## 
## Attaching package: 'olsrr'
## The following object is masked from 'package:datasets':
## 
##     rivers
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Loading required package: ggplot2
## 
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
## 
##     format.pval, units
## 
## Attaching package: 'mice'
## The following objects are masked from 'package:base':
## 
##     cbind, rbind
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:Hmisc':
## 
##     src, summarize
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
## 
## Attaching package: 'reshape'
## The following object is masked from 'package:dplyr':
## 
##     rename
## 
## Attaching package: 'tidyr'
## The following objects are masked from 'package:reshape':
## 
##     expand, smiths
## The following object is masked from 'package:mice':
## 
##     complete
## 
## Attaching package: 'psych'
## The following object is masked from 'package:Hmisc':
## 
##     describe
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
## 
## Attaching package: 'matrixStats'
## The following object is masked from 'package:dplyr':
## 
##     count
## 
## Attaching package: 'e1071'
## The following object is masked from 'package:Hmisc':
## 
##     impute
## corrplot 0.84 loaded
## -------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## -------------------------------------------------------------------------
## 
## Attaching package: 'plyr'
## The following object is masked from 'package:purrr':
## 
##     compact
## The following object is masked from 'package:matrixStats':
## 
##     count
## The following objects are masked from 'package:reshape':
## 
##     rename, round_any
## The following objects are masked from 'package:dplyr':
## 
##     arrange, count, desc, failwith, id, mutate, rename, summarise,
##     summarize
## The following objects are masked from 'package:Hmisc':
## 
##     is.discrete, summarize
## 
## Please cite as:
##  Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
## Warning in checkMatrixPackageVersion(): Package version inconsistency detected.
## TMB was built with Matrix version 1.2.14
## Current Matrix version is 1.2.12
## Please re-install 'TMB' from source using install.packages('TMB', type = 'source') or ask CRAN for a binary version of 'TMB' matching CRAN's 'Matrix' package
## Learn more about sjPlot with 'browseVignettes("sjPlot")'.
all4 <- read.csv("all4.csv", header = TRUE)
all_75 <- subset(all4, nd_resprate >= 0.75)
all_70 <- subset(all4, nd_resprate >= 0.70)
md3 <- read.csv("md3.csv", header = TRUE)
aa <- all_70[!is.na(all_70["NAD_Mean"]),]

# Aim 4 Analyses
#### Correlation matrix of the individual item means
indiv_means <- aa[c("anxious_mean", "nervous_mean", "upset_mean", "sluggish_mean",
                        "irritable_mean", "content_mean", "relaxed_mean", "excited_mean",
                        "happy_mean", "attentive_mean")]

indiv_means <- data.frame(indiv_means)
View(indiv_means)

indiv_means_cor <- cor(indiv_means, y= NULL, use="complete.obs", method = "pearson")
corrplot(indiv_means_cor, type = "upper", order = "hclust", 
         tl.col = "black")

indiv_means <- data.frame(indiv_means)
corrplot.mixed(indiv_means_cor, lower.col = "black", number.cex = .7)

corrplot(indiv_means_cor, method = "number", type = "upper")

indiv_means_matrix <- as.matrix(indiv_means)
rcorr(indiv_means_matrix, type="pearson")
##                anxious_mean nervous_mean upset_mean sluggish_mean
## anxious_mean           1.00         0.93       0.76          0.63
## nervous_mean           0.93         1.00       0.83          0.63
## upset_mean             0.76         0.83       1.00          0.67
## sluggish_mean          0.63         0.63       0.67          1.00
## irritable_mean         0.78         0.78       0.89          0.77
## content_mean          -0.42        -0.44      -0.56         -0.41
## relaxed_mean          -0.63        -0.56      -0.49         -0.39
## excited_mean          -0.11        -0.08      -0.12         -0.17
## happy_mean            -0.40        -0.43      -0.56         -0.41
## attentive_mean        -0.28        -0.27      -0.32         -0.49
##                irritable_mean content_mean relaxed_mean excited_mean
## anxious_mean             0.78        -0.42        -0.63        -0.11
## nervous_mean             0.78        -0.44        -0.56        -0.08
## upset_mean               0.89        -0.56        -0.49        -0.12
## sluggish_mean            0.77        -0.41        -0.39        -0.17
## irritable_mean           1.00        -0.51        -0.50        -0.15
## content_mean            -0.51         1.00         0.75         0.69
## relaxed_mean            -0.50         0.75         1.00         0.53
## excited_mean            -0.15         0.69         0.53         1.00
## happy_mean              -0.51         0.95         0.74         0.73
## attentive_mean          -0.37         0.68         0.52         0.63
##                happy_mean attentive_mean
## anxious_mean        -0.40          -0.28
## nervous_mean        -0.43          -0.27
## upset_mean          -0.56          -0.32
## sluggish_mean       -0.41          -0.49
## irritable_mean      -0.51          -0.37
## content_mean         0.95           0.68
## relaxed_mean         0.74           0.52
## excited_mean         0.73           0.63
## happy_mean           1.00           0.69
## attentive_mean       0.69           1.00
## 
## n= 85 
## 
## 
## P
##                anxious_mean nervous_mean upset_mean sluggish_mean
## anxious_mean                0.0000       0.0000     0.0000       
## nervous_mean   0.0000                    0.0000     0.0000       
## upset_mean     0.0000       0.0000                  0.0000       
## sluggish_mean  0.0000       0.0000       0.0000                  
## irritable_mean 0.0000       0.0000       0.0000     0.0000       
## content_mean   0.0000       0.0000       0.0000     0.0001       
## relaxed_mean   0.0000       0.0000       0.0000     0.0002       
## excited_mean   0.3177       0.4690       0.2633     0.1225       
## happy_mean     0.0001       0.0000       0.0000     0.0001       
## attentive_mean 0.0091       0.0135       0.0030     0.0000       
##                irritable_mean content_mean relaxed_mean excited_mean
## anxious_mean   0.0000         0.0000       0.0000       0.3177      
## nervous_mean   0.0000         0.0000       0.0000       0.4690      
## upset_mean     0.0000         0.0000       0.0000       0.2633      
## sluggish_mean  0.0000         0.0001       0.0002       0.1225      
## irritable_mean                0.0000       0.0000       0.1620      
## content_mean   0.0000                      0.0000       0.0000      
## relaxed_mean   0.0000         0.0000                    0.0000      
## excited_mean   0.1620         0.0000       0.0000                   
## happy_mean     0.0000         0.0000       0.0000       0.0000      
## attentive_mean 0.0006         0.0000       0.0000       0.0000      
##                happy_mean attentive_mean
## anxious_mean   0.0001     0.0091        
## nervous_mean   0.0000     0.0135        
## upset_mean     0.0000     0.0030        
## sluggish_mean  0.0001     0.0000        
## irritable_mean 0.0000     0.0006        
## content_mean   0.0000     0.0000        
## relaxed_mean   0.0000     0.0000        
## excited_mean   0.0000     0.0000        
## happy_mean                0.0000        
## attentive_mean 0.0000
indiv_mssd <- aa[c("anxious_mssd", "nervous_mssd", "upset_mssd", "sluggish_mssd",
                       "irritable_mssd", "content_mssd", "relaxed_mssd", "excited_mssd",
                       "happy_mssd", "attentive_mssd")]

indiv_mssd <- data.frame(indiv_mssd)
View(indiv_mssd)

indiv_mssd_cor <- cor(indiv_mssd, y= NULL, use="complete.obs", method = "pearson")
corrplot(indiv_mssd_cor, type = "upper", order = "hclust", 
         tl.col = "black")

indiv_mssd_matrix <- as.matrix(indiv_mssd)
rcorr(indiv_mssd_matrix, type="pearson")
##                anxious_mssd nervous_mssd upset_mssd sluggish_mssd
## anxious_mssd           1.00         0.84       0.59          0.63
## nervous_mssd           0.84         1.00       0.50          0.57
## upset_mssd             0.59         0.50       1.00          0.35
## sluggish_mssd          0.63         0.57       0.35          1.00
## irritable_mssd         0.71         0.67       0.60          0.67
## content_mssd           0.63         0.51       0.72          0.41
## relaxed_mssd           0.72         0.57       0.67          0.48
## excited_mssd           0.68         0.64       0.54          0.61
## happy_mssd             0.69         0.63       0.69          0.48
## attentive_mssd         0.61         0.64       0.43          0.64
##                irritable_mssd content_mssd relaxed_mssd excited_mssd
## anxious_mssd             0.71         0.63         0.72         0.68
## nervous_mssd             0.67         0.51         0.57         0.64
## upset_mssd               0.60         0.72         0.67         0.54
## sluggish_mssd            0.67         0.41         0.48         0.61
## irritable_mssd           1.00         0.58         0.63         0.65
## content_mssd             0.58         1.00         0.62         0.72
## relaxed_mssd             0.63         0.62         1.00         0.67
## excited_mssd             0.65         0.72         0.67         1.00
## happy_mssd               0.67         0.87         0.68         0.73
## attentive_mssd           0.64         0.52         0.54         0.68
##                happy_mssd attentive_mssd
## anxious_mssd         0.69           0.61
## nervous_mssd         0.63           0.64
## upset_mssd           0.69           0.43
## sluggish_mssd        0.48           0.64
## irritable_mssd       0.67           0.64
## content_mssd         0.87           0.52
## relaxed_mssd         0.68           0.54
## excited_mssd         0.73           0.68
## happy_mssd           1.00           0.56
## attentive_mssd       0.56           1.00
## 
## n= 85 
## 
## 
## P
##                anxious_mssd nervous_mssd upset_mssd sluggish_mssd
## anxious_mssd                0.0000       0.0000     0.0000       
## nervous_mssd   0.0000                    0.0000     0.0000       
## upset_mssd     0.0000       0.0000                  0.0011       
## sluggish_mssd  0.0000       0.0000       0.0011                  
## irritable_mssd 0.0000       0.0000       0.0000     0.0000       
## content_mssd   0.0000       0.0000       0.0000     0.0001       
## relaxed_mssd   0.0000       0.0000       0.0000     0.0000       
## excited_mssd   0.0000       0.0000       0.0000     0.0000       
## happy_mssd     0.0000       0.0000       0.0000     0.0000       
## attentive_mssd 0.0000       0.0000       0.0000     0.0000       
##                irritable_mssd content_mssd relaxed_mssd excited_mssd
## anxious_mssd   0.0000         0.0000       0.0000       0.0000      
## nervous_mssd   0.0000         0.0000       0.0000       0.0000      
## upset_mssd     0.0000         0.0000       0.0000       0.0000      
## sluggish_mssd  0.0000         0.0001       0.0000       0.0000      
## irritable_mssd                0.0000       0.0000       0.0000      
## content_mssd   0.0000                      0.0000       0.0000      
## relaxed_mssd   0.0000         0.0000                    0.0000      
## excited_mssd   0.0000         0.0000       0.0000                   
## happy_mssd     0.0000         0.0000       0.0000       0.0000      
## attentive_mssd 0.0000         0.0000       0.0000       0.0000      
##                happy_mssd attentive_mssd
## anxious_mssd   0.0000     0.0000        
## nervous_mssd   0.0000     0.0000        
## upset_mssd     0.0000     0.0000        
## sluggish_mssd  0.0000     0.0000        
## irritable_mssd 0.0000     0.0000        
## content_mssd   0.0000     0.0000        
## relaxed_mssd   0.0000     0.0000        
## excited_mssd   0.0000     0.0000        
## happy_mssd                0.0000        
## attentive_mssd 0.0000
all_indiv <- data.frame(indiv_means, indiv_mssd)
all_indiv_cor <- cor(all_indiv, y= NULL, use="complete.obs", method = "pearson")
corrplot(all_indiv_cor, type = "upper", order = "hclust", 
         tl.col = "black")

corrplot.mixed(all_indiv_cor, lower.col = "black", number.cex = .7)

####PCA for item means using an oblique rotation

means.pca.oblique <- principal(indiv_means, nfactors = 1,  rotate = "oblimin")
means.pca.oblique
## Principal Components Analysis
## Call: principal(r = indiv_means, nfactors = 1, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                  PC1   h2   u2 com
## anxious_mean    0.80 0.64 0.36   1
## nervous_mean    0.80 0.64 0.36   1
## upset_mean      0.83 0.69 0.31   1
## sluggish_mean   0.73 0.54 0.46   1
## irritable_mean  0.84 0.70 0.30   1
## content_mean   -0.83 0.68 0.32   1
## relaxed_mean   -0.80 0.63 0.37   1
## excited_mean   -0.51 0.26 0.74   1
## happy_mean     -0.83 0.68 0.32   1
## attentive_mean -0.66 0.43 0.57   1
## 
##                 PC1
## SS loadings    5.91
## Proportion Var 0.59
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 component is sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.2 
##  with the empirical chi square  295.73  with prob <  5e-43 
## 
## Fit based upon off diagonal values = 0.89
summary(means.pca.oblique)
## 
## Factor analysis with Call: principal(r = indiv_means, nfactors = 1, rotate = "oblimin")
## 
## Test of the hypothesis that 1 factor is sufficient.
## The degrees of freedom for the model is 35  and the objective function was  6.39 
## The number of observations was  85  with Chi Square =  505.8  with prob <  8.2e-85 
## 
## The root mean square of the residuals (RMSA) is  0.2
biplot(means.pca.oblique)

means.pca.oblique2 <- principal(indiv_means, nfactors = 2,  rotate = "oblimin")
means.pca.oblique2
## Principal Components Analysis
## Call: principal(r = indiv_means, nfactors = 2, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                  TC1   TC2   h2    u2 com
## anxious_mean    0.93  0.02 0.85 0.149 1.0
## nervous_mean    0.95  0.05 0.88 0.125 1.0
## upset_mean      0.90 -0.06 0.85 0.150 1.0
## sluggish_mean   0.76 -0.09 0.63 0.368 1.0
## irritable_mean  0.91 -0.05 0.86 0.137 1.0
## content_mean   -0.18  0.86 0.89 0.112 1.1
## relaxed_mean   -0.35  0.63 0.69 0.314 1.5
## excited_mean    0.28  0.97 0.81 0.188 1.2
## happy_mean     -0.16  0.88 0.91 0.094 1.1
## attentive_mean -0.04  0.80 0.67 0.331 1.0
## 
##                        TC1  TC2
## SS loadings           4.38 3.65
## Proportion Var        0.44 0.37
## Cumulative Var        0.44 0.80
## Proportion Explained  0.55 0.45
## Cumulative Proportion 0.55 1.00
## 
##  With component correlations of 
##       TC1   TC2
## TC1  1.00 -0.39
## TC2 -0.39  1.00
## 
## Mean item complexity =  1.1
## Test of the hypothesis that 2 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.06 
##  with the empirical chi square  30.42  with prob <  0.25 
## 
## Fit based upon off diagonal values = 0.99
summary(means.pca.oblique2)
## 
## Factor analysis with Call: principal(r = indiv_means, nfactors = 2, rotate = "oblimin")
## 
## Test of the hypothesis that 2 factors are sufficient.
## The degrees of freedom for the model is 26  and the objective function was  2.46 
## The number of observations was  85  with Chi Square =  193.2  with prob <  1.8e-27 
## 
## The root mean square of the residuals (RMSA) is  0.06 
## 
##  With component correlations of 
##       TC1   TC2
## TC1  1.00 -0.39
## TC2 -0.39  1.00
biplot(means.pca.oblique2)

means.pca.oblique3 <- principal(indiv_means, nfactors = 3,  rotate = "oblimin")
means.pca.oblique3
## Principal Components Analysis
## Call: principal(r = indiv_means, nfactors = 3, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                  TC1   TC2   TC3   h2    u2 com
## anxious_mean    0.94 -0.01 -0.15 0.89 0.105 1.1
## nervous_mean    0.96  0.02 -0.13 0.91 0.090 1.0
## upset_mean      0.89 -0.07  0.06 0.85 0.150 1.0
## sluggish_mean   0.69 -0.05  0.56 0.89 0.110 1.9
## irritable_mean  0.88 -0.05  0.21 0.88 0.115 1.1
## content_mean   -0.19  0.87  0.06 0.90 0.101 1.1
## relaxed_mean   -0.38  0.67  0.34 0.83 0.168 2.1
## excited_mean    0.28  0.96 -0.02 0.81 0.188 1.2
## happy_mean     -0.16  0.89  0.04 0.91 0.088 1.1
## attentive_mean  0.01  0.76 -0.44 0.83 0.166 1.6
## 
##                        TC1  TC2  TC3
## SS loadings           4.31 3.67 0.74
## Proportion Var        0.43 0.37 0.07
## Cumulative Var        0.43 0.80 0.87
## Proportion Explained  0.49 0.42 0.08
## Cumulative Proportion 0.49 0.92 1.00
## 
##  With component correlations of 
##       TC1   TC2   TC3
## TC1  1.00 -0.37  0.08
## TC2 -0.37  1.00 -0.10
## TC3  0.08 -0.10  1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 3 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.05 
##  with the empirical chi square  16.2  with prob <  0.58 
## 
## Fit based upon off diagonal values = 0.99
summary(means.pca.oblique3)
## 
## Factor analysis with Call: principal(r = indiv_means, nfactors = 3, rotate = "oblimin")
## 
## Test of the hypothesis that 3 factors are sufficient.
## The degrees of freedom for the model is 18  and the objective function was  2.3 
## The number of observations was  85  with Chi Square =  178.92  with prob <  1.6e-28 
## 
## The root mean square of the residuals (RMSA) is  0.05 
## 
##  With component correlations of 
##       TC1   TC2   TC3
## TC1  1.00 -0.37  0.08
## TC2 -0.37  1.00 -0.10
## TC3  0.08 -0.10  1.00
means.pca.oblique4 <- principal(indiv_means, nfactors = 4,  rotate = "oblimin")
means.pca.oblique4
## Principal Components Analysis
## Call: principal(r = indiv_means, nfactors = 4, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                  TC2   TC1   TC3   TC4   h2    u2 com
## anxious_mean    0.13  0.92  0.12  0.09 0.96 0.043 1.1
## nervous_mean    0.05  0.79  0.08  0.26 0.92 0.078 1.2
## upset_mean     -0.31  0.25  0.10  0.71 0.95 0.046 1.7
## sluggish_mean   0.12  0.17  0.81  0.24 0.91 0.093 1.3
## irritable_mean -0.16  0.27  0.32  0.58 0.92 0.084 2.2
## content_mean    0.92 -0.07 -0.01 -0.17 0.94 0.058 1.1
## relaxed_mean    0.45 -0.77  0.07  0.28 0.90 0.099 1.9
## excited_mean    0.80  0.06 -0.15  0.28 0.81 0.186 1.3
## happy_mean      0.94 -0.03 -0.04 -0.17 0.96 0.041 1.1
## attentive_mean  0.42  0.04 -0.71  0.27 0.89 0.111 2.0
## 
##                        TC2  TC1  TC3  TC4
## SS loadings           3.18 2.74 1.69 1.55
## Proportion Var        0.32 0.27 0.17 0.15
## Cumulative Var        0.32 0.59 0.76 0.92
## Proportion Explained  0.35 0.30 0.18 0.17
## Cumulative Proportion 0.35 0.65 0.83 1.00
## 
##  With component correlations of 
##       TC2   TC1   TC3  TC4
## TC2  1.00 -0.39 -0.42 0.06
## TC1 -0.39  1.00  0.44 0.45
## TC3 -0.42  0.44  1.00 0.26
## TC4  0.06  0.45  0.26 1.00
## 
## Mean item complexity =  1.5
## Test of the hypothesis that 4 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.03 
##  with the empirical chi square  7.04  with prob <  0.8 
## 
## Fit based upon off diagonal values = 1
summary(means.pca.oblique4)
## 
## Factor analysis with Call: principal(r = indiv_means, nfactors = 4, rotate = "oblimin")
## 
## Test of the hypothesis that 4 factors are sufficient.
## The degrees of freedom for the model is 11  and the objective function was  1.32 
## The number of observations was  85  with Chi Square =  101.58  with prob <  8.7e-17 
## 
## The root mean square of the residuals (RMSA) is  0.03 
## 
##  With component correlations of 
##       TC2   TC1   TC3  TC4
## TC2  1.00 -0.39 -0.42 0.06
## TC1 -0.39  1.00  0.44 0.45
## TC3 -0.42  0.44  1.00 0.26
## TC4  0.06  0.45  0.26 1.00
biplot(means.pca.oblique4)

PCA for item MSSD

mssdpca.oblique <- principal(indiv_mssd, nfactors = 1,  rotate = "oblimin")
mssdpca.oblique
## Principal Components Analysis
## Call: principal(r = indiv_mssd, nfactors = 1, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                 PC1   h2   u2 com
## anxious_mssd   0.88 0.77 0.23   1
## nervous_mssd   0.81 0.66 0.34   1
## upset_mssd     0.75 0.56 0.44   1
## sluggish_mssd  0.71 0.51 0.49   1
## irritable_mssd 0.84 0.71 0.29   1
## content_mssd   0.81 0.66 0.34   1
## relaxed_mssd   0.81 0.66 0.34   1
## excited_mssd   0.86 0.73 0.27   1
## happy_mssd     0.87 0.75 0.25   1
## attentive_mssd 0.77 0.59 0.41   1
## 
##                 PC1
## SS loadings    6.60
## Proportion Var 0.66
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 component is sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.09 
##  with the empirical chi square  56.63  with prob <  0.012 
## 
## Fit based upon off diagonal values = 0.98
summary(mssdpca.oblique)
## 
## Factor analysis with Call: principal(r = indiv_mssd, nfactors = 1, rotate = "oblimin")
## 
## Test of the hypothesis that 1 factor is sufficient.
## The degrees of freedom for the model is 35  and the objective function was  1.89 
## The number of observations was  85  with Chi Square =  149.28  with prob <  4.6e-16 
## 
## The root mean square of the residuals (RMSA) is  0.09
biplot(mssdpca.oblique)

mssdpca.oblique2 <- principal(indiv_mssd, nfactors = 2,  rotate = "oblimin")
mssdpca.oblique2
## Principal Components Analysis
## Call: principal(r = indiv_mssd, nfactors = 2, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                  TC2   TC1   h2   u2 com
## anxious_mssd    0.64  0.34 0.79 0.21 1.5
## nervous_mssd    0.74  0.16 0.72 0.28 1.1
## upset_mssd     -0.09  0.93 0.77 0.23 1.0
## sluggish_mssd   0.98 -0.19 0.77 0.23 1.1
## irritable_mssd  0.66  0.28 0.73 0.27 1.4
## content_mssd   -0.02  0.93 0.85 0.15 1.0
## relaxed_mssd    0.28  0.63 0.69 0.31 1.4
## excited_mssd    0.51  0.44 0.73 0.27 2.0
## happy_mssd      0.14  0.83 0.85 0.15 1.1
## attentive_mssd  0.82  0.03 0.71 0.29 1.0
## 
##                        TC2  TC1
## SS loadings           3.86 3.74
## Proportion Var        0.39 0.37
## Cumulative Var        0.39 0.76
## Proportion Explained  0.51 0.49
## Cumulative Proportion 0.51 1.00
## 
##  With component correlations of 
##      TC2  TC1
## TC2 1.00 0.61
## TC1 0.61 1.00
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 2 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.06 
##  with the empirical chi square  24.46  with prob <  0.55 
## 
## Fit based upon off diagonal values = 0.99
summary(mssdpca.oblique2)
## 
## Factor analysis with Call: principal(r = indiv_mssd, nfactors = 2, rotate = "oblimin")
## 
## Test of the hypothesis that 2 factors are sufficient.
## The degrees of freedom for the model is 26  and the objective function was  1.23 
## The number of observations was  85  with Chi Square =  96.42  with prob <  5e-10 
## 
## The root mean square of the residuals (RMSA) is  0.06 
## 
##  With component correlations of 
##      TC2  TC1
## TC2 1.00 0.61
## TC1 0.61 1.00
biplot(mssdpca.oblique2)

mssdpca.oblique3 <- principal(indiv_mssd, nfactors = 3,  rotate = "oblimin")
mssdpca.oblique3
## Principal Components Analysis
## Call: principal(r = indiv_mssd, nfactors = 3, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                  TC1   TC3   TC2   h2    u2 com
## anxious_mssd    0.10  0.84  0.08 0.89 0.108 1.0
## nervous_mssd   -0.07  0.90  0.12 0.85 0.149 1.1
## upset_mssd      0.72  0.36 -0.28 0.79 0.205 1.8
## sluggish_mssd  -0.05  0.28  0.74 0.80 0.198 1.3
## irritable_mssd  0.22  0.50  0.31 0.73 0.265 2.1
## content_mssd    0.98 -0.11  0.09 0.91 0.095 1.0
## relaxed_mssd    0.47  0.49 -0.03 0.71 0.287 2.0
## excited_mssd    0.58  0.03  0.49 0.81 0.187 2.0
## happy_mssd      0.81  0.11  0.10 0.86 0.136 1.1
## attentive_mssd  0.20  0.13  0.69 0.78 0.225 1.3
## 
##                        TC1  TC3  TC2
## SS loadings           3.34 2.90 1.90
## Proportion Var        0.33 0.29 0.19
## Cumulative Var        0.33 0.62 0.81
## Proportion Explained  0.41 0.36 0.23
## Cumulative Proportion 0.41 0.77 1.00
## 
##  With component correlations of 
##      TC1  TC3  TC2
## TC1 1.00 0.61 0.37
## TC3 0.61 1.00 0.51
## TC2 0.37 0.51 1.00
## 
## Mean item complexity =  1.5
## Test of the hypothesis that 3 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.05 
##  with the empirical chi square  18.07  with prob <  0.45 
## 
## Fit based upon off diagonal values = 0.99
summary(mssdpca.oblique3)
## 
## Factor analysis with Call: principal(r = indiv_mssd, nfactors = 3, rotate = "oblimin")
## 
## Test of the hypothesis that 3 factors are sufficient.
## The degrees of freedom for the model is 18  and the objective function was  1.02 
## The number of observations was  85  with Chi Square =  79.71  with prob <  9.6e-10 
## 
## The root mean square of the residuals (RMSA) is  0.05 
## 
##  With component correlations of 
##      TC1  TC3  TC2
## TC1 1.00 0.61 0.37
## TC3 0.61 1.00 0.51
## TC2 0.37 0.51 1.00
mssdpca.oblique4 <- principal(indiv_mssd, nfactors = 4,  rotate = "oblimin")
mssdpca.oblique4
## Principal Components Analysis
## Call: principal(r = indiv_mssd, nfactors = 4, rotate = "oblimin")
## 
##  Warning: A Heywood case was detected. 
## Standardized loadings (pattern matrix) based upon correlation matrix
##                  TC1   TC3   TC2   TC4   h2    u2 com
## anxious_mssd    0.03  0.82  0.08  0.15 0.91 0.093 1.1
## nervous_mssd   -0.01  1.03 -0.05 -0.07 0.95 0.052 1.0
## upset_mssd      0.32  0.06  0.06  0.68 0.87 0.131 1.5
## sluggish_mssd  -0.04 -0.01  0.96  0.02 0.88 0.119 1.0
## irritable_mssd  0.03  0.20  0.60  0.33 0.81 0.194 1.8
## content_mssd    0.96 -0.05 -0.07  0.12 0.92 0.079 1.0
## relaxed_mssd    0.20  0.25  0.22  0.47 0.75 0.251 2.4
## excited_mssd    0.71  0.10  0.28 -0.14 0.83 0.165 1.4
## happy_mssd      0.79  0.16 -0.03  0.12 0.88 0.117 1.1
## attentive_mssd  0.40  0.16  0.54 -0.25 0.78 0.217 2.5
## 
##                        TC1  TC3  TC2  TC4
## SS loadings           2.89 2.37 2.13 1.20
## Proportion Var        0.29 0.24 0.21 0.12
## Cumulative Var        0.29 0.53 0.74 0.86
## Proportion Explained  0.34 0.28 0.25 0.14
## Cumulative Proportion 0.34 0.61 0.86 1.00
## 
##  With component correlations of 
##      TC1  TC3  TC2  TC4
## TC1 1.00 0.63 0.51 0.47
## TC3 0.63 1.00 0.65 0.34
## TC2 0.51 0.65 1.00 0.16
## TC4 0.47 0.34 0.16 1.00
## 
## Mean item complexity =  1.5
## Test of the hypothesis that 4 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.04 
##  with the empirical chi square  13.95  with prob <  0.24 
## 
## Fit based upon off diagonal values = 1
summary(mssdpca.oblique4)
## 
## Factor analysis with Call: principal(r = indiv_mssd, nfactors = 4, rotate = "oblimin")
## 
## Test of the hypothesis that 4 factors are sufficient.
## The degrees of freedom for the model is 11  and the objective function was  1.17 
## The number of observations was  85  with Chi Square =  90.02  with prob <  1.6e-14 
## 
## The root mean square of the residuals (RMSA) is  0.04 
## 
##  With component correlations of 
##      TC1  TC3  TC2  TC4
## TC1 1.00 0.63 0.51 0.47
## TC3 0.63 1.00 0.65 0.34
## TC2 0.51 0.65 1.00 0.16
## TC4 0.47 0.34 0.16 1.00
biplot(mssdpca.oblique4)

md3$pa_val_mean <- rowMeans(md3[,c("happy", "content", "excited")], na.rm=T)
all4$PA_val_MSSD <- mssd(md3$pa_val_mean, group = md3$id, lag = 1, na.rm=T)
md3$na_val_mean <- rowMeans(md3[,c("upset", "irritable")], na.rm=T)
all4$NA_val_MSSD <- mssd(md3$na_val_mean, group = md3$id, lag = 1, na.rm=T)

md3$attentive_neg <- md3$attentive*-1
md3$energy_mean <- rowMeans(md3[,c("sluggish", "attentive_neg")], na.rm=T)
all4$energy_MSSD <- mssd(md3$energy_mean, group = md3$id, lag = 1, na.rm=T)

md3$relaxed_neg <- md3$relaxed*-1
md3$anxiety_mean <- rowMeans(md3[,c("anxious", "nervous", "relaxed_neg")], na.rm=T)
all4$anxiety_MSSD <- mssd(md3$anxiety_mean, group = md3$id, lag = 1, na.rm=T)

all4$PA_val_Mean <- aggregate(md3[,c("pa_val_mean")], list(md3$id), mean, na.rm=T)
PA_val_Mean <- ddply(md3,.(id), summarize, mean=mean(pa_val_mean, na.rm=T), number=length(id))
all4$PA_val_Mean <- c(PA_val_Mean$mean)

all4$NA_val_Mean <- aggregate(md3[,c("na_val_mean")], list(md3$id), mean, na.rm=T)
NA_val_Mean <- ddply(md3,.(id), summarize, mean=mean(na_val_mean, na.rm=T), number=length(id))
all4$NA_val_Mean <- c(NA_val_Mean$mean)

all4$energy_mean <- aggregate(md3[,c("energy_mean")], list(md3$id), mean, na.rm=T)
energy_mean <- ddply(md3,.(id), summarize, mean=mean(energy_mean, na.rm=T), number=length(id))
all4$energy_mean <- c(energy_mean$mean)

all4$anxiety_mean <- aggregate(md3[,c("anxiety_mean")], list(md3$id), mean, na.rm=T)
anxiety_mean <- ddply(md3,.(id), summarize, mean=mean(anxiety_mean, na.rm=T), number=length(id))
all4$anxiety_mean <- c(anxiety_mean$mean)

all_70 <- subset(all4, nd_resprate >= 0.70)
aa <- all_70[!is.na(all_70["NAD_Mean"]),]

Regression analyses with 4 factors and PTQ

m.ptq.NA <- lm(all_indiv$ptq_total ~ scale(all_indiv$NA_val_Mean))
summary(m.ptq.NA)
## 
## Call:
## lm(formula = all_indiv$ptq_total ~ scale(all_indiv$NA_val_Mean))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -20.670  -8.395  -1.274   6.299  32.095 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    19.612      1.223  16.039   <2e-16 ***
## scale(all_indiv$NA_val_Mean)    3.097      1.230   2.518   0.0137 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.27 on 83 degrees of freedom
## Multiple R-squared:  0.07095,    Adjusted R-squared:  0.05975 
## F-statistic: 6.338 on 1 and 83 DF,  p-value: 0.01374
m.ptq.PA <- lm(all_indiv$ptq_total ~ scale(all_indiv$PA_val_Mean))
summary(m.ptq.PA)
## 
## Call:
## lm(formula = all_indiv$ptq_total ~ scale(all_indiv$PA_val_Mean))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -18.819  -8.091  -2.067   6.598  33.132 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                   19.6118     1.2648  15.506   <2e-16 ***
## scale(all_indiv$PA_val_Mean)  -0.9063     1.2723  -0.712    0.478    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.66 on 83 degrees of freedom
## Multiple R-squared:  0.006077,   Adjusted R-squared:  -0.005898 
## F-statistic: 0.5074 on 1 and 83 DF,  p-value: 0.4782
m.ptq.anx <- lm(all_indiv$ptq_total ~ scale(all_indiv$anxiety_mean))
summary(m.ptq.anx)
## 
## Call:
## lm(formula = all_indiv$ptq_total ~ scale(all_indiv$anxiety_mean))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -18.816  -7.642  -2.040   6.077  30.741 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     19.612      1.196  16.392  < 2e-16 ***
## scale(all_indiv$anxiety_mean)    3.867      1.203   3.213  0.00187 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.03 on 83 degrees of freedom
## Multiple R-squared:  0.1106, Adjusted R-squared:  0.0999 
## F-statistic: 10.32 on 1 and 83 DF,  p-value: 0.001871
m.ptq.eng <- lm(all_indiv$ptq_total ~ scale(all_indiv$energy_mean))
summary(m.ptq.eng)
## 
## Call:
## lm(formula = all_indiv$ptq_total ~ scale(all_indiv$energy_mean))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -19.107  -8.496  -1.441   5.972  31.852 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    19.612      1.256  15.609   <2e-16 ***
## scale(all_indiv$energy_mean)    1.608      1.264   1.272    0.207    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.58 on 83 degrees of freedom
## Multiple R-squared:  0.01912,    Adjusted R-squared:  0.007303 
## F-statistic: 1.618 on 1 and 83 DF,  p-value: 0.2069
m.ptq.all <-lm(all_indiv$ptq_total ~ scale(all_indiv$NA_val_Mean) + scale(all_indiv$PA_val_Mean) + scale(all_indiv$anxiety_mean) + scale(all_indiv$energy_mean ))
summary(m.ptq.all)
## 
## Call:
## lm(formula = all_indiv$ptq_total ~ scale(all_indiv$NA_val_Mean) + 
##     scale(all_indiv$PA_val_Mean) + scale(all_indiv$anxiety_mean) + 
##     scale(all_indiv$energy_mean))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -18.710  -7.563  -1.931   6.064  29.761 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    19.6118     1.2104  16.202   <2e-16 ***
## scale(all_indiv$NA_val_Mean)    0.5025     2.1801   0.231   0.8183    
## scale(all_indiv$PA_val_Mean)    1.1202     1.5705   0.713   0.4778    
## scale(all_indiv$anxiety_mean)   4.4217     2.1005   2.105   0.0384 *  
## scale(all_indiv$energy_mean)   -0.6697     1.8070  -0.371   0.7119    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.16 on 80 degrees of freedom
## Multiple R-squared:  0.1225, Adjusted R-squared:  0.07866 
## F-statistic: 2.793 on 4 and 80 DF,  p-value: 0.03164

Regression analyses with 4 factors and PHQ

m.PHQ.NA <- lm(all_indiv$PHQ_total ~ scale(all_indiv$NA_val_Mean))
summary(m.PHQ.NA)
## 
## Call:
## lm(formula = all_indiv$PHQ_total ~ scale(all_indiv$NA_val_Mean))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.5931 -1.8433 -0.5977  1.3405 12.9660 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    4.6471     0.3422  13.578  < 2e-16 ***
## scale(all_indiv$NA_val_Mean)   1.6074     0.3443   4.669 1.15e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.155 on 83 degrees of freedom
## Multiple R-squared:  0.208,  Adjusted R-squared:  0.1985 
## F-statistic:  21.8 on 1 and 83 DF,  p-value: 1.152e-05
m.PHQ.PA <- lm(all_indiv$PHQ_total ~ scale(all_indiv$PA_val_Mean))
summary(m.PHQ.PA)
## 
## Call:
## lm(formula = all_indiv$PHQ_total ~ scale(all_indiv$PA_val_Mean))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.7400 -2.4312 -0.4594  1.5524 13.6703 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    4.6471     0.3630  12.803  < 2e-16 ***
## scale(all_indiv$PA_val_Mean)  -1.1644     0.3651  -3.189  0.00202 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.347 on 83 degrees of freedom
## Multiple R-squared:  0.1091, Adjusted R-squared:  0.09841 
## F-statistic: 10.17 on 1 and 83 DF,  p-value: 0.002015
m.PHQ.anx <- lm(all_indiv$PHQ_total ~ scale(all_indiv$anxiety_mean))
summary(m.PHQ.anx)
## 
## Call:
## lm(formula = all_indiv$PHQ_total ~ scale(all_indiv$anxiety_mean))
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.202 -1.983 -0.475  1.163 11.502 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     4.6471     0.3405  13.650  < 2e-16 ***
## scale(all_indiv$anxiety_mean)   1.6391     0.3425   4.786 7.32e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.139 on 83 degrees of freedom
## Multiple R-squared:  0.2163, Adjusted R-squared:  0.2068 
## F-statistic:  22.9 on 1 and 83 DF,  p-value: 7.318e-06
m.PHQ.eng <- lm(all_indiv$PHQ_total ~ scale(all_indiv$energy_mean))
summary(m.PHQ.eng)
## 
## Call:
## lm(formula = all_indiv$PHQ_total ~ scale(all_indiv$energy_mean))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.5528 -2.0743 -0.8122  1.3023 12.1641 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    4.6471     0.3454  13.453  < 2e-16 ***
## scale(all_indiv$energy_mean)   1.5493     0.3475   4.459 2.56e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.185 on 83 degrees of freedom
## Multiple R-squared:  0.1932, Adjusted R-squared:  0.1835 
## F-statistic: 19.88 on 1 and 83 DF,  p-value: 2.563e-05
m.PHQ.all <-lm(all_indiv$PHQ_total ~ scale(all_indiv$NA_val_Mean) + scale(all_indiv$PA_val_Mean) + scale(all_indiv$anxiety_mean) + scale(all_indiv$energy_mean ))
summary(m.PHQ.all)
## 
## Call:
## lm(formula = all_indiv$PHQ_total ~ scale(all_indiv$NA_val_Mean) + 
##     scale(all_indiv$PA_val_Mean) + scale(all_indiv$anxiety_mean) + 
##     scale(all_indiv$energy_mean))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2946 -1.7708 -0.6021  1.2773 11.1861 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     4.6471     0.3361  13.824   <2e-16 ***
## scale(all_indiv$NA_val_Mean)    0.4655     0.6054   0.769    0.444    
## scale(all_indiv$PA_val_Mean)   -0.1445     0.4361  -0.331    0.741    
## scale(all_indiv$anxiety_mean)   0.7822     0.5833   1.341    0.184    
## scale(all_indiv$energy_mean)    0.6944     0.5018   1.384    0.170    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.099 on 80 degrees of freedom
## Multiple R-squared:  0.2636, Adjusted R-squared:  0.2268 
## F-statistic: 7.159 on 4 and 80 DF,  p-value: 5.585e-05

Regression analyses with 4 factors and SIAS

m.sias.NA <- lm(all_indiv$sias_total ~ scale(all_indiv$NA_val_Mean))
summary(m.sias.NA)
## 
## Call:
## lm(formula = all_indiv$sias_total ~ scale(all_indiv$NA_val_Mean))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -21.145  -8.032  -3.356   7.806  30.192 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    26.776      1.275  21.004  < 2e-16 ***
## scale(all_indiv$NA_val_Mean)    4.532      1.282   3.534 0.000673 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.75 on 83 degrees of freedom
## Multiple R-squared:  0.1308, Adjusted R-squared:  0.1203 
## F-statistic: 12.49 on 1 and 83 DF,  p-value: 0.0006728
m.sias.PA <- lm(all_indiv$sias_total ~ scale(all_indiv$PA_val_Mean))
summary(m.sias.PA)
## 
## Call:
## lm(formula = all_indiv$sias_total ~ scale(all_indiv$PA_val_Mean))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -28.069  -8.765  -3.123   8.204  32.095 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    26.776      1.313  20.394  < 2e-16 ***
## scale(all_indiv$PA_val_Mean)   -3.499      1.321  -2.649  0.00965 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 12.11 on 83 degrees of freedom
## Multiple R-squared:  0.07797,    Adjusted R-squared:  0.06686 
## F-statistic: 7.019 on 1 and 83 DF,  p-value: 0.009654
m.sias.anx <- lm(all_indiv$sias_total ~ scale(all_indiv$anxiety_mean))
summary(m.sias.anx)
## 
## Call:
## lm(formula = all_indiv$sias_total ~ scale(all_indiv$anxiety_mean))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -22.707  -8.714  -2.436   9.005  34.722 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     26.776      1.248  21.450  < 2e-16 ***
## scale(all_indiv$anxiety_mean)    5.114      1.256   4.073 0.000106 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.51 on 83 degrees of freedom
## Multiple R-squared:  0.1666, Adjusted R-squared:  0.1565 
## F-statistic: 16.59 on 1 and 83 DF,  p-value: 0.0001057
m.sias.eng <- lm(all_indiv$sias_total ~ scale(all_indiv$energy_mean))
summary(m.sias.eng)
## 
## Call:
## lm(formula = all_indiv$sias_total ~ scale(all_indiv$energy_mean))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -24.810  -9.742  -3.228   8.807  32.802 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    26.776      1.321  20.276   <2e-16 ***
## scale(all_indiv$energy_mean)    3.250      1.328   2.447   0.0165 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 12.18 on 83 degrees of freedom
## Multiple R-squared:  0.06728,    Adjusted R-squared:  0.05604 
## F-statistic: 5.987 on 1 and 83 DF,  p-value: 0.01652
m.sias.all <-lm(all_indiv$sias_total ~ scale(all_indiv$NA_val_Mean) + scale(all_indiv$PA_val_Mean) + scale(all_indiv$anxiety_mean) + scale(all_indiv$energy_mean ))
summary(m.sias.all)
## 
## Call:
## lm(formula = all_indiv$sias_total ~ scale(all_indiv$NA_val_Mean) + 
##     scale(all_indiv$PA_val_Mean) + scale(all_indiv$anxiety_mean) + 
##     scale(all_indiv$energy_mean))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -23.101  -8.231  -2.351   7.838  32.439 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    26.7765     1.2625  21.210   <2e-16 ***
## scale(all_indiv$NA_val_Mean)    1.3789     2.2738   0.606   0.5459    
## scale(all_indiv$PA_val_Mean)   -1.4756     1.6380  -0.901   0.3704    
## scale(all_indiv$anxiety_mean)   3.7226     2.1908   1.699   0.0932 .  
## scale(all_indiv$energy_mean)   -0.7513     1.8847  -0.399   0.6912    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.64 on 80 degrees of freedom
## Multiple R-squared:  0.1784, Adjusted R-squared:  0.1373 
## F-statistic: 4.341 on 4 and 80 DF,  p-value: 0.003146

Regression analyses with 4 factors and OCIR

m.OCIR.NA <- lm(all_indiv$OCIR_total ~ scale(all_indiv$NA_val_Mean))
summary(m.OCIR.NA)
## 
## Call:
## lm(formula = all_indiv$OCIR_total ~ scale(all_indiv$NA_val_Mean))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -16.100  -7.159  -3.152   5.591  33.455 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    12.365      1.060   11.66   <2e-16 ***
## scale(all_indiv$NA_val_Mean)    1.909      1.067    1.79   0.0771 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.777 on 83 degrees of freedom
## Multiple R-squared:  0.03716,    Adjusted R-squared:  0.02556 
## F-statistic: 3.203 on 1 and 83 DF,  p-value: 0.07714
m.OCIR.PA <- lm(all_indiv$OCIR_total ~ scale(all_indiv$PA_val_Mean))
summary(m.OCIR.PA)
## 
## Call:
## lm(formula = all_indiv$OCIR_total ~ scale(all_indiv$PA_val_Mean))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -12.265  -7.237  -2.473   4.673  33.523 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                   12.3647     1.0806  11.442   <2e-16 ***
## scale(all_indiv$PA_val_Mean)   0.1363     1.0870   0.125    0.901    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.963 on 83 degrees of freedom
## Multiple R-squared:  0.0001894,  Adjusted R-squared:  -0.01186 
## F-statistic: 0.01572 on 1 and 83 DF,  p-value: 0.9005
m.OCIR.anx <- lm(all_indiv$OCIR_total ~ scale(all_indiv$anxiety_mean))
summary(m.OCIR.anx)
## 
## Call:
## lm(formula = all_indiv$OCIR_total ~ scale(all_indiv$anxiety_mean))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -17.509  -6.865  -2.938   5.610  32.581 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     12.365      1.046  11.816   <2e-16 ***
## scale(all_indiv$anxiety_mean)    2.475      1.053   2.351   0.0211 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.647 on 83 degrees of freedom
## Multiple R-squared:  0.06245,    Adjusted R-squared:  0.05115 
## F-statistic: 5.528 on 1 and 83 DF,  p-value: 0.02108
m.OCIR.eng <- lm(all_indiv$OCIR_total ~ scale(all_indiv$energy_mean))
summary(m.OCIR.eng)
## 
## Call:
## lm(formula = all_indiv$OCIR_total ~ scale(all_indiv$energy_mean))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -13.979  -7.282  -3.949   4.929  33.224 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    12.365      1.072  11.531   <2e-16 ***
## scale(all_indiv$energy_mean)    1.233      1.079   1.143    0.256    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.886 on 83 degrees of freedom
## Multiple R-squared:  0.01551,    Adjusted R-squared:  0.003648 
## F-statistic: 1.308 on 1 and 83 DF,  p-value: 0.2561
m.OCIR.all <-lm(all_indiv$OCIR_total ~ scale(all_indiv$NA_val_Mean) + scale(all_indiv$PA_val_Mean) + scale(all_indiv$anxiety_mean) + scale(all_indiv$energy_mean ))
summary(m.OCIR.all)
## 
## Call:
## lm(formula = all_indiv$OCIR_total ~ scale(all_indiv$NA_val_Mean) + 
##     scale(all_indiv$PA_val_Mean) + scale(all_indiv$anxiety_mean) + 
##     scale(all_indiv$energy_mean))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -17.104  -6.566  -3.060   5.839  30.308 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    12.3647     1.0500  11.776   <2e-16 ***
## scale(all_indiv$NA_val_Mean)   -0.2245     1.8911  -0.119    0.906    
## scale(all_indiv$PA_val_Mean)    2.0923     1.3623   1.536    0.129    
## scale(all_indiv$anxiety_mean)   3.2869     1.8220   1.804    0.075 .  
## scale(all_indiv$energy_mean)    0.6912     1.5675   0.441    0.660    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.68 on 80 degrees of freedom
## Multiple R-squared:  0.09016,    Adjusted R-squared:  0.04467 
## F-statistic: 1.982 on 4 and 80 DF,  p-value: 0.1052

Analyses between 4 factor MSSD and individual difference measures

Regression analyses with 4 factors and PTQ

mssd.ptq.NA <- lm(all_indiv$ptq_total ~ scale(all_indiv$NA_val_MSSD))
summary(mssd.ptq.NA)
## 
## Call:
## lm(formula = all_indiv$ptq_total ~ scale(all_indiv$NA_val_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -19.320  -8.595  -1.718   6.553  29.649 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    19.612      1.242  15.793   <2e-16 ***
## scale(all_indiv$NA_val_MSSD)    2.379      1.249   1.904   0.0603 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.45 on 83 degrees of freedom
## Multiple R-squared:  0.04186,    Adjusted R-squared:  0.03032 
## F-statistic: 3.626 on 1 and 83 DF,  p-value: 0.06034
mssd.ptq.PA <- lm(all_indiv$ptq_total ~ scale(all_indiv$PA_val_MSSD))
summary(mssd.ptq.PA)
## 
## Call:
## lm(formula = all_indiv$ptq_total ~ scale(all_indiv$PA_val_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -19.357  -8.177  -1.785   6.994  30.823 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    19.612      1.254  15.641   <2e-16 ***
## scale(all_indiv$PA_val_MSSD)    1.768      1.261   1.401    0.165    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.56 on 83 degrees of freedom
## Multiple R-squared:  0.02312,    Adjusted R-squared:  0.01135 
## F-statistic: 1.964 on 1 and 83 DF,  p-value: 0.1648
mssd.ptq.anx <- lm(all_indiv$ptq_total ~ scale(all_indiv$anxiety_MSSD))
summary(mssd.ptq.anx)
## 
## Call:
## lm(formula = all_indiv$ptq_total ~ scale(all_indiv$anxiety_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -19.105  -8.821  -1.584   7.039  29.414 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     19.612      1.256  15.614   <2e-16 ***
## scale(all_indiv$anxiety_MSSD)    1.633      1.263   1.292      0.2    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.58 on 83 degrees of freedom
## Multiple R-squared:  0.01973,    Adjusted R-squared:  0.007917 
## F-statistic:  1.67 on 1 and 83 DF,  p-value: 0.1998
mssd.ptq.eng <- lm(all_indiv$ptq_total ~ scale(all_indiv$energy_MSSD))
summary(mssd.ptq.eng)
## 
## Call:
## lm(formula = all_indiv$ptq_total ~ scale(all_indiv$energy_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -18.492  -7.493  -1.964   5.903  30.814 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    19.612      1.265  15.503   <2e-16 ***
## scale(all_indiv$energy_MSSD)    0.875      1.272   0.688    0.494    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.66 on 83 degrees of freedom
## Multiple R-squared:  0.005664,   Adjusted R-squared:  -0.006316 
## F-statistic: 0.4728 on 1 and 83 DF,  p-value: 0.4936
mssd.ptq.all <-lm(all_indiv$ptq_total ~ scale(all_indiv$NA_val_MSSD) + scale(all_indiv$PA_val_MSSD) + scale(all_indiv$anxiety_MSSD) + scale(all_indiv$energy_MSSD ))
summary(mssd.ptq.all)
## 
## Call:
## lm(formula = all_indiv$ptq_total ~ scale(all_indiv$NA_val_MSSD) + 
##     scale(all_indiv$PA_val_MSSD) + scale(all_indiv$anxiety_MSSD) + 
##     scale(all_indiv$energy_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -19.372  -8.432  -1.825   6.358  30.318 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    19.6118     1.2629  15.529   <2e-16 ***
## scale(all_indiv$NA_val_MSSD)    2.4849     2.0449   1.215    0.228    
## scale(all_indiv$PA_val_MSSD)    0.2447     2.0873   0.117    0.907    
## scale(all_indiv$anxiety_MSSD)   0.2592     1.8991   0.137    0.892    
## scale(all_indiv$energy_MSSD)   -0.8225     1.6778  -0.490    0.625    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.64 on 80 degrees of freedom
## Multiple R-squared:  0.04474,    Adjusted R-squared:  -0.003028 
## F-statistic: 0.9366 on 4 and 80 DF,  p-value: 0.4472

Regression analyses with 4 factors and PHQ

mssd.PHQ.NA <- lm(all_indiv$PHQ_total ~ scale(all_indiv$NA_val_MSSD))
summary(mssd.PHQ.NA)
## 
## Call:
## lm(formula = all_indiv$PHQ_total ~ scale(all_indiv$NA_val_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0547 -2.4220 -0.6656  1.7338 15.5263 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    4.6471     0.3826   12.15   <2e-16 ***
## scale(all_indiv$NA_val_MSSD)   0.3580     0.3849    0.93    0.355    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.527 on 83 degrees of freedom
## Multiple R-squared:  0.01032,    Adjusted R-squared:  -0.001608 
## F-statistic: 0.8652 on 1 and 83 DF,  p-value: 0.355
mssd.PHQ.PA <- lm(all_indiv$PHQ_total ~ scale(all_indiv$PA_val_MSSD))
summary(mssd.PHQ.PA)
## 
## Call:
## lm(formula = all_indiv$PHQ_total ~ scale(all_indiv$PA_val_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.8227 -2.5340 -0.6342  1.5154 15.3956 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    4.6471     0.3843  12.093   <2e-16 ***
## scale(all_indiv$PA_val_MSSD)   0.1412     0.3865   0.365    0.716    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.543 on 83 degrees of freedom
## Multiple R-squared:  0.001604,   Adjusted R-squared:  -0.01042 
## F-statistic: 0.1334 on 1 and 83 DF,  p-value: 0.7159
mssd.PHQ.anx <- lm(all_indiv$PHQ_total ~ scale(all_indiv$anxiety_MSSD))
summary(mssd.PHQ.anx)
## 
## Call:
## lm(formula = all_indiv$PHQ_total ~ scale(all_indiv$anxiety_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.9190 -2.5653 -0.5021  1.5422 15.1064 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     4.6471     0.3835  12.119   <2e-16 ***
## scale(all_indiv$anxiety_MSSD)  -0.2684     0.3857  -0.696    0.489    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.535 on 83 degrees of freedom
## Multiple R-squared:  0.005799,   Adjusted R-squared:  -0.00618 
## F-statistic: 0.4841 on 1 and 83 DF,  p-value: 0.4885
mssd.PHQ.eng <- lm(all_indiv$PHQ_total ~ scale(all_indiv$energy_MSSD))
summary(mssd.PHQ.eng)
## 
## Call:
## lm(formula = all_indiv$PHQ_total ~ scale(all_indiv$energy_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6567 -2.6422 -0.6439  1.3558 15.3506 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                   4.647059   0.384573   12.08   <2e-16 ***
## scale(all_indiv$energy_MSSD) -0.007544   0.386855   -0.02    0.984    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.546 on 83 degrees of freedom
## Multiple R-squared:  4.582e-06,  Adjusted R-squared:  -0.01204 
## F-statistic: 0.0003803 on 1 and 83 DF,  p-value: 0.9845
mssd.PHQ.all <-lm(all_indiv$PHQ_total ~ scale(all_indiv$NA_val_MSSD) + scale(all_indiv$PA_val_MSSD) + scale(all_indiv$anxiety_MSSD) + scale(all_indiv$energy_MSSD ))
summary(mssd.PHQ.all)
## 
## Call:
## lm(formula = all_indiv$PHQ_total ~ scale(all_indiv$NA_val_MSSD) + 
##     scale(all_indiv$PA_val_MSSD) + scale(all_indiv$anxiety_MSSD) + 
##     scale(all_indiv$energy_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.2076 -2.3760 -0.3638  1.6462 14.9499 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    4.64706    0.38186  12.170   <2e-16 ***
## scale(all_indiv$NA_val_MSSD)   0.95661    0.61827   1.547   0.1258    
## scale(all_indiv$PA_val_MSSD)   0.11795    0.63109   0.187   0.8522    
## scale(all_indiv$anxiety_MSSD) -0.96160    0.57419  -1.675   0.0979 .  
## scale(all_indiv$energy_MSSD)  -0.06059    0.50729  -0.119   0.9052    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.521 on 80 degrees of freedom
## Multiple R-squared:  0.04972,    Adjusted R-squared:  0.002208 
## F-statistic: 1.046 on 4 and 80 DF,  p-value: 0.3886

Regression analyses with 4 factors and SIAS

mssd.sias.NA <- lm(all_indiv$sias_total ~ scale(all_indiv$NA_val_MSSD))
summary(mssd.sias.NA)
## 
## Call:
## lm(formula = all_indiv$sias_total ~ scale(all_indiv$NA_val_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -24.205  -9.830  -3.154   8.450  27.960 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    26.776      1.341  19.972   <2e-16 ***
## scale(all_indiv$NA_val_MSSD)    2.462      1.349   1.825   0.0716 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 12.36 on 83 degrees of freedom
## Multiple R-squared:  0.03859,    Adjusted R-squared:  0.027 
## F-statistic: 3.331 on 1 and 83 DF,  p-value: 0.07157
mssd.sias.PA <- lm(all_indiv$sias_total ~ scale(all_indiv$PA_val_MSSD))
summary(mssd.sias.PA)
## 
## Call:
## lm(formula = all_indiv$sias_total ~ scale(all_indiv$PA_val_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -27.129  -9.999  -3.879   8.382  27.778 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    26.776      1.356  19.751   <2e-16 ***
## scale(all_indiv$PA_val_MSSD)    1.632      1.364   1.197    0.235    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 12.5 on 83 degrees of freedom
## Multiple R-squared:  0.01696,    Adjusted R-squared:  0.005118 
## F-statistic: 1.432 on 1 and 83 DF,  p-value: 0.2348
mssd.sias.anx <- lm(all_indiv$sias_total ~ scale(all_indiv$anxiety_MSSD))
summary(mssd.sias.anx)
## 
## Call:
## lm(formula = all_indiv$sias_total ~ scale(all_indiv$anxiety_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -27.219  -9.773  -2.818   8.959  28.200 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     26.776      1.358  19.715   <2e-16 ***
## scale(all_indiv$anxiety_MSSD)    1.452      1.366   1.063    0.291    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 12.52 on 83 degrees of freedom
## Multiple R-squared:  0.01343,    Adjusted R-squared:  0.001541 
## F-statistic:  1.13 on 1 and 83 DF,  p-value: 0.2909
mssd.sias.eng <- lm(all_indiv$sias_total ~ scale(all_indiv$energy_MSSD))
summary(mssd.sias.eng)
## 
## Call:
## lm(formula = all_indiv$sias_total ~ scale(all_indiv$energy_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -26.249 -10.198  -2.837   8.093  29.048 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                   26.7765     1.3664  19.596   <2e-16 ***
## scale(all_indiv$energy_MSSD)   0.4665     1.3745   0.339    0.735    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 12.6 on 83 degrees of freedom
## Multiple R-squared:  0.001386,   Adjusted R-squared:  -0.01065 
## F-statistic: 0.1152 on 1 and 83 DF,  p-value: 0.7352
mssd.sias.all <-lm(all_indiv$sias_total ~ scale(all_indiv$NA_val_MSSD) + scale(all_indiv$PA_val_MSSD) + scale(all_indiv$anxiety_MSSD) + scale(all_indiv$energy_MSSD ))
summary(mssd.sias.all)
## 
## Call:
## lm(formula = all_indiv$sias_total ~ scale(all_indiv$NA_val_MSSD) + 
##     scale(all_indiv$PA_val_MSSD) + scale(all_indiv$anxiety_MSSD) + 
##     scale(all_indiv$energy_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -25.152  -9.532  -2.862   7.562  27.921 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                   26.77647    1.35997  19.689   <2e-16 ***
## scale(all_indiv$NA_val_MSSD)   3.11606    2.20194   1.415    0.161    
## scale(all_indiv$PA_val_MSSD)   0.11494    2.24763   0.051    0.959    
## scale(all_indiv$anxiety_MSSD)  0.07286    2.04495   0.036    0.972    
## scale(all_indiv$energy_MSSD)  -1.40059    1.80669  -0.775    0.440    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 12.54 on 80 degrees of freedom
## Multiple R-squared:  0.04655,    Adjusted R-squared:  -0.001118 
## F-statistic: 0.9765 on 4 and 80 DF,  p-value: 0.4251

Regression analyses with 4 factors and OCIR

mssd.OCIR.NA <- lm(all_indiv$OCIR_total ~ scale(all_indiv$NA_val_MSSD))
summary(mssd.OCIR.NA)
## 
## Call:
## lm(formula = all_indiv$OCIR_total ~ scale(all_indiv$NA_val_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -12.448  -7.268  -2.374   4.651  33.781 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                   12.3647     1.0806  11.442   <2e-16 ***
## scale(all_indiv$NA_val_MSSD)  -0.1265     1.0870  -0.116    0.908    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.963 on 83 degrees of freedom
## Multiple R-squared:  0.0001631,  Adjusted R-squared:  -0.01188 
## F-statistic: 0.01354 on 1 and 83 DF,  p-value: 0.9076
mssd.OCIR.PA <- lm(all_indiv$OCIR_total ~ scale(all_indiv$PA_val_MSSD))
summary(mssd.OCIR.PA)
## 
## Call:
## lm(formula = all_indiv$OCIR_total ~ scale(all_indiv$PA_val_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -12.435  -7.422  -2.410   4.672  33.784 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                   12.3647     1.0805  11.443   <2e-16 ***
## scale(all_indiv$PA_val_MSSD)  -0.1683     1.0870  -0.155    0.877    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.962 on 83 degrees of freedom
## Multiple R-squared:  0.0002887,  Adjusted R-squared:  -0.01176 
## F-statistic: 0.02397 on 1 and 83 DF,  p-value: 0.8773
mssd.OCIR.anx <- lm(all_indiv$OCIR_total ~ scale(all_indiv$anxiety_MSSD))
summary(mssd.OCIR.anx)
## 
## Call:
## lm(formula = all_indiv$OCIR_total ~ scale(all_indiv$anxiety_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -13.189  -7.134  -2.720   4.863  34.997 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    12.3647     1.0776   11.47   <2e-16 ***
## scale(all_indiv$anxiety_MSSD)  -0.7476     1.0840   -0.69    0.492    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.935 on 83 degrees of freedom
## Multiple R-squared:  0.005698,   Adjusted R-squared:  -0.006282 
## F-statistic: 0.4756 on 1 and 83 DF,  p-value: 0.4923
mssd.OCIR.eng <- lm(all_indiv$OCIR_total ~ scale(all_indiv$energy_MSSD))
summary(mssd.OCIR.eng)
## 
## Call:
## lm(formula = all_indiv$OCIR_total ~ scale(all_indiv$energy_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -12.592  -7.073  -2.617   4.560  34.416 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                   12.3647     1.0797  11.452   <2e-16 ***
## scale(all_indiv$energy_MSSD)  -0.4336     1.0861  -0.399    0.691    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.954 on 83 degrees of freedom
## Multiple R-squared:  0.001916,   Adjusted R-squared:  -0.01011 
## F-statistic: 0.1594 on 1 and 83 DF,  p-value: 0.6908
mssd.OCIR.all <-lm(all_indiv$OCIR_total ~ scale(all_indiv$NA_val_MSSD) + scale(all_indiv$PA_val_MSSD) + scale(all_indiv$anxiety_MSSD) + scale(all_indiv$energy_MSSD ))
summary(mssd.OCIR.all)
## 
## Call:
## lm(formula = all_indiv$OCIR_total ~ scale(all_indiv$NA_val_MSSD) + 
##     scale(all_indiv$PA_val_MSSD) + scale(all_indiv$anxiety_MSSD) + 
##     scale(all_indiv$energy_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -13.349  -6.871  -2.974   5.134  35.406 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    12.3647     1.0956  11.286   <2e-16 ***
## scale(all_indiv$NA_val_MSSD)    0.5654     1.7739   0.319    0.751    
## scale(all_indiv$PA_val_MSSD)    0.4353     1.8107   0.240    0.811    
## scale(all_indiv$anxiety_MSSD)  -1.2605     1.6474  -0.765    0.446    
## scale(all_indiv$energy_MSSD)   -0.2842     1.4555  -0.195    0.846    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.1 on 80 degrees of freedom
## Multiple R-squared:  0.009387,   Adjusted R-squared:  -0.04014 
## F-statistic: 0.1895 on 4 and 80 DF,  p-value: 0.9432