Serie: cantidad de pasajeros en el metrobus en la ciuidad de mexico.
# su periodo es de 10 aƱos (2008-2018)
# Unidad de medida: numeros de pasajeros
# Periodicidad: Mensual
# Fuente: www.inegi.org.mx
declaramos la base y la graficamos normal para notar sus componentes.
vemos que en la grafica maneja una tendencia positiva aun que no
este muy marcada y no maneja estacionalidad.
autoplot(ST,main="NUM DE PASAJEROS" )
autoplot(log(ST),main="Log(NUM DE PASAJEROS)" )
autoplot(diff(log(ST)),main='Difference of Log(NUM DE PASAJEROS)')
en estas graficas vemos que si hay una tendencia no tan marcada e identificamos
como se estabiliza la varianza la cual ya es mƔs suave y la media de igual forma
se estabiliza.
BoxCox.ar (ST,lambda = seq(-0.5,2,0.5))
possible convergence problem: optim gave code = 1possible convergence problem: optim gave code = 1possible convergence problem: optim gave code = 1possible convergence problem: optim gave code = 1possible convergence problem: optim gave code = 1possible convergence problem: optim gave code = 1possible convergence problem: optim gave code = 1
El intervalo a 95 % para lambda contiene el
valor de lambda = 0 muy cerca de su centro y sugiere
fuertemente una transformación logarĆtmica.
omitimos este paso debido a que la serie no presenta estacionalidad.
summary(ur.df(ST))
###############################################
# Augmented Dickey-Fuller Test Unit Root Test #
###############################################
Test regression none
Call:
lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
Residuals:
Min 1Q Median 3Q Max
-7859.0 -602.6 54.7 969.8 4742.0
Coefficients:
Estimate Std. Error t value Pr(>|t|)
z.lag.1 0.012805 0.008354 1.533 0.128
z.diff.lag -0.560181 0.076373 -7.335 2.69e-11 ***
---
Signif. codes: 0 Ā***Ā 0.001 Ā**Ā 0.01 Ā*Ā 0.05 Ā.Ā 0.1 Ā Ā 1
Residual standard error: 1615 on 122 degrees of freedom
Multiple R-squared: 0.3071, Adjusted R-squared: 0.2958
F-statistic: 27.04 on 2 and 122 DF, p-value: 1.904e-10
Value of test-statistic is: 1.5329
Critical values for test statistics:
1pct 5pct 10pct
tau1 -2.58 -1.95 -1.62
ggAcf(ST)
ggPacf(ST)
eacf(ST)
AR/MA
0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 x x x x x x x x x x x x x x
1 x o o o x x o o o o o o o o
2 x x o o o o o o o o o o o o
3 o x o o o o o o o o o o o o
4 o x o o o x o o o o o o o o
5 x o o o x x x o o o o o o o
6 x o x x o o x o o o o o o o
7 x x x x x o x o o o o o o o
ggtsdisplay(ST)
res <- armasubsets(y=TS.digae, nar=1, nma=12, y.name='test', ar.method='ols')
plot(res)
propuesta1
Call:
arima(x = ST, order = c(1, 0, 2), seasonal = c(1, 0, 2))
Coefficients:
ar1 ma1 ma2 sar1 sma1 sma2 intercept
0.9954 -0.6778 0.1429 0.9079 -0.8854 0.1481 16699.52
s.e. 0.0060 0.0883 0.0913 0.0757 0.1510 0.1251 15466.07
sigma^2 estimated as 2149165: log likelihood = -1102.29, aic = 2220.59
propuesta2 <- arima(ST, order=c(1,0,1),seasonal=c(1,0,1))
propuesta2
Call:
arima(x = ST, order = c(1, 0, 1), seasonal = c(1, 0, 1))
Coefficients:
ar1 ma1 sar1 sma1 intercept
0.9969 -0.5979 0.9378 -0.8034 19057.17
s.e. 0.0044 0.0695 0.0610 0.1112 19336.76
sigma^2 estimated as 2226302: log likelihood = -1104.38, aic = 2220.76
propuesta3 <- arima(ST, order=c(0,0,4),seasonal=c(0,0,4))
propuesta3
Call:
arima(x = ST, order = c(0, 0, 4), seasonal = c(0, 0, 4))
Coefficients:
ma1 ma2 ma3 ma4 sma1 sma2 sma3 sma4 intercept
0.2785 0.4838 0.4305 0.5059 0.6954 0.6741 0.5518 0.3561 16583.75
s.e. 0.1111 0.1090 0.1267 0.1046 0.1051 0.1537 0.1620 0.1493 1335.42
sigma^2 estimated as 3803289: log likelihood = -1141.58, aic = 2303.16
plot(rstandard(propuesta1),ylab ='Residuos estandarizados', type='o'); abline(h=0)
plot(rstandard(propuesta2),ylab ='Residuos estandarizados', type='o'); abline(h=0)
plot(rstandard(propuesta3),ylab ='Residuos estandarizados', type='o'); abline(h=0)
checkresiduals(propuesta1)
Ljung-Box test
data: Residuals from ARIMA(0,0,4)(0,0,4)[12] with non-zero mean
Q* = 51.657, df = 15, p-value = 6.435e-06
Model df: 9. Total lags used: 24
checkresiduals(propuesta2)
Ljung-Box test
data: Residuals from ARIMA(0,0,4) with non-zero mean
Q* = 290.79, df = 19, p-value < 2.2e-16
Model df: 5. Total lags used: 24
checkresiduals(propuesta3)
Ljung-Box test
data: Residuals from ARIMA(1,0,1) with non-zero mean
Q* = 26.074, df = 21, p-value = 0.2036
Model df: 3. Total lags used: 24
Autoarima<- auto.arima(ST, d=1,stepwise=FALSE, approximation=FALSE)
Autoarima
Series: ST
ARIMA(0,1,1) with drift
Coefficients:
ma1 drift
-0.6767 167.3577
s.e. 0.0765 45.3992
sigma^2 estimated as 2414785: log likelihood=-1095.24
AIC=2196.47 AICc=2196.67 BIC=2204.96
checkresiduals(Autoarima)
Ljung-Box test
data: Residuals from ARIMA(0,1,1) with drift
Q* = 25.613, df = 22, p-value = 0.2687
Model df: 2. Total lags used: 24
prop <-auto.arima(ST, order=c(0,1,1), seasonal = c(0,0,0))
the condition has length > 1 and only the first element will be usedError in myarima(x, order = c(p, d, q), seasonal = c(P, D, Q), constant = constant, :
formal argument "order" matched by multiple actual arguments
pronostico <- plot(forecast(ST,h=24))
pronostico
$`mean`
Jan Feb Mar Apr May Jun Jul Aug Sep
2018 27017.77 29109.96 26642.89
2019 27474.67 27534.67 28587.09 28035.50 30033.70 29531.60 29083.43 31321.48 28654.25
2020 29497.91 29549.96 30666.73 30062.72 32192.40 31641.57
Oct Nov Dec
2018 29325.39 27692.70 25775.12
2019 31525.42 29757.34 27684.93
2020
$lower
80% 95%
Jul 2018 24302.09 22864.49
Aug 2018 26048.27 24427.51
Sep 2018 23719.76 22172.35
Oct 2018 25978.03 24206.04
Nov 2018 24411.69 22674.83
Dec 2018 22611.81 20937.26
Jan 2019 23988.19 22142.55
Feb 2019 23927.65 22018.21
Mar 2019 24726.78 22683.25
Apr 2019 24138.08 22074.92
May 2019 25740.55 23467.89
Jun 2019 25195.67 22900.37
Jul 2019 24701.70 22382.15
Aug 2019 26483.76 23922.83
Sep 2019 24120.91 21721.10
Oct 2019 26420.57 23718.23
Nov 2019 24829.10 22220.25
Dec 2019 22998.70 20517.97
Jan 2020 24397.81 21697.99
Feb 2020 24334.48 21573.57
Mar 2020 25144.51 22221.23
Apr 2020 24542.51 21620.29
May 2020 26167.52 22978.15
Jun 2020 25608.78 22415.21
$upper
80% 95%
Jul 2018 29733.46 31171.06
Aug 2018 32171.65 33792.41
Sep 2018 29566.03 31113.44
Oct 2018 32672.74 34444.73
Nov 2018 30973.72 32710.58
Dec 2018 28938.44 30612.99
Jan 2019 30961.15 32806.79
Feb 2019 31141.69 33051.13
Mar 2019 32447.41 34490.94
Apr 2019 31932.91 33996.08
May 2019 34326.85 36599.51
Jun 2019 33867.53 36162.83
Jul 2019 33465.15 35784.70
Aug 2019 36159.20 38720.13
Sep 2019 33187.60 35587.41
Oct 2019 36630.26 39332.60
Nov 2019 34685.58 37294.43
Dec 2019 32371.16 34851.89
Jan 2020 34598.01 37297.83
Feb 2020 34765.43 37526.34
Mar 2020 36188.94 39112.23
Apr 2020 35582.93 38505.15
May 2020 38217.28 41406.65
Jun 2020 37674.36 40867.93