Variable categórica/discreta: características, algo acotado (edad)

Variable continua: de tiempo, velocidad, notas

VERBO:

group:by –> cambia dominio de acción de los verbos

es útil para comportamiento a nivel de grupos

puede agrupar valores por grupos (paises por continente)

primero hay que crear una tabla.

chile <- asignación de funcion (nombre a la izq)

library(ggplot2)
library(dplyr)
library(titanic)
df <- dplyr::bind_rows(titanic::titanic_train, 
                       titanic_test)
glimpse(df)
Observations: 1,309
Variables: 12
$ PassengerId <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
$ Survived    <int> 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1,...
$ Pclass      <int> 3, 1, 3, 1, 3, 3, 1, 3, 3, 2, 3, 1, 3, 3, 3, 2, 3, 2, 3, 3, 2, 2, 3, 1,...
$ Name        <chr> "Braund, Mr. Owen Harris", "Cumings, Mrs. John Bradley (Florence Briggs...
$ Sex         <chr> "male", "female", "female", "female", "male", "male", "male", "male", "...
$ Age         <dbl> 22, 38, 26, 35, 35, NA, 54, 2, 27, 14, 4, 58, 20, 39, 14, 55, 2, NA, 31...
$ SibSp       <int> 1, 1, 0, 1, 0, 0, 0, 3, 0, 1, 1, 0, 0, 1, 0, 0, 4, 0, 1, 0, 0, 0, 0, 0,...
$ Parch       <int> 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0, 0, 5, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,...
$ Ticket      <chr> "A/5 21171", "PC 17599", "STON/O2. 3101282", "113803", "373450", "33087...
$ Fare        <dbl> 7.2500, 71.2833, 7.9250, 53.1000, 8.0500, 8.4583, 51.8625, 21.0750, 11....
$ Cabin       <chr> "", "C85", "", "C123", "", "", "E46", "", "", "", "G6", "C103", "", "",...
$ Embarked    <chr> "S", "C", "S", "S", "S", "Q", "S", "S", "S", "C", "S", "S", "S", "S", "...
ggplot(data = df) + 
geom_bar(mapping = aes (x = Sex), fill = "steelblue", colour = "black")+
  theme_bw() +  
  ggtitle("Para observar la variación de una variable categórica: geom_bar")

count (df, Sex)

%>% (ctrl + shif + m)

df %>% 
  select(Fare)
ggplot (data = df) +
geom_point (mapping = aes (x = Fare, y = 0)) +
theme_bw ()

df %>% 
  count(Fare) %>% 
  ggplot () +
  geom_point(mapping = aes (x = Fare, y = 0, size = n),
             alpha = 1/ 5,
             shape = 21,
             fill = "red",
             colour = "black") +
  theme_bw()

MUTATE: crea una variable en base a la data rectángular que tengo.

ggplot(data = df) +
  geom_histogram(mapping = aes (x = Fare), binwidth = 10, fill = "orange",
                                 colour = "black") + 
                   theme_bw () +
                   ggtitle ("Para obrservar la variación de una variable continua")

NA

para bajar y tener más lineas

LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpWYXJpYWJsZSBjYXRlZ/NyaWNhL2Rpc2NyZXRhOiBjYXJhY3Rlcu1zdGljYXMsIGFsZ28gYWNvdGFkbyAoZWRhZCkNCg0KVmFyaWFibGUgY29udGludWE6IGRlIHRpZW1wbywgdmVsb2NpZGFkLCBub3Rhcw0KDQojIyMjIyNWRVJCTzogDQoNCmdyb3VwOmJ5IC0tPiBjYW1iaWEgZG9taW5pbyBkZSBhY2Np824gZGUgbG9zIHZlcmJvcw0KDQplcyD6dGlsIHBhcmEgY29tcG9ydGFtaWVudG8gYSBuaXZlbCBkZSBncnVwb3MNCg0KcHVlZGUgYWdydXBhciB2YWxvcmVzIHBvciBncnVwb3MgKHBhaXNlcyBwb3IgY29udGluZW50ZSkNCg0KcHJpbWVybyBoYXkgcXVlIGNyZWFyIHVuYSB0YWJsYS4NCg0KY2hpbGUgPC0gYXNpZ25hY2nzbiBkZSBmdW5jaW9uIChub21icmUgYSBsYSBpenEpDQoNCg0KDQpgYGB7cn0NCg0KbGlicmFyeShnZ3Bsb3QyKQ0KbGlicmFyeShkcGx5cikNCmxpYnJhcnkodGl0YW5pYykNCg0KZGYgPC0gZHBseXI6OmJpbmRfcm93cyh0aXRhbmljOjp0aXRhbmljX3RyYWluLCANCiAgICAgICAgICAgICAgICAgICAgICAgdGl0YW5pY190ZXN0KQ0KDQpnbGltcHNlKGRmKQ0KDQpgYGANCg0KDQpgYGB7cn0NCg0KZ2dwbG90KGRhdGEgPSBkZikgKyANCmdlb21fYmFyKG1hcHBpbmcgPSBhZXMgKHggPSBTZXgpLCBmaWxsID0gInN0ZWVsYmx1ZSIsIGNvbG91ciA9ICJibGFjayIpKw0KICB0aGVtZV9idygpICsgIA0KICBnZ3RpdGxlKCJQYXJhIG9ic2VydmFyIGxhIHZhcmlhY2nzbiBkZSB1bmEgdmFyaWFibGUgY2F0ZWfzcmljYTogZ2VvbV9iYXIiKQ0KDQoNCmBgYA0KDQoNCg0KYGBge3J9DQoNCmNvdW50IChkZiwgU2V4KQ0KDQpgYGANCg0KJT4lIChjdHJsICsgc2hpZiArIG0pIA0KDQoNCmBgYHtyfQ0KDQpkZiAlPiUgDQogIHNlbGVjdChGYXJlKQ0KDQpgYGANCg0KDQpgYGB7cn0NCg0KZ2dwbG90IChkYXRhID0gZGYpICsNCmdlb21fcG9pbnQgKG1hcHBpbmcgPSBhZXMgKHggPSBGYXJlLCB5ID0gMCkpICsNCnRoZW1lX2J3ICgpDQoNCmBgYA0KDQpgYGB7cn0NCmRmICU+JSANCiAgY291bnQoRmFyZSkgJT4lIA0KICBnZ3Bsb3QgKCkgKw0KICBnZW9tX3BvaW50KG1hcHBpbmcgPSBhZXMgKHggPSBGYXJlLCB5ID0gMCwgc2l6ZSA9IG4pLA0KICAgICAgICAgICAgIGFscGhhID0gMS8gNSwNCiAgICAgICAgICAgICBzaGFwZSA9IDIxLA0KICAgICAgICAgICAgIGZpbGwgPSAicmVkIiwNCiAgICAgICAgICAgICBjb2xvdXIgPSAiYmxhY2siKSArDQogIHRoZW1lX2J3KCkNCg0KYGBgDQoNCg0KDQpNVVRBVEU6IGNyZWEgdW5hIHZhcmlhYmxlIGVuIGJhc2UgYSBsYSBkYXRhIHJlY3Thbmd1bGFyIHF1ZSB0ZW5nby4gDQoNCmBgYHtyfQ0KZ2dwbG90KGRhdGEgPSBkZikgKw0KICBnZW9tX2hpc3RvZ3JhbShtYXBwaW5nID0gYWVzICh4ID0gRmFyZSksIGJpbndpZHRoID0gMTAsIGZpbGwgPSAib3JhbmdlIiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNvbG91ciA9ICJibGFjayIpICsgDQogICAgICAgICAgICAgICAgICAgdGhlbWVfYncgKCkgKw0KICAgICAgICAgICAgICAgICAgIGdndGl0bGUgKCJQYXJhIG9icnNlcnZhciBsYSB2YXJpYWNp824gZGUgdW5hIHZhcmlhYmxlIGNvbnRpbnVhIikNCiAgICAgICAgICAgICAgICAgDQpgYGANCg0KDQpcbiBwYXJhIGJhamFyIHkgdGVuZXIgbeFzIGxpbmVhcw0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQo=