eyJsYW5ndWFnZSI6InIiLCJzYW1wbGUiOiJteU1hdHJpeCA8LSBtYXRyaXgoMToxNSwgYnlyb3c9VFJVRSwgbmNvbD01KSAgXG5teU1hdHJpeCJ9
创建矩阵
来,照上面的格式,你创建一个5 x 5 的矩阵,包含数字1到25,按行填充。
eyJsYW5ndWFnZSI6InIiLCJzYW1wbGUiOiIjIENvbnN0cnVjdCBhIG1hdHJpeCB3aXRoIDMgcm93cyB0aGF0IGNvbnRhaW4gdGhlIG51bWJlcnMgMSB1cCB0byA5Iiwic29sdXRpb24iOiIjIENvbnN0cnVjdCBhIG1hdHJpeCB3aXRoIDMgcm93cyB0aGF0IGNvbnRhaW4gdGhlIG51bWJlcnMgMSB1cCB0byA5XG5tYXRyaXgoMTo5LCBieXJvdyA9IFRSVUUsIG5yb3cgPSAzKSJ9
撸起袖子继续干,来分析一下星战的票房。 在编辑器里已经给你准备好了向量,每个向量是一部电影。第一个数字是前三周该电影的美国本土票房,后一个数字是美国以外前前三周的票房成绩。
你使用 c(new_hope, empire_strikes, return_jedi) 来把三个向量变成一个向量。命名为 box_office.
使用matrix()
创建一个有三行的向量,每行是一部电影。
eyJsYW5ndWFnZSI6InIiLCJzYW1wbGUiOiIjIEJveCBvZmZpY2UgU3RhciBXYXJzIChpbiBtaWxsaW9ucyEpXG5uZXdfaG9wZSA8LSBjKDQ2MC45OTgsIDMxNC40KVxuZW1waXJlX3N0cmlrZXMgPC0gYygyOTAuNDc1LCAyNDcuOTAwKVxucmV0dXJuX2plZGkgPC0gYygzMDkuMzA2LCAxNjUuOClcblxuIyBDcmVhdGUgYm94X29mZmljZVxuYm94X29mZmljZSA8LSBcblxuIyBDb25zdHJ1Y3Qgc3Rhcl93YXJzX21hdHJpeFxuc3Rhcl93YXJzX21hdHJpeCA8LSAiLCJzb2x1dGlvbiI6IiMgQm94IG9mZmljZSBTdGFyIFdhcnMgKGluIG1pbGxpb25zISlcbm5ld19ob3BlIDwtIGMoNDYwLjk5OCwgMzE0LjQpXG5lbXBpcmVfc3RyaWtlcyA8LSBjKDI5MC40NzUsIDI0Ny45MDApXG5yZXR1cm5famVkaSA8LSBjKDMwOS4zMDYsIDE2NS44KVxuXG4jIENyZWF0ZSBib3hfb2ZmaWNlXG5ib3hfb2ZmaWNlIDwtIGMobmV3X2hvcGUsIGVtcGlyZV9zdHJpa2VzLCByZXR1cm5famVkaSlcblxuIyBDb25zdHJ1Y3Qgc3Rhcl93YXJzX21hdHJpeFxuc3Rhcl93YXJzX21hdHJpeCA8LSBtYXRyaXgoYm94X29mZmljZSwgbnJvdyA9IDMsIGJ5cm93ID0gVFJVRSkgIn0=
给向量命名
为了方便我们识别每一行的数据以及后面提取数据,我们要给向量命名。
是这样操作的, 行和列分别命名:
rownames(my_matrix) <- row_names_vector
colnames(my_matrix) <- col_names_vector
电影名称和地区的两个向量已经提前为你准备好了。 你用它们来给你的矩阵star_wars_matrix的行和列来命名吧。
eyJsYW5ndWFnZSI6InIiLCJzYW1wbGUiOiIjIEJveCBvZmZpY2UgU3RhciBXYXJzIChpbiBtaWxsaW9ucyEpXG5uZXdfaG9wZSA8LSBjKDQ2MC45OTgsIDMxNC40KVxuZW1waXJlX3N0cmlrZXMgPC0gYygyOTAuNDc1LCAyNDcuOTAwKVxucmV0dXJuX2plZGkgPC0gYygzMDkuMzA2LCAxNjUuOClcblxuIyBDb25zdHJ1Y3QgbWF0cml4XG5zdGFyX3dhcnNfbWF0cml4IDwtIG1hdHJpeChjKG5ld19ob3BlLCBlbXBpcmVfc3RyaWtlcywgcmV0dXJuX2plZGkpLCBucm93ID0gMywgYnlyb3cgPSBUUlVFKVxuXG4jIFZlY3RvcnMgcmVnaW9uIGFuZCB0aXRsZXMsIHVzZWQgZm9yIG5hbWluZ1xucmVnaW9uIDwtIGMoXCJVU1wiLCBcIm5vbi1VU1wiKVxudGl0bGVzIDwtIGMoXCJBIE5ldyBIb3BlXCIsIFwiVGhlIEVtcGlyZSBTdHJpa2VzIEJhY2tcIiwgXCJSZXR1cm4gb2YgdGhlIEplZGlcIilcblxuIyBOYW1lIHRoZSBjb2x1bW5zIHdpdGggcmVnaW9uXG5cblxuIyBOYW1lIHRoZSByb3dzIHdpdGggdGl0bGVzXG5cblxuIyBQcmludCBvdXQgc3Rhcl93YXJzX21hdHJpeCIsInNvbHV0aW9uIjoiIyBCb3ggb2ZmaWNlIFN0YXIgV2FycyAoaW4gbWlsbGlvbnMhKVxubmV3X2hvcGUgPC0gYyg0NjAuOTk4LCAzMTQuNClcbmVtcGlyZV9zdHJpa2VzIDwtIGMoMjkwLjQ3NSwgMjQ3LjkwMClcbnJldHVybl9qZWRpIDwtIGMoMzA5LjMwNiwgMTY1LjgpXG5cbiMgQ29uc3RydWN0IG1hdHJpeFxuc3Rhcl93YXJzX21hdHJpeCA8LSBtYXRyaXgoYyhuZXdfaG9wZSwgZW1waXJlX3N0cmlrZXMsIHJldHVybl9qZWRpKSwgbnJvdyA9IDMsIGJ5cm93ID0gVFJVRSlcblxuIyBWZWN0b3JzIHJlZ2lvbiBhbmQgdGl0bGVzLCB1c2VkIGZvciBuYW1pbmdcbnJlZ2lvbiA8LSBjKFwiVVNcIiwgXCJub24tVVNcIilcbnRpdGxlcyA8LSBjKFwiQSBOZXcgSG9wZVwiLCBcIlRoZSBFbXBpcmUgU3RyaWtlcyBCYWNrXCIsIFwiUmV0dXJuIG9mIHRoZSBKZWRpXCIpXG5cbiMgTmFtZSB0aGUgY29sdW1ucyB3aXRoIHJlZ2lvblxuY29sbmFtZXMoc3Rhcl93YXJzX21hdHJpeCkgPC0gcmVnaW9uXG5cbiMgTmFtZSB0aGUgcm93cyB3aXRoIHRpdGxlc1xucm93bmFtZXMoc3Rhcl93YXJzX21hdHJpeCkgPC0gdGl0bGVzXG5cbiMgUHJpbnQgb3V0IHN0YXJfd2Fyc19tYXRyaXhcbnN0YXJfd2Fyc19tYXRyaXgifQ==
计算一下全球范围内的票房总成绩,使用 rowSums()
来计算每一行的总和,并命名为worldwide_vector。
eyJsYW5ndWFnZSI6InIiLCJzYW1wbGUiOiIjIENvbnN0cnVjdCBzdGFyX3dhcnNfbWF0cml4XG5ib3hfb2ZmaWNlIDwtIGMoNDYwLjk5OCwgMzE0LjQsIDI5MC40NzUsIDI0Ny45MDAsIDMwOS4zMDYsIDE2NS44KVxuc3Rhcl93YXJzX21hdHJpeCA8LSBtYXRyaXgoYm94X29mZmljZSwgbnJvdyA9IDMsIGJ5cm93ID0gVFJVRSxcbiAgICAgICAgICAgICAgICAgICAgICAgICAgIGRpbW5hbWVzID0gbGlzdChjKFwiQSBOZXcgSG9wZVwiLCBcIlRoZSBFbXBpcmUgU3RyaWtlcyBCYWNrXCIsIFwiUmV0dXJuIG9mIHRoZSBKZWRpXCIpLCBcbiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjKFwiVVNcIiwgXCJub24tVVNcIikpKVxuXG4jIENhbGN1bGF0ZSB3b3JsZHdpZGUgYm94IG9mZmljZSBmaWd1cmVzXG53b3JsZHdpZGVfdmVjdG9yIDwtICIsInNvbHV0aW9uIjoiIyBDb25zdHJ1Y3Qgc3Rhcl93YXJzX21hdHJpeFxuYm94X29mZmljZSA8LSBjKDQ2MC45OTgsIDMxNC40LCAyOTAuNDc1LCAyNDcuOTAwLCAzMDkuMzA2LCAxNjUuOClcbnN0YXJfd2Fyc19tYXRyaXggPC0gbWF0cml4KGJveF9vZmZpY2UsIG5yb3cgPSAzLCBieXJvdyA9IFRSVUUsXG4gICAgICAgICAgICAgICAgICAgICAgICAgICBkaW1uYW1lcyA9IGxpc3QoYyhcIkEgTmV3IEhvcGVcIiwgXCJUaGUgRW1waXJlIFN0cmlrZXMgQmFja1wiLCBcIlJldHVybiBvZiB0aGUgSmVkaVwiKSwgXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYyhcIlVTXCIsIFwibm9uLVVTXCIpKSlcblxuIyBDYWxjdWxhdGUgd29ybGR3aWRlIGJveCBvZmZpY2UgZmlndXJlc1xud29ybGR3aWRlX3ZlY3RvciA8LSByb3dTdW1zKHN0YXJfd2Fyc19tYXRyaXgpIn0=
我们下面呢,把新生成的这个总票房的向量合并到原来的矩阵里边,成为第三列数据。 使用到的函数是: big_matrix <- cbind(matrix1, matrix2, vector1 ...)
。
eyJsYW5ndWFnZSI6InIiLCJzYW1wbGUiOiIjIENvbnN0cnVjdCBzdGFyX3dhcnNfbWF0cml4XG5ib3hfb2ZmaWNlIDwtIGMoNDYwLjk5OCwgMzE0LjQsIDI5MC40NzUsIDI0Ny45MDAsIDMwOS4zMDYsIDE2NS44KVxuc3Rhcl93YXJzX21hdHJpeCA8LSBtYXRyaXgoYm94X29mZmljZSwgbnJvdyA9IDMsIGJ5cm93ID0gVFJVRSxcbiAgICAgICAgICAgICAgICAgICAgICAgICAgIGRpbW5hbWVzID0gbGlzdChjKFwiQSBOZXcgSG9wZVwiLCBcIlRoZSBFbXBpcmUgU3RyaWtlcyBCYWNrXCIsIFwiUmV0dXJuIG9mIHRoZSBKZWRpXCIpLCBcbiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjKFwiVVNcIiwgXCJub24tVVNcIikpKVxuXG4jIFRoZSB3b3JsZHdpZGUgYm94IG9mZmljZSBmaWd1cmVzXG53b3JsZHdpZGVfdmVjdG9yIDwtIHJvd1N1bXMoc3Rhcl93YXJzX21hdHJpeClcblxuIyBCaW5kIHRoZSBuZXcgdmFyaWFibGUgd29ybGR3aWRlX3ZlY3RvciBhcyBhIGNvbHVtbiB0byBzdGFyX3dhcnNfbWF0cml4XG5hbGxfd2Fyc19tYXRyaXggPC0gIiwic29sdXRpb24iOiIjIENvbnN0cnVjdCBzdGFyX3dhcnNfbWF0cml4XG5ib3hfb2ZmaWNlIDwtIGMoNDYwLjk5OCwgMzE0LjQsIDI5MC40NzUsIDI0Ny45MDAsIDMwOS4zMDYsIDE2NS44KVxuc3Rhcl93YXJzX21hdHJpeCA8LSBtYXRyaXgoYm94X29mZmljZSwgbnJvdyA9IDMsIGJ5cm93ID0gVFJVRSxcbiAgICAgICAgICAgICAgICAgICAgICAgICAgIGRpbW5hbWVzID0gbGlzdChjKFwiQSBOZXcgSG9wZVwiLCBcIlRoZSBFbXBpcmUgU3RyaWtlcyBCYWNrXCIsIFwiUmV0dXJuIG9mIHRoZSBKZWRpXCIpLCBcbiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjKFwiVVNcIiwgXCJub24tVVNcIikpKVxuXG4jIFRoZSB3b3JsZHdpZGUgYm94IG9mZmljZSBmaWd1cmVzXG53b3JsZHdpZGVfdmVjdG9yIDwtIHJvd1N1bXMoc3Rhcl93YXJzX21hdHJpeClcblxuIyBCaW5kIHRoZSBuZXcgdmFyaWFibGUgd29ybGR3aWRlX3ZlY3RvciBhcyBhIGNvbHVtbiB0byBzdGFyX3dhcnNfbWF0cml4XG5hbGxfd2Fyc19tYXRyaXggPC0gY2JpbmQoc3Rhcl93YXJzX21hdHJpeCwgd29ybGR3aWRlX3ZlY3RvcikifQ==
有列的合并就有行的合并,没错,就是rbind()
。我们使用它来把两个矩阵按行合并在一起。在后台空间,已经给你预备了要被合并的两个矩阵:
eyJsYW5ndWFnZSI6InIiLCJwcmVfZXhlcmNpc2VfY29kZSI6ImJveF9vZmZpY2UxIDwtIGMoNDYwLjk5OCwgMzE0LjQsIDI5MC40NzUsIDI0Ny45MDAsIDMwOS4zMDYsIDE2NS44KVxuc3Rhcl93YXJzX21hdHJpeCA8LSBtYXRyaXgoYm94X29mZmljZTEsIG5yb3cgPSAzLCBieXJvdyA9IFRSVUUsXG4gICAgICAgICAgICAgICAgICAgICAgICAgICBkaW1uYW1lcyA9IGxpc3QoYyhcIkEgTmV3IEhvcGVcIiwgXCJUaGUgRW1waXJlIFN0cmlrZXMgQmFja1wiLCBcIlJldHVybiBvZiB0aGUgSmVkaVwiKSwgXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYyhcIlVTXCIsIFwibm9uLVVTXCIpKSlcblxuXG5ib3hfb2ZmaWNlMiA8LSBjKDQ3NC41LCA1NTIuNSwgMzEwLjcsIDMzOC43LCAzODAuMywgNDY4LjUpXG5zdGFyX3dhcnNfbWF0cml4MiA8LSBtYXRyaXgoYm94X29mZmljZTEsIG5yb3cgPSAzLCBieXJvdyA9IFRSVUUsXG4gICAgICAgICAgICAgICAgICAgICAgICAgICBkaW1uYW1lcyA9IGxpc3QoYyhcIlRoZSBQaGFudG9tIE1lbmFjZVwiLCBcIkF0dGFjayBvZiB0aGUgQ2xvbmVzXCIsIFwiUmV2ZW5nZSBvZiB0aGUgU2l0aFwiKSwgXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYyhcIlVTXCIsIFwibm9uLVVTXCIpKSkiLCJzYW1wbGUiOiIjIHN0YXJfd2Fyc19tYXRyaXggYW5kIHN0YXJfd2Fyc19tYXRyaXgyIGFyZSBhdmFpbGFibGUgaW4geW91ciB3b3Jrc3BhY2VcbnN0YXJfd2Fyc19tYXRyaXggIFxuc3Rhcl93YXJzX21hdHJpeDIgXG5cbiMgQ29tYmluZSBib3RoIFN0YXIgV2FycyB0cmlsb2dpZXMgaW4gb25lIG1hdHJpeFxuYWxsX3dhcnNfbWF0cml4IDwtICIsInNvbHV0aW9uIjoiIyBzdGFyX3dhcnNfbWF0cml4IGFuZCBzdGFyX3dhcnNfbWF0cml4MiBhcmUgYXZhaWxhYmxlIGluIHlvdXIgd29ya3NwYWNlXG5zdGFyX3dhcnNfbWF0cml4ICBcbnN0YXJfd2Fyc19tYXRyaXgyIFxuXG4jIENvbWJpbmUgYm90aCBTdGFyIFdhcnMgdHJpbG9naWVzIGluIG9uZSBtYXRyaXhcbmFsbF93YXJzX21hdHJpeCA8LSByYmluZChzdGFyX3dhcnNfbWF0cml4LCBzdGFyX3dhcnNfbWF0cml4MikifQ==
有 cbind() 就有 rbind(), 同样的,有colSums() 就有 rowSums()。 你在上面创建的all_wars_matrix矩阵已经在后台了,你输入all_wars_matrix,看看合并的结果。然后计算这一系列电影的美国本土票房和美国以外票房。
eyJsYW5ndWFnZSI6InIiLCJwcmVfZXhlcmNpc2VfY29kZSI6ImJveF9vZmZpY2UxIDwtIGMoNDYwLjk5OCwgMzE0LjQsIDI5MC40NzUsIDI0Ny45MDAsIDMwOS4zMDYsIDE2NS44KVxuc3Rhcl93YXJzX21hdHJpeCA8LSBtYXRyaXgoYm94X29mZmljZTEsIG5yb3cgPSAzLCBieXJvdyA9IFRSVUUsXG4gICAgICAgICAgICAgICAgICAgICAgICAgICBkaW1uYW1lcyA9IGxpc3QoYyhcIkEgTmV3IEhvcGVcIiwgXCJUaGUgRW1waXJlIFN0cmlrZXMgQmFja1wiLCBcIlJldHVybiBvZiB0aGUgSmVkaVwiKSwgXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYyhcIlVTXCIsIFwibm9uLVVTXCIpKSlcblxuXG5ib3hfb2ZmaWNlMiA8LSBjKDQ3NC41LCA1NTIuNSwgMzEwLjcsIDMzOC43LCAzODAuMywgNDY4LjUpXG5zdGFyX3dhcnNfbWF0cml4MiA8LSBtYXRyaXgoYm94X29mZmljZTEsIG5yb3cgPSAzLCBieXJvdyA9IFRSVUUsXG4gICAgICAgICAgICAgICAgICAgICAgICAgICBkaW1uYW1lcyA9IGxpc3QoYyhcIlRoZSBQaGFudG9tIE1lbmFjZVwiLCBcIkF0dGFjayBvZiB0aGUgQ2xvbmVzXCIsIFwiUmV2ZW5nZSBvZiB0aGUgU2l0aFwiKSwgXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYyhcIlVTXCIsIFwibm9uLVVTXCIpKSlcblxuIyBDb21iaW5lIGJvdGggU3RhciBXYXJzIHRyaWxvZ2llcyBpbiBvbmUgbWF0cml4XG5hbGxfd2Fyc19tYXRyaXggPC0gcmJpbmQoc3Rhcl93YXJzX21hdHJpeCwgc3Rhcl93YXJzX21hdHJpeDIpIiwic2FtcGxlIjoiIyBhbGxfd2Fyc19tYXRyaXggaXMgYXZhaWxhYmxlIGluIHlvdXIgd29ya3NwYWNlXG5hbGxfd2Fyc19tYXRyaXhcblxuIyBUb3RhbCByZXZlbnVlIGZvciBVUyBhbmQgbm9uLVVTXG50b3RhbF9yZXZlbnVlX3ZlY3RvciA8LSBcbiAgXG4jIFByaW50IG91dCB0b3RhbF9yZXZlbnVlX3ZlY3RvciIsInNvbHV0aW9uIjoiIyBhbGxfd2Fyc19tYXRyaXggaXMgYXZhaWxhYmxlIGluIHlvdXIgd29ya3NwYWNlXG5hbGxfd2Fyc19tYXRyaXhcblxuIyBUb3RhbCByZXZlbnVlIGZvciBVUyBhbmQgbm9uLVVTXG50b3RhbF9yZXZlbnVlX3ZlY3RvciA8LSBjb2xTdW1zKGFsbF93YXJzX21hdHJpeClcblxuIyBQcmludCBvdXQgdG90YWxfcmV2ZW51ZV92ZWN0b3JcbnRvdGFsX3JldmVudWVfdmVjdG9yIn0=
选取子集或者元素
跟向量类似,你同样可以使用[]
来提取矩阵里的元素。
- my_matrix[1,2] selects the element at the first row and second column.
8 my_matrix[1:3,2:4] results in a matrix with the data on the rows 1, 2, 3 and columns 2, 3, 4.
若是要提取整行或者整列:
my_matrix[,1] selects all elements of the first column.
my_matrix[1,] selects all elements of the first row.
下面的练习:
- 提取所有电影的非美国票房,结果存成 non_us_all.
- 使用 mean() 计算 non_us_all 的平均值,并打印出结果。
- 选取前两部电影的非美国票房,将结果存成 non_us_some,并计算其均值。
eyJsYW5ndWFnZSI6InIiLCJwcmVfZXhlcmNpc2VfY29kZSI6ImJveF9vZmZpY2UxIDwtIGMoNDYwLjk5OCwgMzE0LjQsIDI5MC40NzUsIDI0Ny45MDAsIDMwOS4zMDYsIDE2NS44KVxuc3Rhcl93YXJzX21hdHJpeCA8LSBtYXRyaXgoYm94X29mZmljZTEsIG5yb3cgPSAzLCBieXJvdyA9IFRSVUUsXG4gICAgICAgICAgICAgICAgICAgICAgICAgICBkaW1uYW1lcyA9IGxpc3QoYyhcIkEgTmV3IEhvcGVcIiwgXCJUaGUgRW1waXJlIFN0cmlrZXMgQmFja1wiLCBcIlJldHVybiBvZiB0aGUgSmVkaVwiKSwgXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYyhcIlVTXCIsIFwibm9uLVVTXCIpKSlcblxuXG5ib3hfb2ZmaWNlMiA8LSBjKDQ3NC41LCA1NTIuNSwgMzEwLjcsIDMzOC43LCAzODAuMywgNDY4LjUpXG5zdGFyX3dhcnNfbWF0cml4MiA8LSBtYXRyaXgoYm94X29mZmljZTEsIG5yb3cgPSAzLCBieXJvdyA9IFRSVUUsXG4gICAgICAgICAgICAgICAgICAgICAgICAgICBkaW1uYW1lcyA9IGxpc3QoYyhcIlRoZSBQaGFudG9tIE1lbmFjZVwiLCBcIkF0dGFjayBvZiB0aGUgQ2xvbmVzXCIsIFwiUmV2ZW5nZSBvZiB0aGUgU2l0aFwiKSwgXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYyhcIlVTXCIsIFwibm9uLVVTXCIpKSlcblxuIyBDb21iaW5lIGJvdGggU3RhciBXYXJzIHRyaWxvZ2llcyBpbiBvbmUgbWF0cml4XG5hbGxfd2Fyc19tYXRyaXggPC0gcmJpbmQoc3Rhcl93YXJzX21hdHJpeCwgc3Rhcl93YXJzX21hdHJpeDIpIiwic2FtcGxlIjoiIyBhbGxfd2Fyc19tYXRyaXggaXMgYXZhaWxhYmxlIGluIHlvdXIgd29ya3NwYWNlXG5hbGxfd2Fyc19tYXRyaXhcblxuIyBTZWxlY3QgdGhlIG5vbi1VUyByZXZlbnVlIGZvciBhbGwgbW92aWVzXG5ub25fdXNfYWxsIDwtIFxuICBcbiMgQXZlcmFnZSBub24tVVMgcmV2ZW51ZVxuXG4gIFxuIyBTZWxlY3QgdGhlIG5vbi1VUyByZXZlbnVlIGZvciBmaXJzdCB0d28gbW92aWVzXG5ub25fdXNfc29tZSA8LSBcbiAgXG4jIEF2ZXJhZ2Ugbm9uLVVTIHJldmVudWUgZm9yIGZpcnN0IHR3byBtb3ZpZXMiLCJzb2x1dGlvbiI6IiMgYWxsX3dhcnNfbWF0cml4IGlzIGF2YWlsYWJsZSBpbiB5b3VyIHdvcmtzcGFjZVxuYWxsX3dhcnNfbWF0cml4XG5cbiMgU2VsZWN0IHRoZSBub24tVVMgcmV2ZW51ZSBmb3IgYWxsIG1vdmllc1xubm9uX3VzX2FsbCA8LSBhbGxfd2Fyc19tYXRyaXhbLDJdXG4gIFxuIyBBdmVyYWdlIG5vbi1VUyByZXZlbnVlXG5tZWFuKG5vbl91c19hbGwpXG4gIFxuIyBTZWxlY3QgdGhlIG5vbi1VUyByZXZlbnVlIGZvciBmaXJzdCB0d28gbW92aWVzXG5ub25fdXNfc29tZSA8LSBhbGxfd2Fyc19tYXRyaXhbMToyLDJdXG4gIFxuIyBBdmVyYWdlIG5vbi1VUyByZXZlbnVlIGZvciBmaXJzdCB0d28gbW92aWVzXG5tZWFuKG5vbl91c19zb21lKSJ9