Linear Regression

Fat Data

#
fat <- read.csv("C:\\Users\\Admin\\Downloads\\Data Sets\\Simple Linear Regression\\wc-at.csv") # choose the wc-at.csv data set

#View(fat)

attach(fat)

summary(fat)
##      Waist             AT        
##  Min.   : 63.5   Min.   : 11.44  
##  1st Qu.: 80.0   1st Qu.: 50.88  
##  Median : 90.8   Median : 96.54  
##  Mean   : 91.9   Mean   :101.89  
##  3rd Qu.:104.0   3rd Qu.:137.00  
##  Max.   :121.0   Max.   :253.00
#plot(x,y)
plot(Waist,AT)

# Correlation coefficient value for Waist and Addipose tissue
#cor(x,y)
cor(AT,Waist)
## [1] 0.8185578
model1 <- lm(AT ~ Waist)

summary(model1)
## 
## Call:
## lm(formula = AT ~ Waist)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -107.288  -19.143   -2.939   16.376   90.342 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -215.9815    21.7963  -9.909   <2e-16 ***
## Waist          3.4589     0.2347  14.740   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 33.06 on 107 degrees of freedom
## Multiple R-squared:   0.67,  Adjusted R-squared:  0.667 
## F-statistic: 217.3 on 1 and 107 DF,  p-value: < 2.2e-16
confint(model1)
##                   2.5 %     97.5 %
## (Intercept) -259.190053 -172.77292
## Waist          2.993689    3.92403
#fat1 <- read.csv(file.choose()) # choose the wc-at.csv data set

predict(model1, newdata = fat)
##          1          2          3          4          5          6 
##  42.568252  35.131704  66.953210  74.389758  42.222366  32.537559 
##          7          8          9         10         11         12 
##  63.840237  72.487385   3.656083  37.207020  32.710502  43.432966 
##         13         14         15         16         17         18 
##  36.861134  57.268404  50.350685  22.160981  46.718883  40.492936 
##         19         20         21         22         23         24 
##  39.282335  46.545940  49.831856  63.840237  60.381377  92.548770 
##         25         26         27         28         29         30 
##  67.644982 102.233576  83.555735  62.456693  81.480420  69.374412 
##         31         32         33         34         35         36 
##  72.833271  88.744024  98.082945  93.240542 136.822170 110.880725 
##         37         38         39         40         41         42 
##  98.774717 140.281029  60.727263  57.268404  72.833271  46.891826 
##         43         44         45         46         47         48 
##  62.456693  83.209849  71.103842 154.462353 110.188953 110.880725 
##         49         50         51         52         53         54 
##  59.689606  58.306062  94.624085  73.870929  78.713332  45.162396 
##         55         56         57         58         59         60 
##  55.193088  55.884860  87.706367  82.518078  79.750990  73.525043 
##         61         62         63         64         65         66 
##  52.426001  77.675674  60.035492 158.612984 197.698095 198.735753 
##         67         68         69         70         71         72 
## 117.798443 148.928178 147.198748 154.116467 154.116467 133.363311 
##         73         74         75         76         77         78 
## 119.527873 129.904451 157.575326 129.904451 140.281029 143.739889 
##         79         80         81         82         83         84 
## 150.657608 161.034186 142.010459 164.493045 164.493045 171.410764 
##         85         86         87         88         89         90 
## 159.304756 143.739889 167.951905 159.304756 202.540498 161.034186 
##         91         92         93         94         95         96 
## 121.257303 148.928178 122.986732 110.880725 119.527873 147.198748 
##         97         98         99        100        101        102 
## 150.657608 126.445592  98.774717 138.551600 150.657608 161.380072 
##        103        104        105        106        107        108 
## 181.787342 133.363311 130.250337 106.730093 136.130398 157.229440 
##        109 
## 159.304756

R-squared value for the above model is 0.667.

we may have to do transformation of variables for better R-squared value

Applying transformations

Logarthmic transformation

reg_log <- lm(AT ~ sqrt(Waist)) # Regression using logarthmic transformation summary(reg_log) confint(reg_log) predict(reg_log,newdata = fat1) # R-squared value for the above model is 0.6723. # we may have to do different transformation better R-squared value # Applying different transformations

Exponential model

reg_exp <- lm(log(AT) ~ Waist) # regression using Exponential model summary(reg_exp) ```