Tenzing Sangay Bhutia (s3680446), Qianwei Yang(s3716296)
Last updated: 28 October, 2018
boxplot(CauseOfDeath$`Age Adjusted Death Rate`~ CauseOfDeath$Sex,
main="Boxplot of Age Adjusted Death Rate After Handling Outlier",
ylab="Age Adjusted Death",xlab="Sex")CauseOfDeath$`Age Adjusted Death Rate`[is.na(CauseOfDeath$`Age Adjusted Death Rate`)]<-0cap <- function(x){
quantiles <- quantile(x, c(.05, .25, .75, .95), na.rm = TRUE)
x[ x< quantiles[2] - 1.5 * IQR(x) ] <- quantiles[1]
x[ x> quantiles[3] + 1.5 * IQR(x) ] <- quantiles[4]
x}
CauseOfDeath$`Age Adjusted Death Rate` <- CauseOfDeath$`Age Adjusted Death Rate` %>% cap()
boxplot(CauseOfDeath$`Age Adjusted Death Rate`~CauseOfDeath$Sex,
main="Boxplot of Age Adjusted Death Rate After Handling Outlier",
ylab="Age Adjusted Death Rate",xlab="Sex")CauseOfDeath %>% group_by(Sex) %>% summarise(Min = min(`Age Adjusted Death Rate`,na.rm = TRUE),
Q1 = quantile(`Age Adjusted Death Rate`,probs = .25,na.rm = TRUE),
Median = median(`Age Adjusted Death Rate`, na.rm = TRUE),
Q3 = quantile(`Age Adjusted Death Rate`,probs = .75,na.rm = TRUE),
Max = max(`Age Adjusted Death Rate`,na.rm = TRUE),
Mean = mean(`Age Adjusted Death Rate`, na.rm = TRUE),
SD = sd(`Age Adjusted Death Rate`, na.rm = TRUE),
Missing = sum(is.na(`Age Adjusted Death Rate`)))->table1
knitr::kable(table1)| Sex | Min | Q1 | Median | Q3 | Max | Mean | SD | Missing |
|---|---|---|---|---|---|---|---|---|
| Female | 0 | 0 | 7.45 | 21.225 | 173.18 | 34.57639 | 61.40258 | 0 |
| Male | 0 | 0 | 16.20 | 31.350 | 173.18 | 40.15967 | 62.19943 | 0 |
leveneTest(`Age Adjusted Death Rate` ~ Sex, data = CauseOfDeath,na.rm=TRUE)t.test(
`Age Adjusted Death Rate` ~ Sex,
data = CauseOfDeath,
var.equal = FALSE,
alternative = "two.sided")##
## Welch Two Sample t-test
##
## data: Age Adjusted Death Rate by Sex
## t = -1.4938, df = 1090.4, p-value = 0.1355
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -12.91705 1.75050
## sample estimates:
## mean in group Female mean in group Male
## 34.57639 40.15967
\[H_0: \mu_1 = \mu_2 \] - The Null hypothesis states that the Age adjusted Death Rate is equal in the case of Male and Female \[H_A: \mu_1 \ne \mu_2\] - The Alternate hypothesis states that the age adjusted death rate is not equal in the case of Male and Female.