Hack Ebola

References

Load packages

library(magrittr)
library(gpairs)
library(ggplot2)
library(ggmap)
library(directlabels)

Load data

load(file = "dataList.RData")

Summary of the main dataset (2.csv)

## Extract main dataset
maindat <- dataList[[2]]
## Fix date
maindat$date <- maindat$date + as.Date("1899-12-31")
##
summary(maindat)
##       pos        country_code         country             localite                category        value       
##  Min.   :    2   GN:10258     Guinea      :10258   National   : 1697   Cases          :4083   Min.   :   0.0  
##  1st Qu.: 5494   LR: 5786     Liberia     : 5786   Conakry    :  478   Confirmed cases:3612   1st Qu.:   1.0  
##  Median :10987   ML:   84     Mali        :   84   Gueckedou  :  478   Deaths         :4049   Median :   6.0  
##  Mean   :10987   NG:  364     Nigeria     :  364   Kissidougou:  478   New cases      :3577   Mean   : 113.5  
##  3rd Qu.:16480   SL: 5290     Senegal     :  189   Macenta    :  478   Probable cases :3583   3rd Qu.:  39.0  
##  Max.   :21972   SN:  189     Sierra Leone: 5290   Telimele   :  457   Suspected cases:3067   Max.   :7009.0  
##                                                    (Other)    :17905                          NA's   :299     
##       date                             sources                    link           sdr_id              sdr_name    
##  Min.   :2014-03-25   Gvt                  :19269   Sitrep 206 07Nov:  312   Min.   :     0              : 2211  
##  1st Qu.:2014-09-12   gvt                  : 1338                   :  184   1st Qu.:    15   Gueckedou  :  493  
##  Median :2014-10-02   WHO                  :  917   Sitrep 207 08Nov:  156   Median :    40   Conakry    :  487  
##  Mean   :2014-09-30   Ministere de la Sante:  224   Sitrep 208 09Nov:  156   Mean   :  7543   Kissidougou:  487  
##  3rd Qu.:2014-10-25   GVT                  :  150   Sitrep 209 10Nov:  156   3rd Qu.:  7848   Macenta    :  487  
##  Max.   :2014-11-16   UNICEF               :   46   Sitrep 210 11Nov:  156   Max.   :157804   Dabola     :  486  
##                       (Other)              :   27   (Other)         :20851                    (Other)    :17320  
##  sdr_level   
##      : 2211  
##  ADM1: 7690  
##  ADM2:12048  
##  ADM3:    2  
##  PPL :   20  
##              
## 
##
head(maindat)
##   pos country_code country                                     localite category value       date sources
## 1   2           GN  Guinea Guekedou, Macenta, Nzerekore and Kissidougou    Cases    86 2014-03-25     WHO
## 2   3           GN  Guinea Guekedou, Macenta, Nzerekore and Kissidougou   Deaths    59 2014-03-25     WHO
## 3   4           GN  Guinea          ( Guekedou, Macenta and Kissidougou    Cases    86 2014-03-26     WHO
## 4   5           GN  Guinea          ( Guekedou, Macenta and Kissidougou   Deaths    60 2014-03-26     WHO
## 5   6           GN  Guinea          ( Guekedou, Macenta and Kissidougou    Cases    86 2014-03-27     WHO
## 6   7           GN  Guinea         ( Guekedou, Macenta and Kissidougou)   Deaths    62 2014-03-27     WHO
##                                                                                                  link sdr_id
## 1                http://reliefweb.int/sites/reliefweb.int/files/resources/guinea_ebola_20140324-2.pdf      8
## 2                http://reliefweb.int/sites/reliefweb.int/files/resources/guinea_ebola_20140324-2.pdf      8
## 3                  http://reliefweb.int/sites/reliefweb.int/files/resources/guinea_ebola_20140325.pdf     38
## 4                  http://reliefweb.int/sites/reliefweb.int/files/resources/guinea_ebola_20140325.pdf     38
## 5 http://reliefweb.int/report/guinea/fi-vre-h-morragique-virus-ebola-en-guin-e-mise-jour-26-mars-2014     38
## 6 http://reliefweb.int/report/guinea/fi-vre-h-morragique-virus-ebola-en-guin-e-mise-jour-26-mars-2014     38
##    sdr_name sdr_level
## 1 Nzerekore      ADM1
## 2 Nzerekore      ADM1
## 3 Gueckedou      ADM2
## 4 Gueckedou      ADM2
## 5 Gueckedou      ADM2
## 6 Gueckedou      ADM2
## Number of records by Countries
maindat %>% extract("country") %>% table
## maindat %>% extract("country")
##       Guinea      Liberia         Mali      Nigeria      Senegal Sierra Leone 
##        10258         5786           84          364          189         5290
## Number of records by Regions and Countries
xtabs( ~ sdr_name + country, maindat)
##                     country
## sdr_name             Guinea Liberia Mali Nigeria Senegal Sierra Leone
##                         991     471   22     141     167          419
##   Beyla                 268       0    0       0       0            0
##   Bo                      0       0    0       0       0          352
##   Boffa                 457       0    0       0       0            0
##   Boke                  226       0    0       0       0            0
##   Bombali                 0       0    0       0       0          350
##   Bomi                    0     365    0       0       0            0
##   Bong                    0     380    0       0       0            0
##   Bonthe                  0       0    0       0       0          348
##   Commune 2               0       0   22       0       0            0
##   Commune 5               0       0   18       0       0            0
##   Conakry               487       0    0       0       0            0
##   Coyah                 388       0    0       0       0            0
##   Dabola                486       0    0       0       0            0
##   Dakar                   0       0    0       0       2            0
##   Dalaba                328       0    0       0       0            0
##   Dinguiraye            484       0    0       0       0            0
##   Dubreka               441       0    0       0       0            0
##   Faranah               214       0    0       0       0            0
##   Freetown                0       0    0       0       0            2
##   Gbarpolu                0     334    0       0       0            0
##   Grand Bassa             0     365    0       0       0            0
##   Grand Cape Mount        0     373    0       0       0            0
##   Grand Gedeh             0     367    0       0       0            0
##   Grand Kru               0     237    0       0       0            0
##   Gueckedou             493       0    0       0       0            0
##   Kailahun                0       0    0       0       0          363
##   Kambia                  0       0    0       0       0          354
##   Kankan                204       0    0       0       0            0
##   Kayes                   0       0   22       0       0            0
##   Kenema                  0       0    0       0       0          356
##   Kerouane              393       0    0       0       0            0
##   Kindia                292       0    0       0       0            0
##   Kissidougou           487       0    0       0       0            0
##   Koinadugu               0       0    0       0       0          352
##   Kono                    0       0    0       0       0          350
##   Kouroussa             451       0    0       0       0            0
##   Lagos                   0       0    0     130       0            0
##   Lofa                    0     388    0       0       0            0
##   Lola                  250       0    0       0       0            0
##   Macenta               487       0    0       0       0            0
##   Mamou                 208       0    0       0       0            0
##   Margibi                 0     388    0       0       0            0
##   Maryland                0     273    0       0       0            0
##   Mbaw                    0       0    0       0      20            0
##   Montserrado             0     384    0       0       0            0
##   Moyamba                 0       0    0       0       0          352
##   Nimba                   0     388    0       0       0            0
##   Nzerekore             443       0    0       0       0            0
##   Pita                  441       0    0       0       0            0
##   Port Loko               0       0    0       0       0          354
##   Pujehun                 0       0    0       0       0          348
##   River Gee               0     352    0       0       0            0
##   Rivercess               0     365    0       0       0            0
##   Rivers                  0       0    0      93       0            0
##   Siguiri               441       0    0       0       0            0
##   Sinoe                   0     356    0       0       0            0
##   Telimele              457       0    0       0       0            0
##   Tonkolili               0       0    0       0       0          348
##   Western Area            0       0    0       0       0           54
##   Western Area Rural      0       0    0       0       0          288
##   Western Area Urban      0       0    0       0       0          300
##   Yomou                 441       0    0       0       0            0
## 
cat("### Types of cases by regions\n")
## ### Types of cases by regions
xtabs( ~ sdr_name + category, data = subset(maindat, sdr_level == "ADM2"))
##                     category
## sdr_name             Cases Confirmed cases Deaths New cases Probable cases Suspected cases
##                          0               0      0         0              0               0
##   Beyla                 44              46     44        46             44              44
##   Bo                    63              58     63        56             61              51
##   Boffa                 84              75     84        74             76              64
##   Boke                   0               0      0         0              0               0
##   Bombali               62              58     62        56             61              51
##   Bomi                   0               0      0         0              0               0
##   Bong                   0               0      0         0              0               0
##   Bonthe                61              58     61        56             61              51
##   Commune 2              5               5      5         5              1               1
##   Commune 5              4               4      4         4              1               1
##   Conakry                0               0      0         0              0               0
##   Coyah                 64              66     64        66             64              64
##   Dabola                99              75     98        74             76              64
##   Dakar                  0               0      0         0              0               0
##   Dalaba                54              56     54        56             54              54
##   Dinguiraye            98              75     97        74             76              64
##   Dubreka               76              75     76        74             76              64
##   Faranah                0               0      0         0              0               0
##   Freetown               0               0      0         0              0               0
##   Gbarpolu               0               0      0         0              0               0
##   Grand Bassa            0               0      0         0              0               0
##   Grand Cape Mount       0               0      0         0              0               0
##   Grand Gedeh            0               0      0         0              0               0
##   Grand Kru              0               0      0         0              0               0
##   Gueckedou            102              75    101        74             76              65
##   Kailahun              67              60     68        56             61              51
##   Kambia                64              58     64        56             61              51
##   Kankan                 0               0      0         0              0               0
##   Kayes                  0               0      0         0              0               0
##   Kenema                65              58     65        56             61              51
##   Kerouane              65              67     65        67             65              64
##   Kindia                 0               0      0         0              0               0
##   Kissidougou           99              75     98        74             76              65
##   Koinadugu             63              58     63        56             61              51
##   Kono                  62              58     62        56             61              51
##   Kouroussa             81              75     81        74             76              64
##   Lagos                  0               0      0         0              0               0
##   Lofa                   0               0      0         0              0               0
##   Lola                  41              43     41        43             41              41
##   Macenta               99              75     98        74             76              65
##   Mamou                  0               0      0         0              0               0
##   Margibi                0               0      0         0              0               0
##   Maryland               0               0      0         0              0               0
##   Mbaw                   0               0      0         0              0               0
##   Montserrado            0               0      0         0              0               0
##   Moyamba               63              58     63        56             61              51
##   Nimba                  0               0      0         0              0               0
##   Nzerekore              0               0      0         0              0               0
##   Pita                  76              75     76        74             76              64
##   Port Loko             64              58     64        56             61              51
##   Pujehun               61              58     61        56             61              51
##   River Gee              0               0      0         0              0               0
##   Rivercess              0               0      0         0              0               0
##   Rivers                 0               0      0         0              0               0
##   Siguiri               76              75     76        74             76              64
##   Sinoe                  0               0      0         0              0               0
##   Telimele              84              75     84        74             76              64
##   Tonkolili             61              58     61        56             61              51
##   Western Area           0               0      0         0              0               0
##   Western Area Rural    51              48     51        46             51              41
##   Western Area Urban    53              50     53        48             53              43
##   Yomou                 76              75     76        74             76              64

Plot

plot1 <- ggplot(data = subset(maindat, sdr_level == "ADM2"),
       mapping = aes(x = date, y = value, group = sdr_name, color = sdr_name)) +
           layer(geom = "line") +
           guides(color = guide_legend(ncol = 2)) +
           facet_wrap( ~ category, ncol = 2) + 
           theme_bw() + theme(legend.key = element_blank())
plot1

plot of chunk unnamed-chunk-5

Geocodes

geodat <- dataList[[1]]

ggplot(data = geodat, mapping = aes(x = gn_longitude, y = gn_latitude, label = name)) +
    layer(geom = "point") + 
    ## layer(geom = "text", size = 3) +
    theme_bw() + theme(legend.key = element_blank())

plot of chunk unnamed-chunk-6

Plot areas where cases are reported

## Extract geocode data for sdr_name existing in maindat
geodatInclded <- geodat[geodat$name %in% maindat$sdr_name, ]

## ggmap
qmplot(x = gn_longitude, y = gn_latitude, data = geodatInclded, source = "google")
## Warning: bounding box given to google - spatial extent only approximate.

plot of chunk unnamed-chunk-7