Problem 5.5

ch5<-read.table("CH05PR05.txt")
n <- nrow(ch5)  
X <- cbind(rep(1,n),ch5[,2])
Y <- (ch5[,1])

X
##      [,1] [,2]
## [1,]    1    4
## [2,]    1    1
## [3,]    1    2
## [4,]    1    3
## [5,]    1    3
## [6,]    1    4
Y
## [1] 16  5 10 15 13 22
### Part A
t(Y)%*%Y 
##      [,1]
## [1,] 1259
### Part B
t(X)%*%X 
##      [,1] [,2]
## [1,]    6   17
## [2,]   17   55
### Part C
t(X)%*%Y
##      [,1]
## [1,]   81
## [2,]  261

Problem 5.13

solve(t(X)%*%X) #X'*X^-1
##            [,1]       [,2]
## [1,]  1.3414634 -0.4146341
## [2,] -0.4146341  0.1463415

Problem 5.24

Part A.

#1- Vector of Estimated Regression Coefficients
I=diag(n)
b <- solve(t(X)%*%X)%*%t(X)%*%Y
b
##           [,1]
## [1,] 0.4390244
## [2,] 4.6097561
#2-Vector of Residuals
res <- Y-(X%*%b)
res
##             [,1]
## [1,] -2.87804878
## [2,] -0.04878049
## [3,]  0.34146341
## [4,]  0.73170732
## [5,] -1.26829268
## [6,]  3.12195122
#3-SSR
H <- X%*%solve(t(X)%*%X)%*%t(X)
J=rep(1,n)%*%t(rep(1,n))
SSR <- t(Y)%*%(H-J/n)%*%Y
SSR
##          [,1]
## [1,] 145.2073
#4-SSE
SSE <- t(Y)%*%(I-H)%*%Y
SSE
##          [,1]
## [1,] 20.29268
#5-Estimated Variance-Covariance Matrix of b
MSE <- SSE/(n-2)
MSE <-as.vector(MSE)
i_xpx<- solve(t(X)%*%X)
MSE*i_xpx
##           [,1]       [,2]
## [1,]  6.805473 -2.1035098
## [2,] -2.103510  0.7424152
#6-Estimated point estimate of E[Y_h] when X_h = 4
Xh <- matrix(c(1,4),2,1)
t(Xh)%*%b
##          [,1]
## [1,] 18.87805
#7-s^2{pred} when X_h = 4
MSE*(1 + t(Xh)%*%(i_xpx)%*%Xh)
##          [,1]
## [1,] 6.929209

Part B.

sb0b1 <- (MSE*solve(t(X)%*%X)[1,2])
sb0b1
## [1] -2.10351
sb0_sq <- (MSE*solve(t(X)%*%X))[1,1]
sb0_sq
## [1] 6.805473
sb1 <- sqrt(MSE*solve(t(X)%*%X)[2,2])
sb1
## [1] 0.8616352

Part C.

#Hat Matrix H
H <- X%*%solve(t(X)%*%X)%*%t(X)
H
##             [,1]       [,2]       [,3]      [,4]      [,5]        [,6]
## [1,]  0.36585366 -0.1463415 0.02439024 0.1951220 0.1951220  0.36585366
## [2,] -0.14634146  0.6585366 0.39024390 0.1219512 0.1219512 -0.14634146
## [3,]  0.02439024  0.3902439 0.26829268 0.1463415 0.1463415  0.02439024
## [4,]  0.19512195  0.1219512 0.14634146 0.1707317 0.1707317  0.19512195
## [5,]  0.19512195  0.1219512 0.14634146 0.1707317 0.1707317  0.19512195
## [6,]  0.36585366 -0.1463415 0.02439024 0.1951220 0.1951220  0.36585366

Part D.

#s_sqr(e)
MSE*(I-H)
##            [,1]       [,2]       [,3]       [,4]       [,5]       [,6]
## [1,]  3.2171327  0.7424152 -0.1237359 -0.9898870 -0.9898870 -1.8560381
## [2,]  0.7424152  1.7323022 -1.9797739 -0.6186794 -0.6186794  0.7424152
## [3,] -0.1237359 -1.9797739  3.7120761 -0.7424152 -0.7424152 -0.1237359
## [4,] -0.9898870 -0.6186794 -0.7424152  4.2070196 -0.8661511 -0.9898870
## [5,] -0.9898870 -0.6186794 -0.7424152 -0.8661511  4.2070196 -0.9898870
## [6,] -1.8560381  0.7424152 -0.1237359 -0.9898870 -0.9898870  3.2171327

Problem 2

Known Values

e_Y1 <- 1
e_Y2 <- 2
e_y3 <- 3

var_Y1 <- 6
var_Y2 <-7
var_Y3 <-8

cov_y1_y2 <- 0
cov_y1_y3 <- -4
cov_y2_y3 <- 5

a <- matrix(c(10, 20, 30),3,1) 
A <- matrix(c(1,4,7,2,5,8,3,6,9), 3,3)

Part A.

#Expectation of Y
t(matrix(c(1,2,3),nrow=1))
##      [,1]
## [1,]    1
## [2,]    2
## [3,]    3
#Variance Covariance of Y
var <- matrix(c(6,0,-4,0,7,5,-4,5,8), 3,3)
var
##      [,1] [,2] [,3]
## [1,]    6    0   -4
## [2,]    0    7    5
## [3,]   -4    5    8

Part B.

#Expectation

#E(a'Y) = a'*E(Y)
t(a)%*%matrix(c(1,2,3),3,1)
##      [,1]
## [1,]  140
#E(AY) = A*E(Y)
A%*%matrix(c(1,2,3),3,1)
##      [,1]
## [1,]   14
## [2,]   32
## [3,]   50

Part C.

#Variance

#Var(a'Y) = a'*Var*a
t(a) %*% var %*% a
##       [,1]
## [1,] 14200
#Var(AY) = A*Var*A'
A %*% var %*% t(A)
##      [,1] [,2] [,3]
## [1,]  142  301  460
## [2,]  301  667 1033
## [3,]  460 1033 1606