the Central Limit Theorem to estimate
\[ E(x) = np = 100 \cdot 0.5 = 50 \\ \sigma^2 = \sqrt{npq} = \sqrt{100 \cdot 0.5 \cdot 0.5} = \sqrt{25} = 5 \]
\[ \begin{align} P(S_{100} \leq 45) &= P(S_{n}^* \leq \frac{45 + \frac{1}{2} - 50}{5}) \\ &= P(S_{n}^* \leq \frac{45.5 - 50}{5}) \\ &= P(S_{n}^* \leq \frac{-4.5}{5}) \\ &= NA(-\infty,-0.9) \end{align} \]
p <- pnorm(-0.9)
p
## [1] 0.1840601
\[ P(S_{100} \leq 45) = 0.1840601 \]
\[ \begin{align} P(45 < S_{100} < 55) &= P(\frac{45 - \frac{1}{2} - 50}{5} < S_{n}^* < \frac{55 + \frac{1}{2} - 50}{5}) \\ &= P(\frac{44.5 - 50}{5} < S_{n}^* < \frac{55.5 - 50}{5}) \\ &= P(\frac{-5.5}{5} < S_{n}^* < \frac{5.5}{5}) \\ &= NA(-1.1,1.1) \\ &= 2NA(0,1.1) \end{align} \]
p <- pnorm(1.1) - pnorm(-1.1)
p
## [1] 0.7286679
\[ P(45 < S_{100} < 55) = 0.7286679 \]
\[ \begin{align} P(S_{100} > 63) &= 1 - P(S_{100} < 63) \\ &= 1 - P(S_{n}^* < \frac{63 + \frac{1}{2} - 50}{5}) \\ &= 1 - P(S_{n}^* < \frac{63.5 - 50}{5}) \\ &= 1 - P(S_{n}^* < \frac{13.5}{5}) \\ &= 1- NA(-\infty,2.7) \end{align} \]
p <- 1- pnorm(2.7)
p
## [1] 0.003466974
\[ P(S_{100} > 63) = 0.003467 \]
\[ \begin{align} P(P(S_{100} < 57) &= P(S_{n}^* < \frac{57 + \frac{1}{2} - 50}{5}) \\ &= P(S_{n}^* < \frac{57.5 - 50}{5}) \\ &= P(S_{n}^* < \frac{7.5}{5}) \\ &= NA(-\infty,1.5) \end{align} \]
p <- pnorm(1.5)
p
## [1] 0.9331928
\[ P(P(S_{100} < 57) = 0.9331928 \]