1.5086     1.0425  -1.447
## damage1:popteotihuacan   0.8231     1.0689   0.770
## damage1:popvaldeflores   0.8914     1.2416   0.718
## damage1:popzubia         2.8967     1.3799   2.099
## 
## Correlation of Fixed Effects:
##             (Intr) damag1 pptthc ppvldf popzub dmg1:ppt dmg1:ppv
## damage1     -0.681                                              
## popteotihcn -0.754  0.514                                       
## popvaldflrs -0.662  0.451  0.499                                
## popzubia    -0.597  0.407  0.450  0.396                         
## dmg1:pptthc  0.506 -0.742 -0.672 -0.335 -0.302                  
## dmg1:ppvldf  0.435 -0.639 -0.328 -0.651 -0.260  0.474           
## damag1:ppzb  0.392 -0.575 -0.295 -0.260 -0.651  0.427    0.368
##Modelo nulo
fit2<-lm(almf~1)
##Significancia modelo completo
anova(fit1, fit2)
## refitting model(s) with ML (instead of REML)
## Data: NULL
## Models:
## fit2: almf ~ 1
## fit1: almf ~ damage * pop + (1 | pop:fam)
##      Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
## fit2  2 1987.0 1994.8 -991.52   1983.0                         
## fit1 10 1996.1 2034.7 -988.03   1976.1 6.9795      8     0.5388
##Significancia interacción
drop1(fit1, test = "Chisq")
## Single term deletions
## 
## Model:
## almf ~ damage * pop + (1 | pop:fam)
##            Df    AIC    LRT Pr(Chi)
## <none>        1996.1               
## damage:pop  3 1994.5 4.4663  0.2153
##Significancia del daño
fit3<-lmer(almf~pop+damage:pop+(1|pop:fam))
drop1(fit3, test = "Chisq")
## Single term deletions
## 
## Model:
## almf ~ pop + damage:pop + (1 | pop:fam)
##            Df    AIC    LRT Pr(Chi)
## <none>        1996.1               
## pop:damage  4 1992.9 4.8699  0.3009
##Significancia de la población
fit4<-lmer(almf~damage+damage:pop+(1|pop:fam))
drop1(fit4, test = "Chisq")
## Single term deletions
## 
## Model:
## almf ~ damage + damage:pop + (1 | pop:fam)
##            Df    AIC    LRT Pr(Chi)
## <none>        1996.1               
## damage:pop  6 1989.7 5.6113  0.4681
##Significancia efecto aleatorio fam
modsinfam<-lm(almf~damage*pop)
anova(fit1, modsinfam)
## refitting model(s) with ML (instead of REML)
## Data: NULL
## Models:
## modsinfam: almf ~ damage * pop
## fit1: almf ~ damage * pop + (1 | pop:fam)
##           Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
## modsinfam  9 1995.0 2029.7 -988.48   1977.0                         
## fit1      10 1996.1 2034.7 -988.03   1976.1 0.8977      1     0.3434
##Bootstrap paramétrico para reconfirmar significancia efecto del daño*fam (ho: la varianza es distinta de cero)
fit1f<-lmer(almf~damage*pop+(1|pop:fam), REML = F)
bootfam<-pbnm(fit1f,modsinfam,nsim = 1000, tasks = 10, cores=2, seed=3400835)
summary(bootfam)
## Parametric bootstrap testing: (Intercept) | pop:fam = 0 
## from: lmer(formula = almf ~ damage * pop + (1 | pop:fam), REML = F) 
## 1000 samples were taken Mon Oct 29 16:33:18 2018 
## P(abs((Intercept) | pop:fam) > |0.4957279|) = 0.095
#Finalmente el diagnostico de residuales del modelo...
plot(residuals(fit1)~predict(fit1,type="link"), xlab=expression(hat(eta)), ylab="Deviance residuals")

##Graficando las normas de reacción para pop con intervalos de confianza al 95% (inferencia directa)
fit1fit<-fitted(fit1)
enemy$almffit2<-fit1fit
p<-ggplot(enemy,aes(damage,almffit2, color=pop))
p + geom_smooth(method = "lm", se=F)+scale_linetype_manual(values=c("twodash","solid","dotdash","dotted"))+theme(legend.position="top")+stat_smooth(method = "lm",level = 0.95)

##SMF: Modelo general 
fit1<-lmer(asmf~damage*pop+(1|pop:fam))
summary(fit1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: asmf ~ damage * pop + (1 | pop:fam)
## 
## REML criterion at convergence: 1970.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8634 -0.5732 -0.0079  0.4785  3.8842 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pop:fam  (Intercept)  4.416   2.101   
##  Residual             14.388   3.793   
## Number of obs: 351, groups:  pop:fam, 50
## 
## Fixed effects:
##                        Estimate Std. Error t value
## (Intercept)             34.0792     0.7874  43.280
## damage1                 -0.3541     0.7542  -0.470
## popteotihuacan          -0.2702     1.0423  -0.259
## popvaldeflores          -0.6764     1.2021  -0.563
## popzubia                -2.2380     1.3377  -1.673
## damage1:popteotihuacan   0.4336     1.0162   0.427
## damage1:popvaldeflores   0.8277     1.1786   0.702
## damage1:popzubia         0.5342     1.3143   0.406
## 
## Correlation of Fixed Effects:
##             (Intr) damag1 pptthc ppvldf popzub dmg1:ppt dmg1:ppv
## damage1     -0.513                                              
## popteotihcn -0.755  0.388                                       
## popvaldflrs -0.655  0.336  0.495                                
## popzubia    -0.589  0.302  0.445  0.386                         
## dmg1:pptthc  0.381 -0.742 -0.507 -0.249 -0.224                  
## dmg1:ppvldf  0.328 -0.640 -0.248 -0.483 -0.193  0.475           
## damag1:ppzb  0.294 -0.574 -0.222 -0.193 -0.483  0.426    0.367
##Modelo nulo
fit2<-lm(asmf~1)
##Significancia modelo completo
anova(fit1, fit2)
## refitting model(s) with ML (instead of REML)
## Data: NULL
## Models:
## fit2: asmf ~ 1
## fit1: asmf ~ damage * pop + (1 | pop:fam)
##      Df    AIC    BIC   logLik deviance  Chisq Chi Df Pr(>Chisq)    
## fit2  2 2024.2 2032.0 -1010.12   2020.2                             
## fit1 10 2000.9 2039.5  -990.45   1980.9 39.332      8  4.264e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Significancia interacción
drop1(fit1, test = "Chisq")
## Single term deletions
## 
## Model:
## asmf ~ damage * pop + (1 | pop:fam)
##            Df    AIC     LRT Pr(Chi)
## <none>        2000.9                
## damage:pop  3 1995.4 0.52217   0.914
##Significancia del daño
fit3<-lmer(asmf~pop+damage:pop+(1|pop:fam))
drop1(fit3, test = "Chisq")
## Single term deletions
## 
## Model:
## asmf ~ pop + damage:pop + (1 | pop:fam)
##            Df    AIC     LRT Pr(Chi)
## <none>        2000.9                
## pop:damage  4 1993.4 0.53528    0.97
##Significancia de la población
fit4<-lmer(asmf~damage+damage:pop+(1|pop:fam))
drop1(fit4, test = "Chisq")
## Single term deletions
## 
## Model:
## asmf ~ damage + damage:pop + (1 | pop:fam)
##            Df    AIC   LRT Pr(Chi)
## <none>        2000.9              
## damage:pop  6 1993.0 4.095  0.6638
##Significancia efecto aleatorio fam
modsinfam<-lm(asmf~damage*pop)
anova(fit1, modsinfam)
## refitting model(s) with ML (instead of REML)
## Data: NULL
## Models:
## modsinfam: asmf ~ damage * pop
## fit1: asmf ~ damage * pop + (1 | pop:fam)
##           Df    AIC    BIC   logLik deviance  Chisq Chi Df Pr(>Chisq)    
## modsinfam  9 2029.2 2063.9 -1005.58   2011.2                             
## fit1      10 2000.9 2039.5  -990.45   1980.9 30.254      1  3.791e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Bootstrap paramétrico para reconfirmar significancia efecto del daño*fam (ho: la varianza es distinta de cero)
fit1f<-lmer(asmf~damage*pop+(1|pop:fam), REML = F)
bootfam<-pbnm(fit1f,modsinfam,nsim = 1000, tasks = 10, cores=2, seed=3400835)
summary(bootfam)
## Parametric bootstrap testing: (Intercept) | pop:fam = 0 
## from: lmer(formula = asmf ~ damage * pop + (1 | pop:fam), REML = F) 
## 1000 samples were taken Mon Oct 29 16:33:36 2018 
## P(abs((Intercept) | pop:fam) > |3.906617|) = 0
#Finalmente el diagnostico de residuales del modelo...
plot(residuals(fit1)~predict(fit1,type="link"), xlab=expression(hat(eta)), ylab="Deviance residuals")

##Graficando las normas de reacción para pop con intervalos de confianza al 95% (inferencia directa)
fit1fit<-fitted(fit1)
enemy$asmffit2<-fit1fit
p<-ggplot(enemy,aes(damage,asmffit2, color=pop))
p + geom_smooth(method = "lm", se=F)+scale_linetype_manual(values=c("twodash","solid","dotdash","dotted"))+theme(legend.position="top")+stat_smooth(method = "lm",level = 0.95)

##RMF: Modelo general 
fit1<-lmer(armf~damage*pop+(1|pop:fam))
summary(fit1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: armf ~ damage * pop + (1 | pop:fam)
## 
## REML criterion at convergence: 2237.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2869 -0.6175 -0.0971  0.6606  3.9162 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pop:fam  (Intercept)  4.988   2.233   
##  Residual             33.217   5.763   
## Number of obs: 351, groups:  pop:fam, 50
## 
## Fixed effects:
##                        Estimate Std. Error t value
## (Intercept)             30.6963     1.0279  29.863
## damage1                  1.9525     1.1440   1.707
## popteotihuacan           2.3377     1.3622   1.716
## popvaldeflores          -0.1978     1.5611  -0.127
## popzubia                 2.8334     1.7347   1.633
## damage1:popteotihuacan  -1.7627     1.5413  -1.144
## damage1:popvaldeflores  -1.8489     1.7887  -1.034
## damage1:popzubia        -3.3676     1.9921  -1.691
## 
## Correlation of Fixed Effects:
##             (Intr) damag1 pptthc ppvldf popzub dmg1:ppt dmg1:ppv
## damage1     -0.596                                              
## popteotihcn -0.755  0.450                                       
## popvaldflrs -0.658  0.392  0.497                                
## popzubia    -0.593  0.353  0.447  0.390                         
## dmg1:pptthc  0.442 -0.742 -0.588 -0.291 -0.262                  
## dmg1:ppvldf  0.381 -0.640 -0.288 -0.564 -0.226  0.475           
## damag1:ppzb  0.342 -0.574 -0.258 -0.225 -0.564  0.426    0.367
##Modelo nulo
fit2<-lm(armf~1)
##Significancia modelo completo
anova(fit1, fit2)
## refitting model(s) with ML (instead of REML)
## Data: NULL
## Models:
## fit2: armf ~ 1
## fit1: armf ~ damage * pop + (1 | pop:fam)
##      Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)   
## fit2  2 2280.5 2288.2 -1138.2   2276.5                            
## fit1 10 2273.3 2311.9 -1126.6   2253.3 23.208      8   0.003107 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Significancia interacción
drop1(fit1, test = "Chisq")
## Single term deletions
## 
## Model:
## armf ~ damage * pop + (1 | pop:fam)
##            Df    AIC    LRT Pr(Chi)
## <none>        2273.3               
## damage:pop  3 2270.5 3.1838  0.3641
##Significancia del daño
fit3<-lmer(armf~pop+damage:pop+(1|pop:fam))
drop1(fit3, test = "Chisq")
## Single term deletions
## 
## Model:
## armf ~ pop + damage:pop + (1 | pop:fam)
##            Df    AIC    LRT Pr(Chi)
## <none>        2273.3               
## pop:damage  4 2269.0 3.7333  0.4433
##Significancia de la población
fit4<-lmer(armf~damage+damage:pop+(1|pop:fam))
drop1(fit4, test = "Chisq")
## Single term deletions
## 
## Model:
## armf ~ damage + damage:pop + (1 | pop:fam)
##            Df    AIC    LRT Pr(Chi)
## <none>        2273.3               
## damage:pop  6 2269.7 8.3822  0.2114
##Significancia efecto aleatorio fam
modsinfam<-lm(armf~damage*pop)
anova(fit1, modsinfam)
## refitting model(s) with ML (instead of REML)
## Data: NULL
## Models:
## modsinfam: armf ~ damage * pop
## fit1: armf ~ damage * pop + (1 | pop:fam)
##           Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)   
## modsinfam  9 2281.6 2316.3 -1131.8   2263.6                            
## fit1      10 2273.3 2311.9 -1126.6   2253.3 10.312      1   0.001322 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Bootstrap paramétrico para reconfirmar significancia efecto del daño*fam (ho: la varianza es distinta de cero)
fit1f<-lmer(armf~damage*pop+(1|pop:fam), REML = F)
bootfam<-pbnm(fit1f,modsinfam,nsim = 1000, tasks = 10, cores=2, seed=3400835)
summary(bootfam)
## Parametric bootstrap testing: (Intercept) | pop:fam = 0 
## from: lmer(formula = armf ~ damage * pop + (1 | pop:fam), REML = F) 
## 1000 samples were taken Mon Oct 29 16:33:55 2018 
## 3 samples had warnings, 3 in alternate model 0 in null model 
## 3 unused samples.  0 <= P(abs((Intercept) | pop:fam) > |4.247412|) <= 0.003
#Finalmente el diagnostico de residuales del modelo...
plot(residuals(fit1)~predict(fit1,type="link"), xlab=expression(hat(eta)), ylab="Deviance residuals")

##Graficando las normas de reacción para pop con intervalos de confianza al 95% (inferencia directa)
fit1fit<-fitted(fit1)
enemy$armffit2<-fit1fit
p<-ggplot(enemy,aes(damage,armffit2, color=pop))
p + geom_smooth(method = "lm", se=F)+scale_linetype_manual(values=c("twodash","solid","dotdash","dotted"))+theme(legend.position="top")+stat_smooth(method = "lm",level = 0.95)

##No.Hojas: Modelo general 
fit1<-lmer(sqrt(leaves.2+0.5)~damage*pop+(1|pop:fam))
summary(fit1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: sqrt(leaves.2 + 0.5) ~ damage * pop + (1 | pop:fam)
## 
## REML criterion at convergence: 277.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.9760 -0.5390 -0.0720  0.4586  3.0523 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pop:fam  (Intercept) 0.04766  0.2183  
##  Residual             0.09908  0.3148  
## Number of obs: 351, groups:  pop:fam, 50
## 
## Fixed effects:
##                        Estimate Std. Error t value
## (Intercept)             2.76710    0.07421  37.289
## damage1                 0.03957    0.06264   0.632
## popteotihuacan          0.17489    0.09814   1.782
## popvaldeflores         -0.37544    0.11366  -3.303
## popzubia               -0.35302    0.12660  -2.788
## damage1:popteotihuacan -0.06161    0.08441  -0.730
## damage1:popvaldeflores  0.15985    0.09787   1.633
## damage1:popzubia       -0.02089    0.10920  -0.191
## 
## Correlation of Fixed Effects:
##             (Intr) damag1 pptthc ppvldf popzub dmg1:ppt dmg1:ppv
## damage1     -0.453                                              
## popteotihcn -0.756  0.342                                       
## popvaldflrs -0.653  0.295  0.494                                
## popzubia    -0.586  0.265  0.443  0.383                         
## dmg1:pptthc  0.336 -0.742 -0.448 -0.219 -0.197                  
## dmg1:ppvldf  0.290 -0.640 -0.219 -0.424 -0.170  0.475           
## damag1:ppzb  0.260 -0.574 -0.196 -0.169 -0.424  0.426    0.367
##Modelo nulo
fit2<-lm(sqrt(leaves.2+0.5)~1)
##Significancia modelo completo
anova(fit1, fit2)
## refitting model(s) with ML (instead of REML)
## Data: NULL
## Models:
## fit2: sqrt(leaves.2 + 0.5) ~ 1
## fit1: sqrt(leaves.2 + 0.5) ~ damage * pop + (1 | pop:fam)
##      Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)    
## fit2  2 397.55 405.27 -196.77   393.55                             
## fit1 10 269.82 308.43 -124.91   249.82 143.72      8  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Significancia interacción
drop1(fit1, test = "Chisq")
## Single term deletions
## 
## Model:
## sqrt(leaves.2 + 0.5) ~ damage * pop + (1 | pop:fam)
##            Df    AIC    LRT Pr(Chi)
## <none>        269.82               
## damage:pop  3 269.55 5.7226  0.1259
##Significancia del daño
fit3<-lmer(sqrt(leaves.2+0.5)~pop+damage:pop+(1|pop:fam))
drop1(fit3, test = "Chisq")
## Single term deletions
## 
## Model:
## sqrt(leaves.2 + 0.5) ~ pop + damage:pop + (1 | pop:fam)
##            Df    AIC    LRT Pr(Chi)
## <none>        269.82               
## pop:damage  4 269.44 7.6117  0.1069
##Significancia de la población
fit4<-lmer(sqrt(leaves.2+0.5)~damage+damage:pop+(1|pop:fam))
drop1(fit4, test = "Chisq")
## Single term deletions
## 
## Model:
## sqrt(leaves.2 + 0.5) ~ damage + damage:pop + (1 | pop:fam)
##            Df    AIC    LRT   Pr(Chi)    
## <none>        269.82                     
## damage:pop  6 290.73 32.908 1.092e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Significancia efecto aleatorio fam
modsinfam<-lm(sqrt(leaves.2+0.5)~damage*pop)
anova(fit1, modsinfam)
## refitting model(s) with ML (instead of REML)
## Data: NULL
## Models:
## modsinfam: sqrt(leaves.2 + 0.5) ~ damage * pop
## fit1: sqrt(leaves.2 + 0.5) ~ damage * pop + (1 | pop:fam)
##           Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)    
## modsinfam  9 318.07 352.82 -150.04   300.07                             
## fit1      10 269.82 308.43 -124.91   249.82 50.248      1  1.355e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Bootstrap paramétrico para reconfirmar significancia efecto del daño*fam (ho: la varianza es distinta de cero)
library(pbnm)
fit1f<-lmer(sqrt(leaves.2+0.5)~damage*pop+(1|pop:fam), REML = F)
bootfam<-pbnm(fit1f,modsinfam,nsim = 1000, tasks = 10, cores=2, seed=3400835)
summary(bootfam)
## Parametric bootstrap testing: (Intercept) | pop:fam = 0 
## from: lmer(formula = sqrt(leaves.2 + 0.5) ~ damage * pop + (1 | pop:fam),  REML = F) 
## 1000 samples were taken Mon Oct 29 16:34:13 2018 
## P(abs((Intercept) | pop:fam) > |0.04263713|) = 0
#Finalmente el diagnostico de residuales del modelo...
plot(residuals(fit1)~predict(fit1,type="link"), xlab=expression(hat(eta)), ylab="Deviance residuals")

##Graficando las normas de reacción para pop con intervalos de confianza al 95% (inferencia directa)
fit1fit<-fitted(fit1)
enemy$leaves.2fit2<-fit1fit
library(ggplot2)
p<-ggplot(enemy,aes(damage,leaves.2fit2, color=pop))
p + geom_smooth(method = "lm", se=F)+scale_linetype_manual(values=c("twodash","solid","dotdash","dotted"))+theme(legend.position="top")+stat_smooth(method = "lm",level = 0.95)

##Masa total: Modelo general 
fit1<-lmer(ln_wt.total~damage*pop+(1|pop:fam))
summary(fit1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: ln_wt.total ~ damage * pop + (1 | pop:fam)
## 
## REML criterion at convergence: -225.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2157 -0.5838  0.0090  0.4619  3.5420 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pop:fam  (Intercept) 0.01302  0.1141  
##  Residual             0.02241  0.1497  
## Number of obs: 351, groups:  pop:fam, 50
## 
## Fixed effects:
##                         Estimate Std. Error t value
## (Intercept)             0.954812   0.037494  25.466
## damage1                -0.076758   0.029801  -2.576
## popteotihuacan          0.083460   0.049569   1.684
## popvaldeflores         -0.101522   0.057504  -1.765
## popzubia               -0.102834   0.064075  -1.605
## damage1:popteotihuacan  0.023691   0.040160   0.590
## damage1:popvaldeflores -0.009433   0.046560  -0.203
## damage1:popzubia       -0.049688   0.051965  -0.956
## 
## Correlation of Fixed Effects:
##             (Intr) damag1 pptthc ppvldf popzub dmg1:ppt dmg1:ppv
## damage1     -0.426                                              
## popteotihcn -0.756  0.322                                       
## popvaldflrs -0.652  0.278  0.493                                
## popzubia    -0.585  0.249  0.443  0.382                         
## dmg1:pptthc  0.316 -0.742 -0.422 -0.206 -0.185                  
## dmg1:ppvldf  0.273 -0.640 -0.206 -0.399 -0.160  0.475           
## damag1:ppzb  0.244 -0.573 -0.185 -0.159 -0.399  0.426    0.367
##Modelo nulo
fit2<-lm(ln_wt.total~1)
##Significancia modelo completo
anova(fit1, fit2)
## refitting model(s) with ML (instead of REML)
## Data: NULL
## Models:
## fit2: ln_wt.total ~ 1
## fit1: ln_wt.total ~ damage * pop + (1 | pop:fam)
##      Df     AIC      BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)    
## fit2  2 -104.07  -96.352  54.037  -108.07                             
## fit1 10 -244.45 -205.846 132.227  -264.45 156.38      8  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Significancia interacción
drop1(fit1, test = "Chisq")
## Single term deletions
## 
## Model:
## ln_wt.total ~ damage * pop + (1 | pop:fam)
##            Df     AIC    LRT Pr(Chi)
## <none>        -244.45               
## damage:pop  3 -248.24 2.2133  0.5293
##Significancia del daño
fit3<-lmer(ln_wt.total~pop+damage:pop+(1|pop:fam))
drop1(fit3, test = "Chisq")
## Single term deletions
## 
## Model:
## ln_wt.total ~ pop + damage:pop + (1 | pop:fam)
##            Df     AIC    LRT   Pr(Chi)    
## <none>        -244.45                     
## pop:damage  4 -228.04 24.413 6.601e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Significancia de la población
fit4<-lmer(ln_wt.total~damage+damage:pop+(1|pop:fam))
drop1(fit4, test = "Chisq")
## Single term deletions
## 
## Model:
## ln_wt.total ~ damage + damage:pop + (1 | pop:fam)
##            Df     AIC    LRT   Pr(Chi)    
## <none>        -244.45                     
## damage:pop  6 -233.05 23.402 0.0006724 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Significancia efecto aleatorio fam
modsinfam<-lm(ln_wt.total~damage*pop)
anova(fit1, modsinfam)
## refitting model(s) with ML (instead of REML)
## Data: NULL
## Models:
## modsinfam: ln_wt.total ~ damage * pop
## fit1: ln_wt.total ~ damage * pop + (1 | pop:fam)
##           Df     AIC     BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)    
## modsinfam  9 -176.51 -141.77  97.257  -194.51                             
## fit1      10 -244.45 -205.85 132.227  -264.45 69.941      1  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Bootstrap paramétrico para reconfirmar significancia efecto del daño*fam (ho: la varianza es distinta de cero)
library(pbnm)
fit1f<-lmer(ln_wt.total~damage*pop+(1|pop:fam), REML = F)
bootfam<-pbnm(fit1f,modsinfam,nsim = 1000, tasks = 10, cores=2, seed=3400835)
summary(bootfam)
## Parametric bootstrap testing: (Intercept) | pop:fam = 0 
## from: lmer(formula = ln_wt.total ~ damage * pop + (1 | pop:fam), REML = F) 
## 1000 samples were taken Mon Oct 29 16:34:31 2018 
## P(abs((Intercept) | pop:fam) > |0.01174032|) = 0
#Finalmente el diagnostico de residuales del modelo...
plot(residuals(fit1)~predict(fit1,type="link"), xlab=expression(hat(eta)), ylab="Deviance residuals")

##Graficando las normas de reacción para pop con intervalos de confianza al 95% (inferencia directa)
fit1fit<-fitted(fit1)
enemy$ln_wt.totalfit2<-fit1fit
library(ggplot2)
p<-ggplot(enemy,aes(damage,ln_wt.totalfit2, color=pop))
p + geom_smooth(method = "lm", se=F)+scale_linetype_manual(values=c("twodash","solid","dotdash","dotted"))+theme(legend.position="top")+stat_smooth(method = "lm",level = 0.95)

##Guardando ajustados a la base
write.csv(enemy,file = "todos_2fit.csv")