Download the cv2010on.csv file from Moodle; save it in your computer; and upload it into the data folder of your RStudio. Revise the read.csv code line so that the code matches both the name and address of the data file. The data contains civil cases filed at the federal district courts in six New England States in 2011 and on. The row represents civil cases, and the column their characteristics. DEF stands for defendants; PLT plaintiffs; and nature_of_suit type of lawsuits. Change civilCases to civilCases.
There are 36643 obs cases
# Load dplyr package
library(dplyr) #for use of dplyr functions such as glimpse(), mutate(), and filter()
library(ggplot2) #for use of ggplot2 functions such ggplot()
# Import data
civilCases <- read.csv("data/cv2010on.csv")
# Convert data to tbl_df
civilCases <- tbl_df(civilCases)
str(civilCases)
## Classes 'tbl_df', 'tbl' and 'data.frame': 36643 obs. of 6 variables:
## $ DISTRICT : Factor w/ 6 levels "CT","MA","ME",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ PLT : Factor w/ 19900 levels "-8",":WALKER EL: VENUS-ANTOINETTE",..: 6393 3300 5130 19442 7175 3482 6269 4384 12436 13162 ...
## $ DEF : Factor w/ 19496 levels "-8","'47 BRAND, LLC",..: 8018 11968 5576 10445 5251 14988 7759 1510 8210 13180 ...
## $ FILEYEAR : int 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 ...
## $ NOS : int 445 385 442 440 440 190 440 442 190 110 ...
## $ nature_of_suit: Factor w/ 44 levels "ADMINISTRATIVE PROCEDURE ACT/REVIEW OR APPEAL OF AGENCY\nDECISION",..: 7 37 9 28 28 29 28 9 29 19 ...
Revise the level code below so that R returns all levels (values) in the id variable.
There are 6 variables in district variable
Revise the table code below so that R returns the answer for the question.
There are 445 HEALTH CARE / PHARM cases were filed in New Hampshire
levels(civilCases$DISTRICT)
## [1] "CT" "MA" "ME" "NH" "RI" "VT"
tab <- table(civilCases$DISTRICT, civilCases$nature_of_suit)
tab
##
## ADMINISTRATIVE PROCEDURE ACT/REVIEW OR APPEAL OF AGENCY\nDECISION
## CT 21
## MA 84
## ME 18
## NH 11
## RI 11
## VT 6
##
## ANTITRUST ARBITRATION ASSAULT, LIBEL, AND SLANDER BANKS AND BANKING
## CT 38 37 51 15
## MA 105 71 117 35
## ME 3 7 28 2
## NH 2 6 15 9
## RI 27 11 15 9
## VT 9 0 14 4
##
## CIVIL RIGHTS ACCOMMODATIONS CIVIL RIGHTS ADA EMPLOYMENT
## CT 59 312
## MA 132 201
## ME 13 114
## NH 9 77
## RI 15 66
## VT 6 17
##
## CIVIL RIGHTS ADA OTHER CIVIL RIGHTS JOBS CONSUMER CREDIT
## CT 75 1389 943
## MA 388 843 745
## ME 38 300 65
## NH 42 200 110
## RI 49 234 122
## VT 15 60 15
##
## CONTRACT FRANCHISE CONTRACT PRODUCT LIABILITY COPYRIGHT
## CT 60 12 273
## MA 36 53 338
## ME 8 5 16
## NH 3 9 29
## RI 4 6 22
## VT 0 6 7
##
## FAIR LABOR STANDARDS ACT FALSE CLAIMS ACT
## CT 365 47
## MA 378 111
## ME 50 20
## NH 29 4
## RI 114 16
## VT 18 10
##
## FAMILY AND MEDICAL LEAVE ACT FOOD AND DRUG ACTS HEALTH CARE / PHARM
## CT 168 0 53
## MA 112 0 4493
## ME 20 0 72
## NH 15 0 445
## RI 29 1 67
## VT 3 0 15
##
## INSURANCE INTERSTATE COMMERCE LABOR/MANAGEMENT RELATIONS ACT
## CT 645 8 26
## MA 625 24 127
## ME 98 7 7
## NH 95 3 6
## RI 210 3 19
## VT 68 5 3
##
## LABOR/MANAGEMENT REPORT & DISCLOSURE MEDICAL MALPRACTICE
## CT 0 70
## MA 1 122
## ME 0 39
## NH 0 33
## RI 0 30
## VT 0 39
##
## MOTOR VEHICLE PERSONAL INJURY MOTOR VEHICLE PRODUCT LIABILITY
## CT 244 17
## MA 196 21
## ME 44 11
## NH 65 2
## RI 47 2
## VT 57 3
##
## NEGOTIABLE INSTRUMENTS OCCUPATIONAL SAFETY/HEALTH OTHER CIVIL RIGHTS
## CT 22 0 1513
## MA 88 2 1455
## ME 10 2 352
## NH 7 1 266
## RI 11 0 314
## VT 6 0 201
##
## OTHER CONTRACT ACTIONS OTHER FRAUD OTHER LABOR LITIGATION
## CT 1066 202 80
## MA 1991 250 209
## ME 201 25 15
## NH 237 56 21
## RI 296 40 17
## VT 154 18 8
##
## OTHER PERSONAL INJURY OTHER PERSONAL PROPERTY DAMAGE
## CT 675 93
## MA 804 259
## ME 144 20
## NH 153 36
## RI 149 25
## VT 110 17
##
## OTHER REAL PROPERTY ACTIONS OTHER STATUTORY ACTIONS
## CT 74 316
## MA 296 803
## ME 25 68
## NH 52 138
## RI 66 111
## VT 10 46
##
## PERSONAL INJURY -PRODUCT LIABILITY PROPERTY DAMAGE -PRODUCT LIABILTY
## CT 240 69
## MA 2044 90
## ME 78 18
## NH 255 16
## RI 347 15
## VT 24 14
##
## RENT, LEASE, EJECTMENT SECURITIES, COMMODITIES, EXCHANGE
## CT 10 109
## MA 28 270
## ME 1 2
## NH 8 18
## RI 8 4
## VT 1 9
##
## STOCKHOLDER'S SUITS TORT PRODUCT LIABILITY TORTS TO LAND TRADEMARK
## CT 31 30 15 209
## MA 87 162 21 450
## ME 0 1 5 33
## NH 4 28 11 27
## RI 12 21 10 42
## VT 7 4 11 27
##
## TRUTH IN LENDING
## CT 36
## MA 38
## ME 3
## NH 3
## RI 11
## VT 1
Revise the barchart code below to find the answer.
The district that handles the largest number of civil cases is MA
ggplot(civilCases, aes(x = DISTRICT)) +
geom_bar()
Map district to the x-axis and nature of suit to color.
There is alot of variables which makes it hard to make a chart
ggplot(civilCases, aes(x = DISTRICT, fill = nature_of_suit)) +
geom_bar(position = "fill") #position = "fill", to have a stacked barchart