Exercise using Ratio Estimation

Tasks

(Item1)

Construct a dataset where you extract the ACRES92, ACRES87 and FARMS92 from the agpop.DAT dataset

(Item2)

Eliminate all observations where any of the above variables are missing (i.e. equal to -99)

(Item3)

Set seed equal to the last 5 digits of your student number

(Item4)

Obtain an SRS of size 300 and estimate the population mean of ACRES92 using a ratio estimator with

(Item4.1.) ACRES87 as auxiliary variable

(Item4.2.) FARMS92 as auxiliary variable

Item 1-2

##############################################
############      ITEMS 1-2      #############
##############################################
# Construct a dataset where you extract the 
# ACRES92, ACRES87 and FARMS92 
# from the agpop.DAT dataset
# Eliminate all observations where 
# any of the above variables 
# are missing (i.e. equal to -99)
##############################################

# Load the working data
agpop <- read.csv("agpop.dat")

# Initial exploratory analysis
# Check the data dimensions
# 3078 rows and 15 columns
dim(agpop) 
## [1] 3078   15
# Generate the data summary
summary(agpop)
##                COUNTY         STATE         ACRES92       
##  WASHINGTON COUNTY:  30   TX     : 254   Min.   :    -99  
##  JEFFERSON COUNTY :  25   GA     : 159   1st Qu.:  80903  
##  FRANKLIN COUNTY  :  24   KY     : 120   Median : 191648  
##  JACKSON COUNTY   :  23   MO     : 114   Mean   : 306677  
##  LINCOLN COUNTY   :  23   KS     : 105   3rd Qu.: 366886  
##  MADISON COUNTY   :  19   IL     : 102   Max.   :7229585  
##  (Other)          :2934   (Other):2224                    
##     ACRES87           ACRES82           FARMS92          FARMS87      
##  Min.   :    -99   Min.   :    -99   Min.   :   0.0   Min.   :   0.0  
##  1st Qu.:  86236   1st Qu.:  96397   1st Qu.: 295.0   1st Qu.: 318.5  
##  Median : 199864   Median : 207292   Median : 521.0   Median : 572.0  
##  Mean   : 313016   Mean   : 320194   Mean   : 625.5   Mean   : 678.3  
##  3rd Qu.: 372224   3rd Qu.: 377065   3rd Qu.: 838.0   3rd Qu.: 921.0  
##  Max.   :7687460   Max.   :7313958   Max.   :7021.0   Max.   :7590.0  
##                                                                       
##     FARMS82          LARGEF92         LARGEF87         LARGEF82     
##  Min.   :   0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.: 345.0   1st Qu.:  8.00   1st Qu.:  8.00   1st Qu.:  8.00  
##  Median : 616.0   Median : 30.00   Median : 27.00   Median : 25.00  
##  Mean   : 728.1   Mean   : 56.18   Mean   : 54.86   Mean   : 52.62  
##  3rd Qu.: 991.0   3rd Qu.: 75.00   3rd Qu.: 70.00   3rd Qu.: 65.00  
##  Max.   :7394.0   Max.   :579.00   Max.   :596.00   Max.   :546.00  
##                                                                     
##     SMALLF92          SMALLF87          SMALLF82       REGION   
##  Min.   :   0.00   Min.   :   0.00   Min.   :   0.00   NC:1054  
##  1st Qu.:  13.00   1st Qu.:  17.00   1st Qu.:  16.00   NE: 220  
##  Median :  29.00   Median :  35.00   Median :  34.00   S :1382  
##  Mean   :  54.09   Mean   :  59.54   Mean   :  60.97   W : 422  
##  3rd Qu.:  59.00   3rd Qu.:  67.00   3rd Qu.:  67.00            
##  Max.   :4298.00   Max.   :3654.00   Max.   :3522.00            
## 
# Count the number of rows with missing values for the ACRES92 column
# 19 rows with missing values
nrow(agpop[agpop$ACRES92==-99,])
## [1] 19
# Count the number of rows with missing values for the ACRES87 column
# 23 rows with missing values
nrow(agpop[agpop$ACRES87==-99,])
## [1] 23
# Count the number of rows with missing values for the FARMS92 column
# 0 rows with missing values
nrow(agpop[agpop$FARMS92==-99,])
## [1] 0
# Remove missing values and only keep the needed columns
agpop_complete <- agpop[agpop$ACRES92!=-99,c("ACRES92","ACRES87","FARMS92")]

# Remove missing values and only keep the needed columns
agpop_complete <- agpop_complete[agpop_complete$ACRES87!=-99,c("ACRES92","ACRES87","FARMS92")]

# Check the data dimensions
# 3044 rows and 3 columns
dim(agpop_complete)
## [1] 3044    3
(N <- nrow(agpop_complete))
## [1] 3044
# Double check if all missing rows have been indeed removed
# Count the number of rows with missing values for the ACRES92 column
# 0 rows with missing values
nrow(agpop_complete[agpop_complete$ACRES92==-99,])
## [1] 0
# Count the number of rows with missing values for the ACRES92 column
# 0 rows with missing values
nrow(agpop_complete[agpop_complete$ACRES87==-99,])
## [1] 0
# Count the number of rows with missing values for the ACRES92 column
# 0 rows with missing values
nrow(agpop_complete[agpop_complete$FARMS92==-99,])
## [1] 0
# Generate the population means
# Population mean for ACRES92 is 309900.4
(ACRES92_popmean <- mean(agpop_complete$ACRES92))
## [1] 309900.4
# Population mean for ACRES87 is 316094.7
(ACRES87_popmean <- mean(agpop_complete$ACRES87))
## [1] 316094.7
# Population mean for FARMS92 is 631.7424
(FARMS92_popmean <- mean(agpop_complete$FARMS92))
## [1] 631.7424

Item 3

##############################################
############       ITEM 3        #############
##############################################
# Set seed equal to the last 5 digits
# of your student number  
##############################################

# Set the seed numbers
(seedSRS <- 89176)
## [1] 89176

Item 4

##############################################
############       ITEM 4        #############
##############################################
# Obtain an SRS of size 300 
# and estimate the population mean of ACRES92
# using a ratio estimator with
# ACRES87 as auxiliary variable
# FARMS92 as auxiliary variable
##############################################

# Specify the sample size
(n <- 300)
## [1] 300
# Verify the population size
# Population size is 3044
(N)
## [1] 3044
# Generate the sample indices
set.seed(seedSRS)
(sampleindices <- sample(N,n))
##   [1]  599  163 2028 1437  730 1538 2375  233 1917  522 2170 1226 2105  700
##  [15] 2853 2180 2628 2332  809  962  613 2079   79 1157 2484 1348 1483  330
##  [29] 2343 2864 2709 1578  618 2656 2269  778 3004   71 1644 2717  465 1372
##  [43]  161 2661 1534 2862  918 1687 1569  516  542 1758   96   98  877 2521
##  [57] 1901  719 1688  331  129 2149 2597  548  246 2487  298 1562  269 2538
##  [71] 1015 1890  347 2617 2643  395 1683 2926 2930 1560 2962 2024  122 1421
##  [85] 1926  954 1109 2473  636 2820    7  178  534 1443 1657  555 1910  996
##  [99] 2379 1357  267 1051 2659 2705 1107 1245  898 1432 1738 1748 2413 1149
## [113]  819 2784 1013  950   20  334 2427  958 1770 1902 1718 2002 1118  982
## [127]   26  540 1547 2664   57 1832 1907 2179  736 1121  876 1044 2443 2047
## [141] 2857 2400  869 2624  206 1871  105  662   35 2005 2680 1373 1222 2244
## [155]  328 1228  398 2577 2471  573 2238  294 2466 1807  204 2585 1788 2746
## [169] 1299 1064 1512 2640 1069 1597 1301 1615 2785  977  840 2497 1816  785
## [183] 2575  967  776 2032 2772 2492 1076  928 1965  130 1593 2322 2459 1684
## [197]   17 1159 2421 1446 2035 1649   47 1316 2470 2237  313 2092 3014  454
## [211] 2988 2333 1389 1556  731  370 2518  397 1714  879 2947 1376 2595 2478
## [225] 1175 2221 2950 1834 1145 1861 1235  570 1740 1634 2132 2843 1517 1530
## [239] 1784 1575 1489  300 2318 1195 2683 2657 2178 1848  577  752 1859 2293
## [253] 1283  925   72 2605  854  838 2568 1275  771 2946 1135 2261  249   40
## [267] 2342 1847 1264 2069  892  225 2750 2462 1453 1515  595  403  689  887
## [281] 2441  910  697 1473 2540 2279 1148 2825  366 1959   74 1858 2315  993
## [295] 2846 2817 1119 2767 2644  920
# Generate the actual samples
(agpop_sampled <- agpop_complete[sampleindices,])
##      ACRES92 ACRES87 FARMS92
## 606   233217  230461     913
## 163   286288  241276     482
## 2050  230988  251969    1153
## 1449  316809  300812    1171
## 737   184599  184566     491
## 1550  181946  177963     125
## 2399 1406379 1397710     258
## 234   156801  150334     131
## 1933 1797466 1805222     485
## 529   268506  268437     740
## 2192 1457339 1519876     442
## 1236  193688  207726     835
## 2127  419760  404416    1307
## 707   258014  262198     772
## 2882   24848   28234     108
## 2202 1318447 1381625    1186
## 2654  547428  548293     550
## 2356  974811 1009978     298
## 816   158788  172226     849
## 969    90033   89986     767
## 620   357684  377025    1495
## 2101  302456  318255    1089
## 79     18818   19659     116
## 1167   83232   92806     840
## 2508  416631  422998    1622
## 1360  231610  234126     819
## 1495  151743  173064     394
## 335   299699  329388     728
## 2367  545064  486467     240
## 2893  112085  115566    1240
## 2735  644730  685935    1273
## 1590 1644001 1722206     641
## 625   221209  207722     271
## 2682  402011  546742     163
## 2293   74733   85937     279
## 785   202429  209556     731
## 3038  115487  118540     355
## 71    141260  156950     235
## 1658  180400  182498     376
## 2743  461127  402967    1795
## 472    44470   54722     157
## 1384  181292  189383     754
## 161  2108834 2358559     463
## 2687  362642  318164     215
## 1546   86096   87159     374
## 2891  274546  274119     142
## 925   409839  396556     516
## 1701  144858  154350    1293
## 1581  135126  152109      70
## 523   214452  224153     437
## 549   312173  328319     944
## 1772 1269572 1300508     988
## 96    168755  165498     727
## 98     42794   41293     371
## 884   222028  223426     820
## 2545  471498  499983     179
## 1916 2149450 2220431     544
## 726   402310  444816    1308
## 1702   51916   54858     222
## 336   296242  311074    1654
## 129   122871  112409     791
## 2171  421233  435566    1093
## 2622  383573  403124    1053
## 555   343870  334112    1653
## 248   641755  643050     253
## 2511  629681  593971     123
## 302   227202  214364     214
## 1574  598694  536553     599
## 272   546538  505471     240
## 2562  518788  589050     195
## 1022   44709   55183     564
## 1905 3112271 2991513     592
## 352   151242  166766     328
## 2643  558553  517379     707
## 2669  525885  505366    1378
## 402    25802   27899     191
## 1697   68736   75808     226
## 2955  218145  228959     720
## 2959  170228  183626     893
## 1572 2338866 2433747     514
## 2994   86091  100728     324
## 2046  275644  288175    1032
## 122    69422   80104     387
## 1433  199292  201016    1016
## 1942  738041  833913     200
## 961   471658  529749     283
## 1116   27469   26993     175
## 2497  103063  103622     669
## 643   353528  401677     285
## 2849   48889   41268     149
## 7     167832  192082     941
## 178   775829  702173    1092
## 541   308497  317974     821
## 1455  323465  336976     968
## 1671   75496   91744     195
## 562   317205  319657     853
## 1926  770155  788473     345
## 1003   86074   96982     739
## 2403   93098   88616     502
## 1369  249731  252824     663
## 270  1004360  882165     530
## 1058  159794  161234    1019
## 2685  497106  445493     561
## 2731  242901  276750     907
## 1114   87574   89425     677
## 1256   73437   76193     402
## 905   271713  263592     981
## 1444  201714  206871     849
## 1752 1165695 1122980     741
## 1762  485012  487285     451
## 2437  224247  222142     432
## 1157   37477   46747     410
## 826   184118  197875     993
## 2812   73097   71550     332
## 1020  144828  144862     617
## 957   687593  704788    1163
## 20     47200   49177     338
## 339    44962   48999     277
## 2451  275219  279482    1578
## 965   265978  253967     362
## 1784  437826  442540     787
## 1917 1881764 1894215     338
## 1732  559385  609823     462
## 2024  122480  117130     689
## 1125  193137  195787     431
## 989   192189  201861    1489
## 26    111315  118184     458
## 547   368114  376952    1362
## 1559  230524  245244     121
## 2690  667177  529092     230
## 57    155914  159757    1129
## 1846  532901  570445     479
## 1923 1769177 1635787     586
## 2201  380464  391692    1948
## 743    67998   75234     246
## 1128  247106  244811     570
## 883   201798  216179     509
## 1051  136869  137344    1067
## 2467   53026   58327     219
## 2069  200405  209643    1017
## 2886  132674  140177     493
## 2424   70457   78611     453
## 876   407464  397383     613
## 2650  515960  543283     207
## 207   388084  377352     844
## 1885    7799   10033     188
## 105   183895  173516     651
## 669    69354   73076     171
## 35    130063  127653     767
## 2027   99214  115999     821
## 2706  247626  249326    1609
## 1385  255498  260645     734
## 1232  277400  282467     914
## 2268   90065   95605     293
## 333    11738   17507      71
## 1238   47308   47988     206
## 405     3046    3841      51
## 2602  660412  762442    1565
## 2495  352488  350886    1488
## 580   266083  266090     872
## 2261   44425   56734     461
## 298    36230   41178     315
## 2490  125092  135209     617
## 1821  401978  403549     273
## 205   342653  347504    1057
## 2610  345138  348386    1904
## 1802  658572  709723     876
## 2772 1294703 1318672     716
## 1311  379603  389539    1540
## 1071  154082  164293     971
## 1524   53401   57612     362
## 2666   73948   75350     349
## 1076  165015  174061     653
## 1609  683088  704878     165
## 1313   79183   91078     683
## 1627   52974   57431     507
## 2813   24478   25831     111
## 984   137337  137781     694
## 847    79235   86245     654
## 2521  548351  509782     980
## 1830  446007  474848     206
## 792   229097  234599     633
## 2600  545664  615426     229
## 974    80864   84750     798
## 783   222435  228419    1181
## 2054   74461   79180     385
## 2799   68326   72611     319
## 2516 2405018 2377767     122
## 1083  140432  136561     466
## 935   582053  542578     547
## 1985  242637  285731    1051
## 130   156363  156212     879
## 1605 1968857 1938423     479
## 2346  236608  236960     437
## 2483  183178  190772     588
## 1698  115854  117441     476
## 17     67950   84626     215
## 1169  126981  132804     588
## 2445   54518   62446     828
## 1458  138986  139937     494
## 2057   17138   18335     272
## 1663    8882    7533     147
## 47    207226  223190     910
## 1328  395023  368115     947
## 2494  214497  216162    1637
## 2260   20777   26898     147
## 318    69405   73603     224
## 2114  300829  318542     833
## 3048   47366   48770     238
## 461   121588  131334     288
## 3020   19956   21369     158
## 2357  560057  575695     326
## 1401  201670  200323     680
## 1568   78230   91427     263
## 738   392639  415755    1141
## 377   213943  216594     558
## 2542  571684  655499     391
## 404   168593  163114     342
## 1728  777675  816265     635
## 886   324063  340899     382
## 2978  265731  281891     980
## 1388  163076  178651     567
## 2620  330173  312129    1763
## 2502  337351  347215    1748
## 1185  123932  137529     809
## 2244   88982   99920     438
## 2981  270930  291181    1094
## 1848  297326  332862     725
## 1153   34235   42562     523
## 1875   46056   47923     173
## 1246   18047   18555     101
## 577   321950  322206    1112
## 1754  531643  557568     527
## 1646   53902   50446     179
## 2154  390957  388174     704
## 2872    2358    3374      55
## 1529  262371  277137     261
## 1542   93180  123870     554
## 1798  345739  359241    1079
## 1587 1730537 1646324     376
## 1501  294547  260026     230
## 304    86026   83994     210
## 2342 1243168 1104452     541
## 1205   16099   16140      58
## 2709  536507  474001     434
## 2683 1695484 1890612     151
## 2200   34292   35230     283
## 1862  217228  241886     557
## 584   347599  342938    1194
## 759   488215  487699    1112
## 1873   25439   26574     155
## 2317  128124  124284     666
## 1295  113422  132863     509
## 932   547369  545417     536
## 72     56680   57923     559
## 2630  698832  653556     128
## 861   162244  165339     759
## 845   121710  132099     500
## 2593  313952  330751     303
## 1287  168073  178100     563
## 778   227711  221878     804
## 2977  282405  315416    1324
## 1142   61883   65151     425
## 2285    9631   10356     120
## 251   878447  996785     309
## 40    191810  207817     753
## 2366  502469  490333     931
## 1861 1005877 1122369     327
## 1275    3786    4159      36
## 2091   19088   19808     260
## 899   532890  538449     246
## 226   796892  855503     268
## 2776  105576  101622     189
## 2486   49452   53305     541
## 1465  204171  218426     783
## 1527   95736   96008     600
## 602   542855  543881    1441
## 410   184137  179393     314
## 696   431415  459120    1165
## 894   512728  503589     400
## 2465  257000  258567     697
## 917   485656  469908     842
## 704   453944  485142    1438
## 1485  289729  290980    1541
## 2564  426189  392585    1521
## 2303  156853  155717     370
## 1156   74484   82864     519
## 2854   24924   29758     272
## 373    62983   68705     201
## 1979  195626  212804     699
## 74    151325  154580     300
## 1872   20910   21479     147
## 2339 1026353  992938    1089
## 1000  147154  155594     836
## 2875   43332   39358     156
## 2846  297064  300699    1389
## 1126  210570  196324     847
## 2794   51604   59527     181
## 2670   30268   64047     225
## 927   441417  436761    1102
# Check the dimension
(dim(agpop_sampled))
## [1] 300   3
# Generate the sample means
# Sample mean for ACRES92 is 351725.5
(ACRES92_samplemean <- mean(agpop_sampled$ACRES92))
## [1] 351725.5
# Sample mean for ACRES87 is 358120.2
(ACRES87_samplemean <- mean(agpop_sampled$ACRES87))
## [1] 358120.2
# Sample mean for FARMS92 is 629.43
(FARMS92_samplemean <- mean(agpop_sampled$FARMS92)) 
## [1] 629.43
# Estimate the population mean for ACRES92 using ACRES87 as auxiliary variable
# Estimated population mean for ACRES92 
# using ACRES87 as auxiliary variable is 310450.4
# For refernce, actual ACRES92 population mean is 309900.4
(ACRES92_estimatedmeanusingACRES87 <- (ACRES92_samplemean/ACRES87_samplemean)*ACRES87_popmean)
## [1] 310450.4
# Estimate the population mean for ACRES92 using FARMS92 as auxiliary variable
# Estimated population mean for ACRES92 
# using FARMS92 as auxiliary variable is 353017.7
# For refernce, actual ACRES92 population mean is 309900.4
(ACRES92_estimatedmeanusingFARMS92 <- (ACRES92_samplemean/FARMS92_samplemean)*FARMS92_popmean)
## [1] 353017.7