In Example 11.4, let a=0 and b=1/2. Find P, P^2,and P^3.What would Pn be? What happens to Pn as n tends to infinity? Interpret this result.
Given:
From example 11.4: \[ P= \left(\begin{array}{cc} & Yes & No\\ Yes & 1-a & a\\ No & b & 1-b \end{array}\right) \]
a <- 0
b <- 1/2
given_p <- c(1-a, a, b, 1-b)
p <- matrix(given_p, nrow = 2, byrow = T)
row.names(p) <- c("Yes", "No")
colnames(p) <- c("Yes", "No")
p
## Yes No
## Yes 1.0 0.0
## No 0.5 0.5
matrix_loop <- function(p, exp) {
ret <- p
for (i in 1:(exp-1)){ret <- p %*% ret}
return(ret)
}
matrix_loop(p,2)
## Yes No
## Yes 1.00 0.00
## No 0.75 0.25
matrix_loop(p,3)
## Yes No
## Yes 1.000 0.000
## No 0.875 0.125
matrix_loop(p,100000)
## Yes No
## Yes 1 0
## No 1 0
\[ P^n= \left(\begin{array}{cc} & Yes & No\\ Yes & 1 & 0\\ No & \frac{2n - 1}{2n} & \frac{1}{2n} \end{array}\right) \]
\[ P^{\infty} = indeterminant \]