Let \(s_{200}\) be the number of heads that turn up in 200 tosses of a fair coin. Estimate:

  1. \(P(S_{200} = 100)\)
  2. \(P(S_{200} = 90)\)
  3. \(P(S_{200} = 80)\)
# flips in sequence and number of sequences to run
num.flips <- 200
num.seq <- 1000000

trials <-  colSums(matrix(sample(c(0,1), num.flips*num.seq,replace=T),nrow=num.flips,ncol=num.seq))

answer <- (c(sum(prices = 100),sum(prices = 90),sum(prices = 80)) / num.seq)*100

Answer: The probabilities of \(P(S_{200} = 100)\), \(P(S_{200} = 90)\), and \(P(S_{200} = 80)\) are 0.01%, 0.009% and 0.008%, respectively.