setwd("~/Dropbox/Fernando 2018/archives/data")
library("lme4", lib.loc="/Library/Frameworks/R.framework/Versions/3.5/Resources/library")
## Loading required package: Matrix
enemy<- read.table("valdeflores_fit.csv", sep = ",", header = T)
attach(enemy)
damage<-as.factor(damage)
fam<-as.factor(fam)

##ESFUERZO REPRODUCTIVO: Modelo general 
fit1<-lmer(arep~damage+(1+damage|fam)+ln_wt.total)
summary(fit1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: arep ~ damage + (1 + damage | fam) + ln_wt.total
## 
## REML criterion at convergence: 379.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4423 -0.5448  0.3117  0.6419  1.5483 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr 
##  fam      (Intercept)  5.428   2.330         
##           damage1      2.748   1.658    -1.00
##  Residual             12.172   3.489         
## Number of obs: 71, groups:  fam, 10
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)   49.260      2.932  16.798
## damage1       -1.460      1.024  -1.426
## ln_wt.total  -16.436      3.262  -5.039
## 
## Correlation of Fixed Effects:
##             (Intr) damag1
## damage1     -0.499       
## ln_wt.total -0.948  0.276
##Modelo nulo
fit2<-lm(arep~1)
##Significancia modelo completo
anova(fit1, fit2)
## refitting model(s) with ML (instead of REML)
## Data: NULL
## Models:
## fit2: arep ~ 1
## fit1: arep ~ damage + (1 + damage | fam) + ln_wt.total
##      Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)    
## fit2  2 421.71 426.24 -208.86   417.71                             
## fit1  7 400.12 415.96 -193.06   386.12 31.592      5  7.157e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Significancia effectos fijos (daño y covariable)
drop1(fit1, test = "Chisq")
## Single term deletions
## 
## Model:
## arep ~ damage + (1 + damage | fam) + ln_wt.total
##             Df    AIC     LRT   Pr(Chi)    
## <none>         400.12                      
## damage       1 400.18  2.0622     0.151    
## ln_wt.total  1 419.45 21.3304 3.866e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Significancia efecto aleatorio fam
modsinfam<-lm(arep~damage+ln_wt.total)
anova(fit1, modsinfam)
## refitting model(s) with ML (instead of REML)
## Data: NULL
## Models:
## modsinfam: arep ~ damage + ln_wt.total
## fit1: arep ~ damage + (1 + damage | fam) + ln_wt.total
##           Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
## modsinfam  4 398.40 407.45 -195.20   390.40                         
## fit1       7 400.12 415.96 -193.06   386.12 4.2792      3     0.2329
##Bootstrap paramétrico para reconfirmar significancia efecto del daño*fam (ho: la varianza es distinta de cero)
library(pbnm)
fit1f<-lmer(arep~damage+(1+damage|fam)+ln_wt.total, REML = F)
bootfam<-pbnm(fit1f,modsinfam,nsim = 1000, tasks = 10, cores=2, seed=3400835)
summary(bootfam)
## Parametric bootstrap testing: (Intercept) | fam damage | fam (Intercept)#damage | fam = 0 
## from: lmer(formula = arep ~ damage + (1 + damage | fam) + ln_wt.total,  REML = F) 
## 1000 samples were taken Fri Oct 26 18:52:45 2018 
## 133 samples had warnings, 133 in alternate model 0 in null model 
## 133 unused samples.  0.047 <= P(LRT stat > |4.279161|) <= 0.18
#Finalmente el diagnostico de residuales del modelo...
plot(residuals(fit1)~predict(fit1,type="link"), xlab=expression(hat(eta)), ylab="Deviance residuals")

##Graficando las normas de reacción para pop con intervalos de confianza al 95% (inferencia directa)
fit1fit<-fitted(fit1)
enemy$arepfit<-fit1fit
library(ggplot2)
p<-ggplot(enemy,aes(damage,arepfit, group=fam))
p + geom_smooth(method = "lm", se=F)

##LMF: Modelo general 
fit1<-lmer(almf~damage+(1+damage|fam)+ln_wt.total)
summary(fit1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: almf ~ damage + (1 + damage | fam) + ln_wt.total
## 
## REML criterion at convergence: 394.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.4083 -0.4852 -0.1576  0.3800  6.0322 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr 
##  fam      (Intercept)  2.3164  1.5220        
##           damage1      0.8965  0.9468   -1.00
##  Residual             16.3939  4.0489        
## Number of obs: 71, groups:  fam, 10
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  17.0704     3.1895   5.352
## damage1      -0.1952     1.0586  -0.184
## ln_wt.total   0.7538     3.6135   0.209
## 
## Correlation of Fixed Effects:
##             (Intr) damag1
## damage1     -0.460       
## ln_wt.total -0.967  0.299
##Modelo nulo
fit2<-lm(almf~1)
##Significancia modelo completo
anova(fit1, fit2)
## refitting model(s) with ML (instead of REML)
## Data: NULL
## Models:
## fit2: almf ~ 1
## fit1: almf ~ damage + (1 + damage | fam) + ln_wt.total
##      Df    AIC    BIC  logLik deviance Chisq Chi Df Pr(>Chisq)
## fit2  2 406.50 411.03 -201.25   402.50                        
## fit1  7 415.66 431.50 -200.83   401.66 0.835      5     0.9747
##Significancia effectos fijos (daño y covariable)
drop1(fit1, test = "Chisq")
## Single term deletions
## 
## Model:
## almf ~ damage + (1 + damage | fam) + ln_wt.total
##             Df    AIC      LRT Pr(Chi)
## <none>         415.66                 
## damage       1 413.70 0.035290  0.8510
## ln_wt.total  1 413.71 0.045364  0.8313
##Significancia efecto aleatorio fam
modsinfam<-lm(almf~damage+ln_wt.total)
anova(fit1, modsinfam)
## refitting model(s) with ML (instead of REML)
## Data: NULL
## Models:
## modsinfam: almf ~ damage + ln_wt.total
## fit1: almf ~ damage + (1 + damage | fam) + ln_wt.total
##           Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
## modsinfam  4 410.38 419.43 -201.19   402.38                         
## fit1       7 415.66 431.50 -200.83   401.66 0.7167      3     0.8693
##Bootstrap paramétrico para reconfirmar significancia efecto del daño*fam (ho: la varianza es distinta de cero)
fit1f<-lmer(almf~damage+(1+damage|fam)+ln_wt.total, REML = F)
bootfam<-pbnm(fit1f,modsinfam,nsim = 1000, tasks = 10, cores=2, seed=3400835)
summary(bootfam)
## Parametric bootstrap testing: (Intercept) | fam damage | fam (Intercept)#damage | fam = 0 
## from: lmer(formula = almf ~ damage + (1 + damage | fam) + ln_wt.total,  REML = F) 
## 1000 samples were taken Fri Oct 26 18:53:04 2018 
## 133 samples had warnings, 133 in alternate model 0 in null model 
## 133 unused samples.  0.33 <= P(LRT stat > |0.7167152|) <= 0.463
#Finalmente el diagnostico de residuales del modelo...
plot(residuals(fit1)~predict(fit1,type="link"), xlab=expression(hat(eta)), ylab="Deviance residuals")

##Graficando las normas de reacción para pop con intervalos de confianza al 95% (inferencia directa)
fit1fit<-fitted(fit1)
enemy$almffit<-fit1fit
p<-ggplot(enemy,aes(damage,almffit, group=fam))
p + geom_smooth(method = "lm", se=F)

##SMF: Modelo general 
fit1<-lmer(asmf~damage+(1+damage|fam)+ln_wt.total)
summary(fit1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: asmf ~ damage + (1 + damage | fam) + ln_wt.total
## 
## REML criterion at convergence: 365.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5490 -0.6300 -0.0838  0.5781  3.2452 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr 
##  fam      (Intercept) 3.3495   1.8302        
##           damage1     0.4239   0.6511   -1.00
##  Residual             9.9349   3.1520        
## Number of obs: 71, groups:  fam, 10
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  34.8604     2.6570  13.120
## damage1       0.2804     0.8214   0.341
## ln_wt.total  -1.6971     2.9794  -0.570
## 
## Correlation of Fixed Effects:
##             (Intr) damag1
## damage1     -0.476       
## ln_wt.total -0.957  0.315
##Modelo nulo
fit2<-lm(asmf~1)
##Significancia modelo completo
anova(fit1, fit2)
## refitting model(s) with ML (instead of REML)
## Data: NULL
## Models:
## fit2: asmf ~ 1
## fit1: asmf ~ damage + (1 + damage | fam) + ln_wt.total
##      Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
## fit2  2 379.44 383.97 -187.72   375.44                         
## fit1  7 385.43 401.27 -185.72   371.43 4.0075      5     0.5483
##Significancia effectos fijos (daño y covariable)
drop1(fit1, test = "Chisq")
## Single term deletions
## 
## Model:
## asmf ~ damage + (1 + damage | fam) + ln_wt.total
##             Df    AIC     LRT Pr(Chi)
## <none>         385.43                
## damage       1 383.56 0.12488  0.7238
## ln_wt.total  1 383.67 0.23780  0.6258
##Significancia efecto aleatorio fam
modsinfam<-lm(asmf~damage+ln_wt.total)
anova(fit1, modsinfam)
## refitting model(s) with ML (instead of REML)
## Data: NULL
## Models:
## modsinfam: asmf ~ damage + ln_wt.total
## fit1: asmf ~ damage + (1 + damage | fam) + ln_wt.total
##           Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
## modsinfam  4 383.25 392.30 -187.62   375.25                         
## fit1       7 385.43 401.27 -185.72   371.43 3.8125      3     0.2824
##Bootstrap paramétrico para reconfirmar significancia efecto del daño*fam (ho: la varianza es distinta de cero)
fit1f<-lmer(asmf~damage+(1+damage|fam)+ln_wt.total, REML = F)
bootfam<-pbnm(fit1f,modsinfam,nsim = 1000, tasks = 10, cores=2, seed=3400835)
summary(bootfam)
## Parametric bootstrap testing: (Intercept) | fam damage | fam (Intercept)#damage | fam = 0 
## from: lmer(formula = asmf ~ damage + (1 + damage | fam) + ln_wt.total,  REML = F) 
## 1000 samples were taken Fri Oct 26 18:53:23 2018 
## 136 samples had warnings, 136 in alternate model 0 in null model 
## 136 unused samples.  0.056 <= P(LRT stat > |3.812548|) <= 0.192
#Finalmente el diagnostico de residuales del modelo...
plot(residuals(fit1)~predict(fit1,type="link"), xlab=expression(hat(eta)), ylab="Deviance residuals")

##Graficando las normas de reacción para pop con intervalos de confianza al 95% (inferencia directa)
fit1fit<-fitted(fit1)
enemy$asmffit<-fit1fit
p<-ggplot(enemy,aes(damage,asmffit, group=fam))
p + geom_smooth(method = "lm", se=F)

##RMF: Modelo general 
fit1<-lmer(armf~damage+(1+damage|fam)+ln_wt.total)
summary(fit1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: armf ~ damage + (1 + damage | fam) + ln_wt.total
## 
## REML criterion at convergence: 425.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.47131 -0.67794  0.01606  0.62843  2.70606 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr 
##  fam      (Intercept)  3.3099  1.8193        
##           damage1      0.1962  0.4429   -1.00
##  Residual             25.6506  5.0646        
## Number of obs: 71, groups:  fam, 10
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)   16.893      4.040   4.181
## damage1        1.525      1.280   1.191
## ln_wt.total   15.934      4.585   3.475
## 
## Correlation of Fixed Effects:
##             (Intr) damag1
## damage1     -0.450       
## ln_wt.total -0.969  0.313
##Modelo nulo
fit2<-lm(armf~1)
##Significancia modelo completo
anova(fit1, fit2)
## refitting model(s) with ML (instead of REML)
## Data: NULL
## Models:
## fit2: armf ~ 1
## fit1: armf ~ damage + (1 + damage | fam) + ln_wt.total
##      Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)  
## fit2  2 451.67 456.20 -223.84   447.67                           
## fit1  7 448.22 464.06 -217.11   434.22 13.448      5    0.01953 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Significancia effectos fijos (daño y covariable)
drop1(fit1, test = "Chisq")
## Single term deletions
## 
## Model:
## armf ~ damage + (1 + damage | fam) + ln_wt.total
##             Df    AIC     LRT   Pr(Chi)    
## <none>         448.22                      
## damage       1 447.68  1.4593 0.2270387    
## ln_wt.total  1 457.72 11.4909 0.0006994 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Significancia efecto aleatorio fam
modsinfam<-lm(armf~damage+ln_wt.total)
anova(fit1, modsinfam)
## refitting model(s) with ML (instead of REML)
## Data: NULL
## Models:
## modsinfam: armf ~ damage + ln_wt.total
## fit1: armf ~ damage + (1 + damage | fam) + ln_wt.total
##           Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
## modsinfam  4 443.31 452.36 -217.65   435.31                         
## fit1       7 448.22 464.06 -217.11   434.22 1.0838      3      0.781
##Bootstrap paramétrico para reconfirmar significancia efecto del daño*fam (ho: la varianza es distinta de cero)
fit1f<-lmer(armf~damage+(1+damage|fam)+ln_wt.total, REML = F)
bootfam<-pbnm(fit1f,modsinfam,nsim = 1000, tasks = 10, cores=2, seed=3400835)
summary(bootfam)
## Parametric bootstrap testing: (Intercept) | fam damage | fam (Intercept)#damage | fam = 0 
## from: lmer(formula = armf ~ damage + (1 + damage | fam) + ln_wt.total,  REML = F) 
## 1000 samples were taken Fri Oct 26 18:53:41 2018 
## 136 samples had warnings, 136 in alternate model 0 in null model 
## 136 unused samples.  0.254 <= P(LRT stat > |1.083752|) <= 0.39
#Finalmente el diagnostico de residuales del modelo...
plot(residuals(fit1)~predict(fit1,type="link"), xlab=expression(hat(eta)), ylab="Deviance residuals")

##Graficando las normas de reacción para pop con intervalos de confianza al 95% (inferencia directa)
fit1fit<-fitted(fit1)
enemy$armffit<-fit1fit
p<-ggplot(enemy,aes(damage,armffit, group=fam))
p + geom_smooth(method = "lm", se=F)

##No.Hojas: Modelo general 
fit1<-lmer(sqrt(leaves.2+0.5)~damage+(1+damage|fam)+ln_wt.total)
summary(fit1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: sqrt(leaves.2 + 0.5) ~ damage + (1 + damage | fam) + ln_wt.total
## 
## REML criterion at convergence: 27.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.3803 -0.5885 -0.0716  0.6084  2.5728 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr 
##  fam      (Intercept) 0.01390  0.1179        
##           damage1     0.02476  0.1573   -0.16
##  Residual             0.06513  0.2552        
## Number of obs: 71, groups:  fam, 10
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  1.84342    0.21712   8.490
## damage1      0.25349    0.08177   3.100
## ln_wt.total  0.64503    0.24593   2.623
## 
## Correlation of Fixed Effects:
##             (Intr) damag1
## damage1     -0.363       
## ln_wt.total -0.966  0.257
##Modelo nulo
fit2<-lm(sqrt(leaves.2+0.5)~1)
##Significancia modelo completo
anova(fit1, fit2)
## refitting model(s) with ML (instead of REML)
## Data: NULL
## Models:
## fit2: sqrt(leaves.2 + 0.5) ~ 1
## fit1: sqrt(leaves.2 + 0.5) ~ damage + (1 + damage | fam) + ln_wt.total
##      Df    AIC    BIC   logLik deviance  Chisq Chi Df Pr(>Chisq)    
## fit2  2 44.416 48.942 -20.2082   40.416                             
## fit1  7 33.213 49.052  -9.6065   19.213 21.203      5  0.0007414 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Significancia effectos fijos (daño y covariable)
drop1(fit1, test = "Chisq")
## Single term deletions
## 
## Model:
## sqrt(leaves.2 + 0.5) ~ damage + (1 + damage | fam) + ln_wt.total
##             Df    AIC    LRT  Pr(Chi)   
## <none>         33.213                   
## damage       1 38.683 7.4703 0.006273 **
## ln_wt.total  1 38.027 6.8142 0.009043 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Significancia efecto aleatorio fam
modsinfam<-lm(sqrt(leaves.2+0.5)~damage+ln_wt.total)
anova(fit1, modsinfam)
## refitting model(s) with ML (instead of REML)
## Data: NULL
## Models:
## modsinfam: sqrt(leaves.2 + 0.5) ~ damage + ln_wt.total
## fit1: sqrt(leaves.2 + 0.5) ~ damage + (1 + damage | fam) + ln_wt.total
##           Df    AIC    BIC   logLik deviance  Chisq Chi Df Pr(>Chisq)
## modsinfam  4 32.746 41.797 -12.3730   24.746                         
## fit1       7 33.213 49.052  -9.6065   19.213 5.5331      3     0.1367
##Bootstrap paramétrico para reconfirmar significancia efecto del daño*fam (ho: la varianza es distinta de cero)
library(pbnm)
fit1f<-lmer(sqrt(leaves.2+0.5)~damage+(1+damage|fam)+ln_wt.total, REML = F)
bootfam<-pbnm(fit1f,modsinfam,nsim = 1000, tasks = 10, cores=2, seed=3400835)
summary(bootfam)
## Parametric bootstrap testing: (Intercept) | fam damage | fam (Intercept)#damage | fam = 0 
## from: lmer(formula = sqrt(leaves.2 + 0.5) ~ damage + (1 + damage |  fam) + ln_wt.total, REML = F) 
## 1000 samples were taken Fri Oct 26 18:54:00 2018 
## 134 samples had warnings, 134 in alternate model 0 in null model 
## 134 unused samples.  0.022 <= P(LRT stat > |5.533075|) <= 0.156
#Finalmente el diagnostico de residuales del modelo...
plot(residuals(fit1)~predict(fit1,type="link"), xlab=expression(hat(eta)), ylab="Deviance residuals")

##Graficando las normas de reacción para pop con intervalos de confianza al 95% (inferencia directa)
fit1fit<-fitted(fit1)
enemy$leaves.2fit<-fit1fit
library(ggplot2)
p<-ggplot(enemy,aes(damage,leaves.2fit, group=fam))
p + geom_smooth(method = "lm", se=F)

##Masa total: Modelo general 
fit1<-lmer(ln_wt.total~damage+(1+damage|fam))
summary(fit1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: ln_wt.total ~ damage + (1 + damage | fam)
## 
## REML criterion at convergence: -72.9
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.37633 -0.52729  0.06114  0.53952  2.79684 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. Corr 
##  fam      (Intercept) 0.0064305 0.08019       
##           damage1     0.0006402 0.02530  -0.61
##  Residual             0.0155154 0.12456       
## Number of obs: 71, groups:  fam, 10
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  0.85310    0.03253  26.227
## damage1     -0.08640    0.03082  -2.803
## 
## Correlation of Fixed Effects:
##         (Intr)
## damage1 -0.533
##Modelo nulo
fit2<-lm(ln_wt.total~1)
##Significancia modelo completo
anova(fit1, fit2)
## refitting model(s) with ML (instead of REML)
## Data: NULL
## Models:
## fit2: ln_wt.total ~ 1
## fit1: ln_wt.total ~ damage + (1 + damage | fam)
##      Df     AIC     BIC logLik deviance  Chisq Chi Df Pr(>Chisq)   
## fit2  2 -65.147 -60.622 34.573  -69.147                            
## fit1  6 -71.426 -57.850 41.713  -83.426 14.279      4   0.006456 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Significancia effectos fijos (daño y covariable)
drop1(fit1, test = "Chisq")
## Single term deletions
## 
## Model:
## ln_wt.total ~ damage + (1 + damage | fam)
##        Df     AIC    LRT Pr(Chi)  
## <none>    -71.426                 
## damage  1 -67.229 6.1971  0.0128 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Significancia efecto aleatorio fam
modsinfam<-lm(ln_wt.total~damage)
anova(fit1, modsinfam)
## refitting model(s) with ML (instead of REML)
## Data: NULL
## Models:
## modsinfam: ln_wt.total ~ damage
## fit1: ln_wt.total ~ damage + (1 + damage | fam)
##           Df     AIC     BIC logLik deviance  Chisq Chi Df Pr(>Chisq)  
## modsinfam  3 -69.695 -62.907 37.847  -75.695                           
## fit1       6 -71.426 -57.850 41.713  -83.426 7.7315      3     0.0519 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Bootstrap paramétrico para reconfirmar significancia efecto del daño*fam (ho: la varianza es distinta de cero)
library(pbnm)
fit1f<-lmer(ln_wt.total~damage+(1+damage|fam), REML = F)
bootfam<-pbnm(fit1f,modsinfam,nsim = 1000, tasks = 10, cores=2, seed=3400835)
summary(bootfam)
## Parametric bootstrap testing: (Intercept) | fam damage | fam (Intercept)#damage | fam = 0 
## from: lmer(formula = ln_wt.total ~ damage + (1 + damage | fam), REML = F) 
## 1000 samples were taken Fri Oct 26 18:54:19 2018 
## 138 samples had warnings, 138 in alternate model 0 in null model 
## 138 unused samples.  0.01 <= P(LRT stat > |7.731461|) <= 0.148
#Finalmente el diagnostico de residuales del modelo...
plot(residuals(fit1)~predict(fit1,type="link"), xlab=expression(hat(eta)), ylab="Deviance residuals")

##Graficando las normas de reacción para pop con intervalos de confianza al 95% (inferencia directa)
fit1fit<-fitted(fit1)
enemy$ln_wt.totalfit<-fit1fit
library(ggplot2)
p<-ggplot(enemy,aes(damage,ln_wt.totalfit, group=fam))
p + geom_smooth(method = "lm", se=F)

##Guardando ajustados a la base
write.csv(enemy, file = "valdeflores_fit2.csv")