6.1

a

library(vcdExtra)
## Loading required package: vcd
## Loading required package: grid
## Loading required package: gnm
library(ca)
str(JobSat)
##  'table' num [1:4, 1:4] 1 2 1 0 3 3 6 1 10 10 ...
##  - attr(*, "dimnames")=List of 2
##   ..$ income      : chr [1:4] "< 15k" "15-25k" "25-40k" "> 40k"
##   ..$ satisfaction: chr [1:4] "VeryD" "LittleD" "ModerateS" "VeryS"
(JobSat.ca <- ca(JobSat))
## 
##  Principal inertias (eigenvalues):
##            1        2        3       
## Value      0.047496 0.012248 0.002397
## Percentage 76.43%   19.71%   3.86%   
## 
## 
##  Rows:
##             < 15k    15-25k    25-40k     > 40k
## Mass     0.208333  0.229167  0.343750  0.218750
## ChiDist  0.155863  0.258668  0.143508  0.398092
## Inertia  0.005061  0.015333  0.007079  0.034667
## Dim. 1  -0.580000 -0.954935 -0.160048  1.804292
## Dim. 2   0.037584 -1.341216  1.228320 -0.560927
## 
## 
##  Columns:
##             VeryD   LittleD ModerateS     VeryS
## Mass     0.041667  0.135417  0.447917  0.375000
## ChiDist  0.756787  0.367072  0.065080  0.219901
## Inertia  0.023864  0.018246  0.001897  0.018134
## Dim. 1  -3.039806 -1.327426 -0.144206  0.989351
## Dim. 2  -3.199834  2.014331 -0.186638 -0.148932

For a one dimensional solution inertia is 0.0474

b

plot(JobSat.ca)

Dimention 1 is ordered by job satisfaction. 25-40K income groups are less dissatisfied and 15-25K are very much dissatisfied with their job.

6.11

a

library(vcdExtra)
accident.tab <- xtabs(Freq ~ gender + mode + age+ result, data=Accident)
accident.tab
## , , age = 0-9, result = Died
## 
##         mode
## gender   4-Wheeled Bicycle Motorcycle Pedestrian
##   Female        65       5          6         89
##   Male          70      26          6        150
## 
## , , age = 10-19, result = Died
## 
##         mode
## gender   4-Wheeled Bicycle Motorcycle Pedestrian
##   Female        61      31         54         28
##   Male         150      76        362         70
## 
## , , age = 20-29, result = Died
## 
##         mode
## gender   4-Wheeled Bicycle Motorcycle Pedestrian
##   Female       107      10         82         24
##   Male         353      55        660         78
## 
## , , age = 30-49, result = Died
## 
##         mode
## gender   4-Wheeled Bicycle Motorcycle Pedestrian
##   Female       199      24         98         49
##   Male         720     146        889        223
## 
## , , age = 50+, result = Died
## 
##         mode
## gender   4-Wheeled Bicycle Motorcycle Pedestrian
##   Female       253      56         78        378
##   Male         513     396        742        704
## 
## , , age = 0-9, result = Injured
## 
##         mode
## gender   4-Wheeled Bicycle Motorcycle Pedestrian
##   Female      1362     126        131       1967
##   Male        1593     378        181       3341
## 
## , , age = 10-19, result = Injured
## 
##         mode
## gender   4-Wheeled Bicycle Motorcycle Pedestrian
##   Female      2593    7218       3587       1495
##   Male        3543    3407      12311       1827
## 
## , , age = 20-29, result = Injured
## 
##         mode
## gender   4-Wheeled Bicycle Motorcycle Pedestrian
##   Female      4361     609       4010        864
##   Male        9084    1565      18558       1521
## 
## , , age = 30-49, result = Injured
## 
##         mode
## gender   4-Wheeled Bicycle Motorcycle Pedestrian
##   Female      7712    1118       3664       1814
##   Male       15086    3024      18909       3178
## 
## , , age = 50+, result = Injured
## 
##         mode
## gender   4-Wheeled Bicycle Motorcycle Pedestrian
##   Female      5552    1030       1387       5449
##   Male        7423    3863       8597       5206
accident.mjca <- mjca(accident.tab)
summary(accident.mjca)
## 
## Principal inertias (eigenvalues):
## 
##  dim    value      %   cum%   scree plot               
##  1      0.025429  46.5  46.5  ****************         
##  2      0.011848  21.7  68.1  *******                  
##  3      0.001889   3.5  71.6  *                        
##  4      0.000491   0.9  72.5                           
##         -------- -----                                 
##  Total: 0.054700                                       
## 
## 
## Columns:
##                 name   mass  qlt  inr    k=1 cor ctr    k=2 cor ctr  
## 1  |   gender:Female |   77  788   77 | -203 686 126 |   78 101  40 |
## 2  |     gender:Male |  173  788   35 |   91 686  56 |  -35 101  18 |
## 3  |  mode:4-Wheeled |   81  230   73 |   -8   2   0 |  -80 228  43 |
## 4  |    mode:Bicycle |   31  762   98 | -156 127  30 |  349 635 320 |
## 5  | mode:Motorcycle |   99  686   70 |  209 684 170 |   11   2   1 |
## 6  | mode:Pedestrian |   38  677  100 | -401 600 241 | -144  77  66 |
## 7  |         age:0-9 |   13  672  107 | -551 561 152 | -246 111  65 |
## 8  |       age:10-19 |   49  678   91 |  -40  13   3 |  292 665 354 |
## 9  |       age:20-29 |   56  784   85 |  215 747 102 |  -48  37  11 |
## 10 |       age:30-49 |   76  546   75 |  103 396  32 |  -63 149  26 |
## 11 |         age:50+ |   56  687   85 | -196 616  84 |  -67  72  21 |
## 12 |     result:Died |   11  515  100 |  -90  92   3 | -192 422  34 |
## 13 |  result:Injured |  239  515    5 |    4  92   0 |    9 422   2 |

b

plot(accident.mjca)

People with age groups 30-49 and with 4 wheeled vehicles are the people wiht more number of reported deaths.