\(n=364\), \(Y_{365}= 100\), \(\sigma = \sqrt{n/4}=\sqrt{n}/2\)
my_std_dev <- sqrt(364)/2
pnorm(100-100,mean=0, sd=my_std_dev)
## [1] 0.5
pnorm(110-100,mean=0,lower.tail= FALSE, sd=my_std_dev)
## [1] 0.1472537
pnorm(120-100,mean=0,lower.tail= FALSE, sd=my_std_dev)
## [1] 0.01801584
from wiki page the MGF for binomial is \[ (1-p+pe^{t})^{n} \]
the mean is equivalent to the expected value of the MGF(x’) evaluated at t=0
\[ M_x'(t)=n[1-p+p^{et}]^{n-1}(pe^t) \]
Evaluated at 0 \[M_x'(t)= n[1-p+p]*p(1)= n*p\]
\[M_x''(t)= n[1-p+pe^t]^{n-1}*(pe^t)+(pe^t)(n)(n-1)[1-p+pe^t]^{n-2}(pe^t) \]
\[M_x''(t)= np+n^2p^2-np^2 - (np)^2\] \[np-np^2\]
\[q=(1-p).......Variance=np(1-p)=npq\]
mx’(t)= \(\frac{\lambda}{(\lambda-t)^2}\)
\(mean=\frac{1}{\lambda}\)