Statistical analysis was carried out in R, version 3.4.3, using packages lavaan, lavaan.survey, semPlot, dplyr, psych, ICC, Amelia, BaylorEdPsych, haven, survey, semTools, knitr, kableExtra, and gplots.
## [1] 6196
For full dataset
Missing data are marked in red. Ordered by the ammount of missing data.
After discarding subjects with more than a third missing item values
As can be seen here, after discarding blank rows, there is very little missing data
## [1] 6196
##
## 1 2
## 3031 3165
Gender == 1 (Girls) represents 48.92% of the sample.
Mean
## [1] 11.82297
SD
## [1] 0.4052831
There is very little missing data. Regardless of what imputation procedure is applied, it won’t have much effect.
## [1] "0.581%"
Practically all the items are right skewed. Children choose answer option 4 (“Strongly disagree”) infrequently - usually some ~5-6%.
| vars | n | mean | sd | skew | kurtosis | se | |
|---|---|---|---|---|---|---|---|
| C6_B1A | 1 | 6196 | 2.46 | 0.73 | -0.24 | -0.35 | 0.01 |
| C6_B1B | 2 | 6196 | 2.03 | 0.83 | 0.24 | -0.85 | 0.01 |
| C6_B1C | 3 | 6196 | 1.66 | 0.79 | 0.94 | 0.02 | 0.01 |
| C6_B1D | 4 | 6196 | 2.05 | 0.83 | 0.29 | -0.69 | 0.01 |
| C6_B1E | 5 | 6196 | 2.39 | 0.78 | -0.10 | -0.49 | 0.01 |
| C6_B1F | 6 | 6196 | 2.09 | 0.85 | 0.34 | -0.61 | 0.01 |
| C6_B1G | 7 | 6196 | 1.94 | 0.81 | 0.40 | -0.66 | 0.01 |
| C6_B1H | 8 | 6196 | 1.83 | 0.92 | 0.81 | -0.39 | 0.01 |
| C6_B1I | 9 | 6196 | 2.30 | 0.80 | 0.04 | -0.56 | 0.01 |
| C6_B1J | 10 | 6196 | 2.10 | 0.81 | 0.22 | -0.67 | 0.01 |
| C6_B1K | 11 | 6196 | 1.79 | 0.78 | 0.60 | -0.47 | 0.01 |
| C6_B1L | 12 | 6196 | 1.51 | 0.74 | 1.34 | 1.02 | 0.01 |
| C6_B1M | 13 | 6196 | 1.80 | 0.76 | 0.55 | -0.45 | 0.01 |
| C6_B1N | 14 | 6196 | 1.86 | 0.75 | 0.40 | -0.66 | 0.01 |
| C6_B1O | 15 | 6196 | 1.71 | 0.76 | 0.72 | -0.32 | 0.01 |
| C6_B2A | 16 | 6196 | 2.20 | 0.92 | 0.31 | -0.77 | 0.01 |
| C6_B2B | 17 | 6196 | 1.95 | 0.71 | 0.41 | 0.07 | 0.01 |
| C6_B2C | 18 | 6196 | 2.19 | 0.92 | 0.32 | -0.75 | 0.01 |
| C6_B2D | 19 | 6196 | 2.20 | 0.90 | 0.32 | -0.69 | 0.01 |
| C6_B2E | 20 | 6196 | 2.16 | 1.03 | 0.41 | -1.02 | 0.01 |
| C6_B2F | 21 | 6196 | 1.83 | 0.67 | 0.50 | 0.33 | 0.01 |
| C6_B2G | 22 | 6196 | 2.22 | 0.80 | 0.30 | -0.32 | 0.01 |
| C6_B2H | 23 | 6196 | 2.09 | 1.01 | 0.51 | -0.86 | 0.01 |
| C6_B2I | 24 | 6196 | 2.01 | 0.84 | 0.54 | -0.31 | 0.01 |
| C6_B2J | 25 | 6196 | 1.91 | 0.85 | 0.66 | -0.25 | 0.01 |
| C6_B2K | 26 | 6196 | 2.33 | 1.01 | 0.17 | -1.09 | 0.01 |
| C6_B2L | 27 | 6196 | 2.24 | 1.08 | 0.30 | -1.21 | 0.01 |
| C6_B2M | 28 | 6196 | 1.51 | 0.75 | 1.44 | 1.47 | 0.01 |
| C6_B2N | 29 | 6196 | 2.09 | 1.07 | 0.51 | -1.04 | 0.01 |
| C6_B2O | 30 | 6196 | 2.04 | 0.91 | 0.50 | -0.63 | 0.01 |
| C6_B2P | 31 | 6196 | 2.07 | 0.74 | 0.36 | -0.05 | 0.01 |
| C6_B2Q | 32 | 6196 | 1.82 | 0.85 | 0.83 | -0.01 | 0.01 |
| C6_B2R | 33 | 6196 | 2.18 | 0.82 | 0.33 | -0.38 | 0.01 |
| C6_B2S | 34 | 6196 | 2.26 | 0.87 | 0.23 | -0.62 | 0.01 |
As obvious from the heatmap, the items loaded by domain-general factors of Motivation (INSMOT), Learning Strategies (EFFPER), and Self-Belief (SELFEF, CEXP) tend to correlate stronger among each other than with subject-specific factors. Correlations between domain-specific (Math, Language; lower right quadrant) are as expected. strong correlations between Math and Language constructs, respectively, but weak cross-relationships.
Item C6_B2D (“Při hodinách českého jazyka si nevím rady”) behaves awkwardly (see the white-blue “cross”). No or negative correlations with math items, which is okay, but very low correlations with other “language” items. Please note that this item was the only one inversely scaled (which probably wasn’t the best idea as it may have induced response bias making the instroment seem to work better as it really would).
Matrix can be scrolled in every direction
| C6_B1A | C6_B1B | C6_B1C | C6_B1D | C6_B1E | C6_B1F | C6_B1G | C6_B1H | C6_B1I | C6_B1J | C6_B1K | C6_B1L | C6_B1M | C6_B1N | C6_B1O | C6_B2A | C6_B2B | C6_B2C | C6_B2D | C6_B2E | C6_B2F | C6_B2G | C6_B2H | C6_B2I | C6_B2J | C6_B2K | C6_B2L | C6_B2M | C6_B2N | C6_B2O | C6_B2P | C6_B2Q | C6_B2R | C6_B2S | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| C6_B1A | 1 | |||||||||||||||||||||||||||||||||
| C6_B1B | 0.54 | 1 | ||||||||||||||||||||||||||||||||
| C6_B1C | 0.36 | 0.51 | 1 | |||||||||||||||||||||||||||||||
| C6_B1D | 0.3 | 0.45 | 0.52 | 1 | ||||||||||||||||||||||||||||||
| C6_B1E | 0.68 | 0.58 | 0.39 | 0.38 | 1 | |||||||||||||||||||||||||||||
| C6_B1F | 0.4 | 0.49 | 0.4 | 0.34 | 0.45 | 1 | ||||||||||||||||||||||||||||
| C6_B1G | 0.43 | 0.54 | 0.52 | 0.52 | 0.5 | 0.44 | 1 | |||||||||||||||||||||||||||
| C6_B1H | 0.22 | 0.27 | 0.48 | 0.32 | 0.28 | 0.27 | 0.28 | 1 | ||||||||||||||||||||||||||
| C6_B1I | 0.42 | 0.42 | 0.35 | 0.37 | 0.46 | 0.47 | 0.42 | 0.29 | 1 | |||||||||||||||||||||||||
| C6_B1J | 0.51 | 0.49 | 0.38 | 0.32 | 0.54 | 0.48 | 0.42 | 0.29 | 0.46 | 1 | ||||||||||||||||||||||||
| C6_B1K | 0.34 | 0.5 | 0.55 | 0.58 | 0.41 | 0.39 | 0.58 | 0.33 | 0.41 | 0.44 | 1 | |||||||||||||||||||||||
| C6_B1L | 0.36 | 0.44 | 0.72 | 0.47 | 0.39 | 0.4 | 0.51 | 0.63 | 0.37 | 0.43 | 0.58 | 1 | ||||||||||||||||||||||
| C6_B1M | 0.43 | 0.59 | 0.47 | 0.48 | 0.5 | 0.53 | 0.55 | 0.33 | 0.48 | 0.52 | 0.56 | 0.53 | 1 | |||||||||||||||||||||
| C6_B1N | 0.51 | 0.53 | 0.44 | 0.39 | 0.57 | 0.48 | 0.51 | 0.32 | 0.45 | 0.57 | 0.52 | 0.49 | 0.64 | 1 | ||||||||||||||||||||
| C6_B1O | 0.32 | 0.4 | 0.48 | 0.58 | 0.36 | 0.34 | 0.51 | 0.31 | 0.35 | 0.35 | 0.59 | 0.51 | 0.5 | 0.48 | 1 | |||||||||||||||||||
| C6_B2A | 0.28 | 0.23 | 0.22 | 0.27 | 0.3 | 0.21 | 0.29 | 0.18 | 0.28 | 0.25 | 0.27 | 0.26 | 0.27 | 0.26 | 0.3 | 1 | ||||||||||||||||||
| C6_B2B | 0.51 | 0.49 | 0.36 | 0.3 | 0.51 | 0.39 | 0.42 | 0.26 | 0.39 | 0.49 | 0.39 | 0.39 | 0.47 | 0.53 | 0.37 | 0.33 | 1 | |||||||||||||||||
| C6_B2C | 0.27 | 0.21 | 0.24 | 0.18 | 0.29 | 0.22 | 0.22 | 0.31 | 0.25 | 0.29 | 0.24 | 0.28 | 0.24 | 0.26 | 0.24 | 0.3 | 0.32 | 1 | ||||||||||||||||
| C6_B2D | 0.24 | 0.24 | 0.18 | 0.13 | 0.17 | 0.17 | 0.2 | 0 | 0.1 | 0.21 | 0.18 | 0.17 | 0.21 | 0.24 | 0.16 | -0.1 | 0.21 | 0 | 1 | |||||||||||||||
| C6_B2E | 0.24 | 0.24 | 0.23 | 0.23 | 0.22 | 0.21 | 0.25 | 0.05 | 0.16 | 0.2 | 0.26 | 0.24 | 0.26 | 0.22 | 0.22 | 0.18 | 0.26 | 0.12 | 0.14 | 1 | ||||||||||||||
| C6_B2F | 0.48 | 0.47 | 0.39 | 0.32 | 0.5 | 0.42 | 0.42 | 0.26 | 0.39 | 0.51 | 0.43 | 0.41 | 0.49 | 0.53 | 0.39 | 0.31 | 0.7 | 0.32 | 0.21 | 0.28 | 1 | |||||||||||||
| C6_B2G | 0.39 | 0.38 | 0.32 | 0.27 | 0.36 | 0.33 | 0.35 | 0.17 | 0.28 | 0.38 | 0.35 | 0.33 | 0.38 | 0.42 | 0.29 | 0.13 | 0.48 | 0.19 | 0.55 | 0.28 | 0.47 | 1 | ||||||||||||
| C6_B2H | 0.32 | 0.27 | 0.25 | 0.28 | 0.36 | 0.23 | 0.29 | 0.15 | 0.29 | 0.29 | 0.28 | 0.24 | 0.27 | 0.31 | 0.29 | 0.55 | 0.35 | 0.25 | -0.1 | 0.14 | 0.35 | 0.09 | 1 | |||||||||||
| C6_B2I | 0.28 | 0.31 | 0.37 | 0.32 | 0.31 | 0.3 | 0.33 | 0.36 | 0.34 | 0.33 | 0.37 | 0.4 | 0.38 | 0.35 | 0.39 | 0.34 | 0.36 | 0.68 | 0.05 | 0.19 | 0.39 | 0.26 | 0.36 | 1 | ||||||||||
| C6_B2J | 0.42 | 0.32 | 0.26 | 0.2 | 0.43 | 0.31 | 0.32 | 0.19 | 0.29 | 0.43 | 0.28 | 0.27 | 0.32 | 0.38 | 0.26 | 0.38 | 0.45 | 0.27 | 0.03 | 0.13 | 0.46 | 0.19 | 0.64 | 0.31 | 1 | |||||||||
| C6_B2K | 0.23 | 0.23 | 0.23 | 0.24 | 0.21 | 0.2 | 0.25 | 0.03 | 0.14 | 0.16 | 0.26 | 0.22 | 0.25 | 0.21 | 0.22 | 0.15 | 0.25 | 0.1 | 0.14 | 0.81 | 0.26 | 0.26 | 0.11 | 0.17 | 0.12 | 1 | ||||||||
| C6_B2L | 0.31 | 0.23 | 0.19 | 0.2 | 0.33 | 0.19 | 0.24 | 0.14 | 0.25 | 0.27 | 0.22 | 0.19 | 0.22 | 0.26 | 0.23 | 0.51 | 0.32 | 0.23 | -0.12 | 0.09 | 0.3 | 0.04 | 0.86 | 0.3 | 0.69 | 0.1 | 1 | |||||||
| C6_B2M | 0.17 | 0.16 | 0.23 | 0.18 | 0.19 | 0.17 | 0.19 | 0.32 | 0.17 | 0.22 | 0.25 | 0.32 | 0.24 | 0.22 | 0.25 | 0.24 | 0.21 | 0.54 | 0 | 0.14 | 0.24 | 0.15 | 0.2 | 0.53 | 0.18 | 0.12 | 0.18 | 1 | ||||||
| C6_B2N | 0.2 | 0.2 | 0.21 | 0.21 | 0.18 | 0.19 | 0.23 | 0.07 | 0.15 | 0.16 | 0.25 | 0.23 | 0.25 | 0.2 | 0.21 | 0.28 | 0.23 | 0.13 | 0.12 | 0.73 | 0.25 | 0.24 | 0.1 | 0.2 | 0.09 | 0.74 | 0.06 | 0.21 | 1 | |||||
| C6_B2O | 0.4 | 0.3 | 0.24 | 0.19 | 0.42 | 0.27 | 0.29 | 0.2 | 0.31 | 0.4 | 0.26 | 0.25 | 0.29 | 0.36 | 0.23 | 0.45 | 0.42 | 0.27 | -0.02 | 0.08 | 0.42 | 0.16 | 0.7 | 0.33 | 0.76 | 0.06 | 0.73 | 0.21 | 0.06 | 1 | ||||
| C6_B2P | 0.5 | 0.48 | 0.36 | 0.3 | 0.5 | 0.43 | 0.42 | 0.23 | 0.37 | 0.56 | 0.38 | 0.38 | 0.45 | 0.5 | 0.35 | 0.26 | 0.61 | 0.29 | 0.26 | 0.26 | 0.66 | 0.48 | 0.31 | 0.36 | 0.53 | 0.27 | 0.31 | 0.2 | 0.23 | 0.46 | 1 | |||
| C6_B2Q | 0.28 | 0.25 | 0.29 | 0.29 | 0.33 | 0.21 | 0.31 | 0.21 | 0.27 | 0.28 | 0.3 | 0.31 | 0.28 | 0.29 | 0.33 | 0.47 | 0.32 | 0.25 | -0.05 | 0.16 | 0.31 | 0.13 | 0.7 | 0.36 | 0.52 | 0.13 | 0.69 | 0.29 | 0.15 | 0.58 | 0.33 | 1 | ||
| C6_B2R | 0.34 | 0.35 | 0.3 | 0.23 | 0.3 | 0.33 | 0.33 | 0.13 | 0.26 | 0.39 | 0.32 | 0.31 | 0.34 | 0.39 | 0.26 | 0.08 | 0.42 | 0.17 | 0.53 | 0.28 | 0.45 | 0.71 | 0.03 | 0.22 | 0.19 | 0.27 | -0.01 | 0.13 | 0.24 | 0.15 | 0.54 | 0.1 | 1 | |
| C6_B2S | 0.32 | 0.34 | 0.31 | 0.3 | 0.34 | 0.32 | 0.3 | 0.32 | 0.36 | 0.34 | 0.34 | 0.34 | 0.39 | 0.36 | 0.32 | 0.31 | 0.4 | 0.57 | 0.09 | 0.18 | 0.4 | 0.32 | 0.27 | 0.66 | 0.25 | 0.18 | 0.22 | 0.47 | 0.21 | 0.28 | 0.38 | 0.29 | 0.3 | 1 |
Mean inter-item polychoric correlation
## [1] 0.3220143
10-factor structure, all factors intercorrelated.
There was a need to include an error covariance between items B2L and B2H; “Matematika je pro mě jedním z nejlepších předmětů” and “Nechtěl/a bych nechat matematiky, protože mě matematika baví.” Superficially, the items’ content validity is pretty much alike, but they load on different factors (INTMAT, SCMATH). This error covariance had such a great impact on model fit, that without it, the model refused to converge under any reasonable estimator.
Some very rough guide to model fit interpretation:
The model was estimated using the Weighted Least Squares Means- and Variance-adjusted fit function while explicitly modeling the ordered nature of the indicators. The given type of estimator (1) is robust with respect to the assumption of normal distribution of errors (especially kurtosis; not likely in Likert scales), (2) induces less bias in parameter estimation and model fit test of misspecified models, and (3) the proportion of Type I errors in assessing correctly specified models with the given data is way more similar to the apriori defined nominal α value, as compared to, e.g., the method of maximum likelihood (Beauducel, Herzberg, 2009).
The model failed the model test. That means, that we can reject the hypothesis of exact fit (which is not very surprising). CFI and TLI are below the cutpoint of .95 for good approximate fit, RMSEA seems quite good - especially its upped bound CI does not cross .05. Given SRMR, there does not seem to be much global absolute misfit. However, significant chi^2 indicates beyond-chance deviations of the data from the theoretized structure. Further detailed model diagnostics are needed.
The model applies the sampling weights (vaha6) and accounts for the two-level hierarchical structure of the data (children nested within classes nested within schools).
## chisq.scaled df.scaled pvalue.scaled
## 618.812 80.000 0.000
## cfi.scaled tli.scaled rmsea.scaled
## 0.935 0.933 0.033
## rmsea.ci.lower.scaled rmsea.ci.upper.scaled srmr
## 0.032 0.034 0.038
## pnfi bic
## 0.801 435531.886
For approximate fit (based on the RMSEA distribution). Statistical power for the detection of a likely misspecified model (RMSEA > .08).
## [1] 1
Given the model and the sample size, there is almost certainty that a badly fitting model would be flagged by RMSEA.
The following parts of the output is of interest: “Latent variables” shows factor loadings (all of them significant); Standardized estimates can be found in collumn “Std.all”. “Covariances” show the correlations between the factors. Standardized estimates are to be found in collumn “Std.all”. For the given target interpretation, Intercepts, Thresholds, Intercepts (…) are likely of secondary interest.
## lavaan 0.6-3 ended normally after 114 iterations
##
## Optimization method NLMINB
## Number of free parameters 148
##
## Number of observations 6196
##
## Estimator ML Robust
## Model Fit Test Statistic 6349.546 618.812
## Degrees of freedom 481 80
## P-value (Chi-square) 0.000 0.000
## Scaling correction factor 10.261
## for the mean and variance adjusted correction (MLMV)
##
## Parameter Estimates:
##
## Information Expected
## Information saturated (h1) model Structured
## Standard Errors Robust.sem
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## INSMOT =~
## C6_B1C 1.000 0.597 0.755
## C6_B1H 0.890 0.029 30.365 0.000 0.531 0.585
## C6_B1L 1.013 0.022 46.920 0.000 0.605 0.805
## EFFPER =~
## C6_B1D 1.000 0.553 0.667
## C6_B1G 1.035 0.024 42.745 0.000 0.573 0.700
## C6_B1K 1.038 0.023 46.045 0.000 0.574 0.737
## C6_B1O 0.907 0.023 39.924 0.000 0.502 0.660
## SELFEF =~
## C6_B1A 1.000 0.468 0.645
## C6_B1E 1.162 0.026 44.355 0.000 0.544 0.702
## C6_B1J 1.184 0.030 40.065 0.000 0.555 0.683
## C6_B1N 1.143 0.030 37.901 0.000 0.535 0.707
## CEXP =~
## C6_B1B 1.000 0.585 0.701
## C6_B1F 0.873 0.023 37.319 0.000 0.511 0.590
## C6_B1I 0.810 0.020 40.195 0.000 0.474 0.587
## C6_B1M 0.934 0.021 44.944 0.000 0.546 0.714
## INTREA =~
## C6_B2E 1.000 0.879 0.850
## C6_B2K 0.990 0.017 59.383 0.000 0.870 0.860
## C6_B2N 0.925 0.017 53.962 0.000 0.813 0.756
## INTMAT =~
## C6_B2A 1.000 0.529 0.571
## C6_B2H 1.504 0.037 40.899 0.000 0.795 0.798
## C6_B2Q 1.133 0.032 35.079 0.000 0.599 0.700
## COMLRN =~
## C6_B2C 1.000 0.647 0.704
## C6_B2I 1.061 0.023 45.663 0.000 0.687 0.815
## C6_B2M 0.640 0.025 25.181 0.000 0.414 0.545
## C6_B2S 0.954 0.024 39.050 0.000 0.617 0.717
## SCVERB =~
## C6_B2G 1.000 0.647 0.806
## C6_B2D 0.751 0.024 31.917 0.000 0.485 0.537
## C6_B2R 0.991 0.022 45.357 0.000 0.641 0.776
## SCMATH =~
## C6_B2J 1.000 0.668 0.788
## C6_B2L 1.246 0.024 51.700 0.000 0.833 0.777
## C6_B2O 1.137 0.019 60.285 0.000 0.760 0.834
## SCACAD =~
## C6_B2B 1.000 0.534 0.745
## C6_B2F 0.952 0.021 46.370 0.000 0.508 0.751
## C6_B2P 1.018 0.024 42.972 0.000 0.543 0.733
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .C6_B2H ~~
## .C6_B2L 0.199 0.010 19.190 0.000 0.199 0.491
## INSMOT ~~
## EFFPER 0.256 0.010 24.411 0.000 0.773 0.773
## SELFEF 0.172 0.007 23.647 0.000 0.615 0.615
## CEXP 0.239 0.009 26.144 0.000 0.685 0.685
## INTREA 0.145 0.011 12.612 0.000 0.275 0.275
## INTMAT 0.123 0.008 16.053 0.000 0.389 0.389
## COMLRN 0.193 0.009 21.798 0.000 0.499 0.499
## SCVERB 0.147 0.008 17.369 0.000 0.381 0.381
## SCMATH 0.126 0.008 15.950 0.000 0.315 0.315
## SCACAD 0.165 0.008 21.959 0.000 0.517 0.517
## EFFPER ~~
## SELFEF 0.196 0.007 28.347 0.000 0.756 0.756
## CEXP 0.277 0.010 28.476 0.000 0.855 0.855
## INTREA 0.175 0.011 16.400 0.000 0.360 0.360
## INTMAT 0.147 0.008 18.149 0.000 0.504 0.504
## COMLRN 0.183 0.009 20.504 0.000 0.512 0.512
## SCVERB 0.169 0.008 21.085 0.000 0.473 0.473
## SCMATH 0.145 0.008 17.054 0.000 0.391 0.391
## SCACAD 0.185 0.007 25.124 0.000 0.626 0.626
## SELFEF ~~
## CEXP 0.256 0.008 30.702 0.000 0.934 0.934
## INTREA 0.127 0.008 15.425 0.000 0.309 0.309
## INTMAT 0.139 0.006 22.391 0.000 0.561 0.561
## COMLRN 0.152 0.007 21.301 0.000 0.502 0.502
## SCVERB 0.173 0.007 25.312 0.000 0.570 0.570
## SCMATH 0.179 0.007 24.254 0.000 0.573 0.573
## SCACAD 0.207 0.007 31.332 0.000 0.829 0.829
## CEXP ~~
## INTREA 0.175 0.010 17.550 0.000 0.340 0.340
## INTMAT 0.155 0.008 19.867 0.000 0.502 0.502
## COMLRN 0.199 0.008 23.684 0.000 0.525 0.525
## SCVERB 0.201 0.009 22.120 0.000 0.531 0.531
## SCMATH 0.178 0.009 19.894 0.000 0.456 0.456
## SCACAD 0.233 0.008 30.830 0.000 0.748 0.748
## INTREA ~~
## INTMAT 0.101 0.010 9.878 0.000 0.217 0.217
## COMLRN 0.144 0.011 12.666 0.000 0.254 0.254
## SCVERB 0.191 0.012 15.864 0.000 0.336 0.336
## SCMATH 0.073 0.011 6.667 0.000 0.124 0.124
## SCACAD 0.170 0.010 17.640 0.000 0.361 0.361
## INTMAT ~~
## COMLRN 0.171 0.008 20.608 0.000 0.500 0.500
## SCVERB 0.057 0.007 7.800 0.000 0.167 0.167
## SCMATH 0.323 0.012 27.897 0.000 0.914 0.914
## SCACAD 0.157 0.008 20.926 0.000 0.558 0.558
## COMLRN ~~
## SCVERB 0.135 0.008 16.115 0.000 0.322 0.322
## SCMATH 0.177 0.009 19.247 0.000 0.409 0.409
## SCACAD 0.181 0.007 24.362 0.000 0.524 0.524
## SCVERB ~~
## SCMATH 0.071 0.010 7.199 0.000 0.164 0.164
## SCACAD 0.227 0.009 25.623 0.000 0.656 0.656
## SCMATH ~~
## SCACAD 0.206 0.009 24.107 0.000 0.578 0.578
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .C6_B1C 1.677 0.016 107.827 0.000 1.677 2.119
## .C6_B1H 1.820 0.017 105.536 0.000 1.820 2.003
## .C6_B1L 1.532 0.014 106.452 0.000 1.532 2.038
## .C6_B1D 2.042 0.016 124.305 0.000 2.042 2.462
## .C6_B1G 1.970 0.017 117.143 0.000 1.970 2.410
## .C6_B1K 1.807 0.016 112.653 0.000 1.807 2.317
## .C6_B1O 1.707 0.015 115.139 0.000 1.707 2.243
## .C6_B1A 2.495 0.015 167.344 0.000 2.495 3.433
## .C6_B1E 2.423 0.015 161.919 0.000 2.423 3.127
## .C6_B1J 2.131 0.015 140.064 0.000 2.131 2.625
## .C6_B1N 1.881 0.015 126.601 0.000 1.881 2.482
## .C6_B1B 2.065 0.016 129.200 0.000 2.065 2.478
## .C6_B1F 2.108 0.017 124.365 0.000 2.108 2.435
## .C6_B1I 2.309 0.017 132.240 0.000 2.309 2.863
## .C6_B1M 1.819 0.015 120.010 0.000 1.819 2.380
## .C6_B2E 2.215 0.021 103.849 0.000 2.215 2.143
## .C6_B2K 2.376 0.021 114.360 0.000 2.376 2.349
## .C6_B2N 2.139 0.022 99.351 0.000 2.139 1.989
## .C6_B2A 2.212 0.017 127.634 0.000 2.212 2.390
## .C6_B2H 2.108 0.025 84.518 0.000 2.108 2.114
## .C6_B2Q 1.839 0.020 91.561 0.000 1.839 2.149
## .C6_B2C 2.210 0.018 126.203 0.000 2.210 2.404
## .C6_B2I 2.014 0.016 123.617 0.000 2.014 2.390
## .C6_B2M 1.526 0.014 106.245 0.000 1.526 2.007
## .C6_B2S 2.251 0.016 138.176 0.000 2.251 2.615
## .C6_B2G 2.254 0.017 136.456 0.000 2.254 2.808
## .C6_B2D 2.232 0.019 116.466 0.000 2.232 2.471
## .C6_B2R 2.213 0.021 105.537 0.000 2.213 2.682
## .C6_B2J 1.929 0.020 95.075 0.000 1.929 2.276
## .C6_B2L 2.254 0.028 81.826 0.000 2.254 2.103
## .C6_B2O 2.075 0.019 108.949 0.000 2.075 2.277
## .C6_B2B 1.979 0.014 143.925 0.000 1.979 2.762
## .C6_B2F 1.848 0.014 134.672 0.000 1.848 2.730
## .C6_B2P 2.101 0.014 150.398 0.000 2.101 2.834
## INSMOT 0.000 0.000 0.000
## EFFPER 0.000 0.000 0.000
## SELFEF 0.000 0.000 0.000
## CEXP 0.000 0.000 0.000
## INTREA 0.000 0.000 0.000
## INTMAT 0.000 0.000 0.000
## COMLRN 0.000 0.000 0.000
## SCVERB 0.000 0.000 0.000
## SCMATH 0.000 0.000 0.000
## SCACAD 0.000 0.000 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .C6_B1C 0.270 0.010 26.509 0.000 0.270 0.431
## .C6_B1H 0.543 0.019 29.103 0.000 0.543 0.658
## .C6_B1L 0.199 0.008 25.071 0.000 0.199 0.352
## .C6_B1D 0.381 0.010 39.469 0.000 0.381 0.555
## .C6_B1G 0.340 0.011 30.521 0.000 0.340 0.509
## .C6_B1K 0.278 0.008 33.792 0.000 0.278 0.457
## .C6_B1O 0.327 0.009 37.067 0.000 0.327 0.565
## .C6_B1A 0.309 0.008 37.957 0.000 0.309 0.585
## .C6_B1E 0.304 0.008 40.283 0.000 0.304 0.507
## .C6_B1J 0.352 0.008 45.083 0.000 0.352 0.533
## .C6_B1N 0.287 0.008 36.339 0.000 0.287 0.501
## .C6_B1B 0.353 0.009 39.687 0.000 0.353 0.508
## .C6_B1F 0.488 0.017 29.446 0.000 0.488 0.652
## .C6_B1I 0.426 0.011 40.014 0.000 0.426 0.655
## .C6_B1M 0.286 0.009 31.360 0.000 0.286 0.490
## .C6_B2E 0.296 0.016 18.773 0.000 0.296 0.277
## .C6_B2K 0.266 0.012 22.515 0.000 0.266 0.260
## .C6_B2N 0.496 0.014 34.831 0.000 0.496 0.428
## .C6_B2A 0.577 0.014 42.107 0.000 0.577 0.673
## .C6_B2H 0.361 0.014 26.713 0.000 0.361 0.363
## .C6_B2Q 0.374 0.012 32.304 0.000 0.374 0.510
## .C6_B2C 0.427 0.014 30.457 0.000 0.427 0.505
## .C6_B2I 0.239 0.011 21.349 0.000 0.239 0.336
## .C6_B2M 0.406 0.012 33.148 0.000 0.406 0.703
## .C6_B2S 0.360 0.012 31.174 0.000 0.360 0.486
## .C6_B2G 0.226 0.011 20.321 0.000 0.226 0.350
## .C6_B2D 0.580 0.016 35.994 0.000 0.580 0.711
## .C6_B2R 0.271 0.013 21.081 0.000 0.271 0.397
## .C6_B2J 0.272 0.008 34.499 0.000 0.272 0.378
## .C6_B2L 0.456 0.013 35.740 0.000 0.456 0.396
## .C6_B2O 0.253 0.009 26.783 0.000 0.253 0.305
## .C6_B2B 0.229 0.007 34.295 0.000 0.229 0.445
## .C6_B2F 0.200 0.007 29.562 0.000 0.200 0.436
## .C6_B2P 0.254 0.008 30.416 0.000 0.254 0.463
## INSMOT 0.357 0.015 23.666 0.000 1.000 1.000
## EFFPER 0.306 0.013 23.101 0.000 1.000 1.000
## SELFEF 0.219 0.010 22.761 0.000 1.000 1.000
## CEXP 0.342 0.012 28.723 0.000 1.000 1.000
## INTREA 0.772 0.022 35.303 0.000 1.000 1.000
## INTMAT 0.280 0.014 20.088 0.000 1.000 1.000
## COMLRN 0.419 0.016 25.441 0.000 1.000 1.000
## SCVERB 0.418 0.015 28.232 0.000 1.000 1.000
## SCMATH 0.447 0.017 26.798 0.000 1.000 1.000
## SCACAD 0.285 0.011 25.713 0.000 1.000 1.000
Regarding factor loadings, some items show rather lower loadings, namely C6_B1H, C6_B1F, C6_B1I, C6_B2A, C6_B2M, and C6_B2D with the lowest loading of .537 (it also has the highest variance and the second highest SE). All loadings were significant.
## [1] 0.715
For how many of the items does the factor explain more than half of their variance (lambda = sqrt(2)/2, ~.707)?
## [1] "70.6%"
How many of the items show a loading greater than .6?
## [1] "82.4%"
For convenience, latent correlations between the SAL factors in form of a matrix.
The data show high subject-specificity of self-concept and interest constructs. Domain-general self-concept constructs (SELFEF, CEXP, ACACAD) intercorrelate highly.
| INSMOT | EFFPER | SELFEF | CEXP | INTREA | INTMAT | COMLRN | SCVERB | SCMATH | SCACAD | |
|---|---|---|---|---|---|---|---|---|---|---|
| INSMOT | 1 | |||||||||
| EFFPER | 0.77 | 1 | ||||||||
| SELFEF | 0.61 | 0.76 | 1 | |||||||
| CEXP | 0.68 | 0.86 | 0.93 | 1 | ||||||
| INTREA | 0.28 | 0.36 | 0.31 | 0.34 | 1 | |||||
| INTMAT | 0.39 | 0.5 | 0.56 | 0.5 | 0.22 | 1 | ||||
| COMLRN | 0.5 | 0.51 | 0.5 | 0.53 | 0.25 | 0.5 | 1 | |||
| SCVERB | 0.38 | 0.47 | 0.57 | 0.53 | 0.34 | 0.17 | 0.32 | 1 | ||
| SCMATH | 0.31 | 0.39 | 0.57 | 0.46 | 0.12 | 0.91 | 0.41 | 0.16 | 1 | |
| SCACAD | 0.52 | 0.63 | 0.83 | 0.75 | 0.36 | 0.56 | 0.52 | 0.66 | 0.58 | 1 |
The next step is then to look at the modification indices table. Collumn “mi” stands for the modification index. It represents the change in chi square statistics if you free the given parameter. “~” stands for regression path (read as “predicted by”), “~~” denotes a correlation. “sepc.all” is the value of correlation or standardized regression path that the model missed. Showing only the 10 most severe misspecifications, sorted by magnitude.
Especially the item B2L (“Matematika je pro mě jedním z nejlepších předmětů”) does not seem to work well at all. It shows high cross-loadings on other factors (its cross-loading on INTMAT would be .88(!) should it be modelled). Please note that this item already has an error covariance with B2H. However, no modifications to the model were carried out.
| lhs | op | rhs | mi | epc | sepc.lv | sepc.all | sepc.nox | |
|---|---|---|---|---|---|---|---|---|
| 347 | INTMAT | =~ | C6_B2L | 423.43 | 1.81 | 0.95 | 0.89 | 0.89 |
| 685 | C6_B1A | ~~ | C6_B1E | 398.71 | 0.09 | 0.09 | 0.30 | 0.30 |
| 952 | C6_B2Q | ~~ | C6_B2L | 322.34 | 0.11 | 0.11 | 0.28 | 0.28 |
| 473 | SCACAD | =~ | C6_B2L | 262.50 | -0.42 | -0.23 | -0.21 | -0.21 |
| 408 | SCVERB | =~ | C6_B2L | 247.56 | -0.27 | -0.17 | -0.16 | -0.16 |
| 470 | SCACAD | =~ | C6_B2D | 233.12 | -0.48 | -0.26 | -0.29 | -0.29 |
| 344 | INTMAT | =~ | C6_B2D | 205.50 | -0.31 | -0.16 | -0.18 | -0.18 |
| 472 | SCACAD | =~ | C6_B2J | 200.34 | 0.30 | 0.16 | 0.19 | 0.19 |
| 900 | C6_B2N | ~~ | C6_B2A | 194.02 | 0.11 | 0.11 | 0.20 | 0.20 |
| 264 | CEXP | =~ | C6_B1G | 192.31 | 0.61 | 0.36 | 0.44 | 0.44 |
Model test indicates the presence of model misspecification. Apart from (global) approximate fit indices, it is necessary to also analyze local sources of causal misspecification based on a matrix of standardized residuals.
The same as shown by residuals can be seen on residuals heatmap. Rather strong residuals are among the subject-specific factor items. Especially B2L and B2D.
| C6_B1C | C6_B1H | C6_B1L | C6_B1D | C6_B1G | C6_B1K | C6_B1O | C6_B1A | C6_B1E | C6_B1J | C6_B1N | C6_B1B | C6_B1F | C6_B1I | C6_B1M | C6_B2E | C6_B2K | C6_B2N | C6_B2A | C6_B2H | C6_B2Q | C6_B2C | C6_B2I | C6_B2M | C6_B2S | C6_B2G | C6_B2D | C6_B2R | C6_B2J | C6_B2L | C6_B2O | C6_B2B | C6_B2F | C6_B2P | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| C6_B1C | 0 | |||||||||||||||||||||||||||||||||
| C6_B1H | -0.03 | 0 | ||||||||||||||||||||||||||||||||
| C6_B1L | -0.01 | 0.04 | 0 | |||||||||||||||||||||||||||||||
| C6_B1D | 0.05 | -0.02 | -0.03 | 0 | ||||||||||||||||||||||||||||||
| C6_B1G | 0.01 | -0.06 | -0.03 | -0.01 | 0 | |||||||||||||||||||||||||||||
| C6_B1K | 0.03 | -0.05 | 0.03 | 0 | -0.02 | 0 | ||||||||||||||||||||||||||||
| C6_B1O | 0.01 | -0.03 | 0.01 | 0.05 | -0.03 | 0.02 | 0 | |||||||||||||||||||||||||||
| C6_B1A | -0.01 | -0.04 | -0.05 | -0.06 | 0.02 | -0.07 | -0.05 | 0 | ||||||||||||||||||||||||||
| C6_B1E | 0 | -0.01 | -0.04 | -0.02 | 0.06 | -0.04 | -0.05 | 0.12 | 0 | |||||||||||||||||||||||||
| C6_B1J | 0 | 0 | 0 | -0.05 | 0.01 | 0.02 | -0.03 | -0.02 | -0.01 | 0 | ||||||||||||||||||||||||
| C6_B1N | 0.04 | 0.03 | 0.05 | -0.01 | 0.07 | 0.07 | 0.06 | -0.05 | -0.03 | 0 | 0 | |||||||||||||||||||||||
| C6_B1B | 0.06 | -0.04 | -0.05 | -0.01 | 0.06 | -0.01 | -0.06 | 0.04 | 0.04 | -0.01 | -0.01 | 0 | ||||||||||||||||||||||
| C6_B1F | 0.03 | 0 | -0.03 | -0.04 | 0.02 | -0.05 | -0.05 | -0.04 | -0.01 | 0.02 | 0 | 0.01 | 0 | |||||||||||||||||||||
| C6_B1I | -0.01 | 0.03 | -0.03 | -0.01 | 0.03 | -0.01 | -0.03 | 0 | 0.01 | 0.03 | 0 | -0.04 | 0.06 | 0 | ||||||||||||||||||||
| C6_B1M | 0.01 | 0 | 0.03 | 0 | 0.04 | 0.04 | 0.02 | -0.08 | -0.06 | -0.01 | 0.08 | 0 | 0.01 | -0.01 | 0 | |||||||||||||||||||
| C6_B2E | 0.04 | -0.06 | 0.02 | 0 | 0.01 | 0.01 | -0.01 | 0.04 | 0.02 | 0 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0 | ||||||||||||||||||
| C6_B2K | 0.02 | -0.08 | -0.02 | 0.01 | 0 | -0.01 | -0.02 | 0.01 | -0.01 | -0.05 | -0.01 | -0.02 | 0.01 | -0.03 | 0 | 0 | 0 | |||||||||||||||||
| C6_B2N | 0.02 | -0.04 | 0.02 | 0 | 0 | 0 | 0 | 0.01 | -0.02 | -0.03 | 0.01 | -0.02 | 0.01 | 0 | 0.01 | -0.01 | 0 | 0 | ||||||||||||||||
| C6_B2A | 0.02 | 0.03 | 0.03 | 0.06 | 0.06 | 0.04 | 0.08 | 0.05 | 0.05 | 0.02 | 0.01 | 0.01 | 0.02 | 0.09 | 0.04 | 0.07 | 0.05 | 0.15 | 0 | |||||||||||||||
| C6_B2H | -0.01 | -0.04 | -0.05 | -0.03 | -0.03 | -0.06 | -0.03 | -0.02 | 0 | -0.04 | -0.05 | -0.04 | -0.03 | 0.02 | -0.04 | -0.02 | -0.04 | -0.03 | 0.02 | 0 | ||||||||||||||
| C6_B2Q | 0.04 | 0.02 | 0.02 | 0.01 | 0.02 | 0 | 0.04 | -0.02 | 0 | -0.03 | -0.03 | -0.03 | -0.02 | 0.03 | -0.01 | 0.02 | 0 | 0.02 | 0 | 0.04 | 0 | |||||||||||||
| C6_B2C | -0.06 | 0.07 | -0.05 | -0.07 | -0.06 | -0.04 | -0.03 | 0 | -0.01 | 0 | -0.04 | -0.09 | -0.03 | 0.01 | -0.06 | -0.03 | -0.06 | -0.02 | 0.06 | -0.07 | -0.04 | 0 | ||||||||||||
| C6_B2I | 0.01 | 0.06 | -0.01 | 0.01 | 0 | 0.01 | 0.05 | -0.03 | -0.03 | 0.01 | 0.01 | -0.03 | 0.01 | 0.05 | 0.02 | 0 | -0.02 | 0.03 | 0.08 | -0.01 | 0.02 | 0.01 | 0 | |||||||||||
| C6_B2M | -0.01 | 0.1 | 0.03 | -0.04 | -0.03 | 0 | 0.02 | -0.05 | -0.04 | -0.02 | -0.02 | -0.09 | -0.03 | -0.03 | -0.01 | 0 | 0 | 0.07 | 0.05 | -0.06 | 0.03 | 0.04 | -0.01 | 0 | ||||||||||
| C6_B2S | 0 | 0.06 | -0.02 | 0.03 | 0.03 | 0.03 | 0.03 | 0.05 | 0.03 | 0.05 | 0.05 | 0.03 | 0.05 | 0.1 | 0.06 | 0.03 | 0.02 | 0.07 | 0.1 | -0.03 | 0.01 | -0.01 | -0.01 | 0 | 0 | |||||||||
| C6_B2G | 0.04 | -0.04 | 0.01 | -0.01 | 0.03 | 0.03 | 0 | 0.03 | -0.02 | 0.02 | 0.03 | 0.03 | 0.02 | -0.02 | 0 | 0.02 | -0.01 | -0.01 | 0.05 | -0.01 | 0.03 | -0.02 | 0.01 | -0.02 | 0.09 | 0 | ||||||||
| C6_B2D | -0.01 | -0.12 | -0.04 | -0.06 | -0.03 | -0.04 | -0.05 | -0.01 | -0.09 | -0.05 | -0.02 | -0.01 | -0.04 | -0.09 | -0.04 | -0.05 | -0.05 | -0.04 | -0.13 | -0.15 | -0.1 | -0.12 | -0.1 | -0.1 | -0.05 | 0.02 | 0 | |||||||
| C6_B2R | 0.03 | -0.05 | 0.01 | -0.04 | 0.03 | 0.01 | -0.01 | -0.01 | -0.05 | 0.04 | 0.02 | 0.01 | 0.04 | -0.02 | -0.01 | 0.03 | 0.01 | 0.01 | 0.01 | -0.06 | 0.02 | -0.03 | 0 | -0.02 | 0.09 | -0.01 | 0.02 | 0 | ||||||
| C6_B2J | 0.03 | 0.03 | 0.01 | -0.03 | 0.05 | 0.01 | 0.02 | 0.06 | 0.04 | 0.05 | 0 | 0.02 | 0.04 | 0.04 | 0.01 | 0.03 | 0.01 | -0.01 | -0.08 | -0.01 | -0.06 | 0 | 0.01 | -0.04 | -0.01 | 0.08 | -0.05 | 0.07 | 0 | |||||
| C6_B2L | -0.02 | -0.01 | -0.04 | -0.03 | 0 | -0.04 | -0.01 | -0.03 | -0.03 | -0.07 | -0.09 | -0.04 | -0.04 | 0 | -0.05 | -0.01 | 0.01 | -0.01 | 0.03 | 0.02 | 0.1 | -0.03 | 0.01 | -0.03 | -0.03 | -0.06 | -0.16 | -0.1 | -0.01 | 0 | ||||
| C6_B2O | 0 | 0.02 | -0.02 | -0.04 | 0.03 | -0.02 | -0.02 | 0.04 | 0.03 | 0.02 | -0.03 | 0 | 0.01 | 0.05 | -0.02 | -0.01 | -0.03 | -0.03 | -0.05 | 0 | -0.04 | -0.01 | 0.01 | -0.03 | 0.01 | 0.04 | -0.09 | 0.03 | 0.02 | -0.01 | 0 | |||
| C6_B2B | 0 | 0 | 0 | -0.04 | 0.04 | 0 | 0.01 | 0.02 | -0.01 | -0.01 | 0.01 | 0.03 | -0.01 | 0 | -0.01 | 0 | -0.01 | 0 | 0.06 | -0.03 | -0.02 | -0.01 | -0.01 | -0.04 | 0.06 | 0.02 | -0.1 | -0.02 | 0.04 | -0.07 | -0.01 | 0 | ||
| C6_B2F | 0.03 | 0 | 0 | -0.04 | 0.03 | 0.02 | 0.02 | -0.01 | -0.02 | 0 | 0 | 0 | 0 | 0 | 0 | 0.02 | -0.01 | 0 | 0.03 | -0.04 | -0.02 | -0.03 | 0 | -0.04 | 0.05 | 0 | -0.11 | 0 | 0.04 | -0.09 | -0.01 | 0.04 | 0 | |
| C6_B2P | 0.01 | -0.02 | -0.02 | -0.05 | 0.02 | -0.01 | -0.01 | 0 | -0.02 | 0.06 | -0.01 | 0.01 | 0.03 | -0.01 | -0.03 | 0 | 0 | -0.01 | 0 | -0.05 | -0.01 | -0.03 | -0.01 | -0.04 | 0.05 | 0.02 | -0.05 | 0.09 | 0.12 | -0.07 | 0.03 | -0.03 | -0.01 | 0 |
## [1] 0.03019161
For a better overview, here is the residual matrix which marks residual values >.1. Such values can be seen as worrying.
Number of variables
If the matrix contains (p(p+1)/2 - p) = 561 elements (sans diagonal), 28.05 can be significant at alpha = .05
Number of residuals significant at .05 level
## TRUE
## 198
Number of residuals significant at .001 level
## TRUE
## 76
| C6_B1C | C6_B1H | C6_B1L | C6_B1D | C6_B1G | C6_B1K | C6_B1O | C6_B1A | C6_B1E | C6_B1J | C6_B1N | C6_B1B | C6_B1F | C6_B1I | C6_B1M | C6_B2E | C6_B2K | C6_B2N | C6_B2A | C6_B2H | C6_B2Q | C6_B2C | C6_B2I | C6_B2M | C6_B2S | C6_B2G | C6_B2D | C6_B2R | C6_B2J | C6_B2L | C6_B2O | C6_B2B | C6_B2F | C6_B2P | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| C6_B1C | Diag | |||||||||||||||||||||||||||||||||
| C6_B1H | . | Diag | ||||||||||||||||||||||||||||||||
| C6_B1L | . | . | Diag | |||||||||||||||||||||||||||||||
| C6_B1D | . | . | . | Diag | ||||||||||||||||||||||||||||||
| C6_B1G | . | . | . | . | Diag | |||||||||||||||||||||||||||||
| C6_B1K | . | . | . | . | . | Diag | ||||||||||||||||||||||||||||
| C6_B1O | . | . | . | . | . | . | Diag | |||||||||||||||||||||||||||
| C6_B1A | . | . | . | . | . | . | . | Diag | ||||||||||||||||||||||||||
| C6_B1E | . | . | . | . | . | . | . | >.1 | Diag | |||||||||||||||||||||||||
| C6_B1J | . | . | . | . | . | . | . | . | . | Diag | ||||||||||||||||||||||||
| C6_B1N | . | . | . | . | . | . | . | . | . | . | Diag | |||||||||||||||||||||||
| C6_B1B | . | . | . | . | . | . | . | . | . | . | . | Diag | ||||||||||||||||||||||
| C6_B1F | . | . | . | . | . | . | . | . | . | . | . | . | Diag | |||||||||||||||||||||
| C6_B1I | . | . | . | . | . | . | . | . | . | . | . | . | . | Diag | ||||||||||||||||||||
| C6_B1M | . | . | . | . | . | . | . | . | . | . | . | . | . | . | Diag | |||||||||||||||||||
| C6_B2E | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | Diag | ||||||||||||||||||
| C6_B2K | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | Diag | |||||||||||||||||
| C6_B2N | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | Diag | ||||||||||||||||
| C6_B2A | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | >.1 | Diag | |||||||||||||||
| C6_B2H | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | Diag | ||||||||||||||
| C6_B2Q | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | Diag | |||||||||||||
| C6_B2C | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | Diag | ||||||||||||
| C6_B2I | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | Diag | |||||||||||
| C6_B2M | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | Diag | ||||||||||
| C6_B2S | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | Diag | |||||||||
| C6_B2G | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | Diag | ||||||||
| C6_B2D | . | >.1 | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | >.1 | >.1 | >.1 | >.1 | >.1 | >.1 | . | . | Diag | |||||||
| C6_B2R | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | Diag | ||||||
| C6_B2J | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | Diag | |||||
| C6_B2L | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | >.1 | >.1 | . | Diag | ||||
| C6_B2O | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | Diag | |||
| C6_B2B | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | >.1 | . | . | . | . | Diag | ||
| C6_B2F | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | >.1 | . | . | . | . | . | Diag | |
| C6_B2P | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | >.1 | . | . | . | . | Diag |
Internal consistency estimates for individual scales - McDonald’s Omega
The scales show very good overall reliability (especially given the number of items per scale; 3-4). These reliabilities are amongst the highest with respect to countries included in Marsh et al. study.
## Loading required namespace: GPArotation
| Reliability.Omega | |
|---|---|
| INSMOT | 0.72 |
| EFFPER | 0.80 |
| SELFEF | 0.86 |
| CEXP | 0.78 |
| INTREA | 0.85 |
| INTMAT | 0.73 |
| COMLRN | 0.85 |
| SCVERB | 0.74 |
| SCMATH | 0.82 |
| SCACAD | 0.76 |
| Mean scale reliability | 0.79 |
| SD of scale reliabilities | 0.05 |
Invariance with respect to gender
The measure shows excellent measurement invariance when fixing loadings and good invariance even when fixing intercepts of items. The instrument thus measures the same constructs equaly well in both genders, i.e., any differences are likely real, not due to how the LVs were measured.
##
## Measurement invariance models:
##
## Model 1 : fit.configural
## Model 2 : fit.loadings
## Model 3 : fit.intercepts
## Model 4 : fit.means
##
## Scaled Chi Square Difference Test (method = "satorra.bentler.2001")
##
## Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
## fit.configural 962 6510.6
## fit.loadings 986 6652.6 23.09 24 0.5147
## fit.intercepts 1044 7008.0 58
## fit.means 1054 9893.4 355.78 10 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Fit measures:
##
## cfi.scaled rmsea.scaled cfi.scaled.delta rmsea.scaled.delta
## fit.configural 0.958 0.052 NA NA
## fit.loadings 0.964 0.048 0.006 0.004
## fit.intercepts 0.956 0.051 0.008 0.003
## fit.means 0.942 0.058 0.014 0.007
Constraining loadings and latent intercepts to be equal. Fixing the factor means of the first/reference group (Gender == 1) to zero while estimating the factor means for the other group. These magnitudes equal the difference between the groups.
| intercept | |
|---|---|
| INSMOT | 0.01 |
| EFFPER | -0.05 |
| SELFEF | 0.10 |
| CEXP | -0.01 |
| INTREA | -0.40 |
| INTMAT | 0.17 |
| COMLRN | 0.10 |
| SCVERB | -0.14 |
| SCMATH | 0.27 |
| SCACAD | 0.05 |
All the differences in latent means apart from INSMOT, CEXP, and SCACAD are significant. Negative intercept values denote higher mean values for girls and positive values higher mean values for the boys (factors are scaled inversely). The girls show markedly higher interest in reading, boys higher interest in math. Girls report spending more effort and being more perseverant, while boys have higher values of self-eficacy and competitive learning. Girls show higher self-concept in language while the opposite is true for math. Results overall consistent with stereotype threat bias.
Constraining loadings and latent intercepts to be equal. Fixing the factor means of the first/reference group (ZS.VG == ZS) to zero while estimating the factor means for the other group (VG). These magnitudes equal the difference between the groups.
Group 1 = ZS, Group 2 = VG
| intercept | |
|---|---|
| INSMOT | -0.14 |
| EFFPER | -0.11 |
| SELFEF | -0.18 |
| CEXP | -0.15 |
| INTREA | -0.32 |
| INTMAT | -0.14 |
| COMLRN | -0.08 |
| SCVERB | -0.24 |
| SCMATH | -0.22 |
| SCACAD | -0.17 |
Children at VG (eight-year academies) show lower means compared to elementary school, i.e., more positive values (factors are scaled inversely) for all factors.
Invariance with respect to gender
##
## Measurement invariance models:
##
## Model 1 : fit.configural
## Model 2 : fit.loadings
## Model 3 : fit.intercepts
## Model 4 : fit.means
##
## Scaled Chi Square Difference Test (method = "satorra.bentler.2001")
##
## Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
## fit.configural 962 5533.2
## fit.loadings 986 5652.7 20.59 24 0.6625
## fit.intercepts 1044 5976.6 58
## fit.means 1054 8480.7 329.77 10 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Fit measures:
##
## cfi.scaled rmsea.scaled cfi.scaled.delta rmsea.scaled.delta
## fit.configural 0.959 0.051 NA NA
## fit.loadings 0.965 0.047 0.005 0.004
## fit.intercepts 0.958 0.050 0.007 0.003
## fit.means 0.943 0.058 0.015 0.008
## Scaled Chi Square Difference Test (method = "satorra.bentler.2001")
##
## Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
## survey.config_fit 962 432865 434857 7050.7
## survey.weak_fit 986 432885 434716 7118.6 48.38 24 0.002264
##
## survey.config_fit
## survey.weak_fit **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Scaled Chi Square Difference Test (method = "satorra.bentler.2001")
##
## Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
## survey.weak_fit 986 432885 434716 7118.6
## survey.strong_fit 1010 433356 435026 7638.4 362.87 24 < 2.2e-16
##
## survey.weak_fit
## survey.strong_fit ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Invariance with respect to SES quintiles
##
## Measurement invariance models:
##
## Model 1 : fit.configural
## Model 2 : fit.loadings
## Model 3 : fit.intercepts
## Model 4 : fit.means
##
## Scaled Chi Square Difference Test (method = "satorra.bentler.2001")
##
## Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
## fit.configural 2405 6895.6
## fit.loadings 2501 7429.1 76.657 96 0.927
## fit.intercepts 2733 7412.1 232
## fit.means 2773 10181.3 278.188 40 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Fit measures:
##
## cfi.scaled rmsea.scaled cfi.scaled.delta rmsea.scaled.delta
## fit.configural 0.959 0.050 NA NA
## fit.loadings 0.966 0.045 0.007 0.005
## fit.intercepts 0.961 0.047 0.006 0.002
## fit.means 0.950 0.052 0.011 0.006
## Scaled Chi Square Difference Test (method = "satorra.bentler.2001")
##
## Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
## survey.config_fit 2405 362228 367083 8633.1
## survey.weak_fit 2501 362218 366443 8815.2 135.55 96 0.004901
##
## survey.config_fit
## survey.weak_fit **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Scaled Chi Square Difference Test (method = "satorra.bentler.2001")
##
## Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
## survey.weak_fit 2501 362218 366443 8815.2
## survey.strong_fit 2597 362304 365899 9092.6 198.93 96 3.561e-09
##
## survey.weak_fit
## survey.strong_fit ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Invariance with respect to type of school
##
## Measurement invariance models:
##
## Model 1 : fit.configural
## Model 2 : fit.loadings
## Model 3 : fit.intercepts
## Model 4 : fit.means
##
## Scaled Chi Square Difference Test (method = "satorra.bentler.2001")
##
## Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
## fit.configural 962 5815.0
## fit.loadings 986 6141.1 60.98 24 4.639e-05 ***
## fit.intercepts 1044 6284.5 58
## fit.means 1054 8439.7 295.45 10 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Fit measures:
##
## cfi.scaled rmsea.scaled cfi.scaled.delta rmsea.scaled.delta
## fit.configural 0.960 0.051 NA NA
## fit.loadings 0.963 0.048 0.003 0.003
## fit.intercepts 0.959 0.050 0.004 0.001
## fit.means 0.947 0.056 0.012 0.006
## Scaled Chi Square Difference Test (method = "satorra.bentler.2001")
##
## Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
## survey.config_fit 962 431609 433601 6850.9
## survey.weak_fit 986 431715 433546 7005.6 138.98 24 < 2.2e-16
##
## survey.config_fit
## survey.weak_fit ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Scaled Chi Square Difference Test (method = "satorra.bentler.2001")
##
## Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
## survey.weak_fit 986 431715 433546 7005.6
## survey.strong_fit 1010 432056 433725 7394.4 354.51 24 < 2.2e-16
##
## survey.weak_fit
## survey.strong_fit ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Predictive validity of the 10 SAL factors with respect to achievement measures (Language, Math). Fit did not deteriorate due to inclusion of predictive factors of language and math achievement scores.
## chisq.scaled df.scaled pvalue.scaled
## 650.706 82.000 0.000
## cfi.scaled tli.scaled rmsea.scaled
## 0.930 0.927 0.033
## rmsea.ci.lower.scaled rmsea.ci.upper.scaled srmr
## 0.033 0.034 0.038
## pnfi bic
## 0.781 538976.797
Correlations between the SAL factors and achievement measures (Language, Math)
The achievement scores correlate rather strongly and show positive relationship towards each of the SAL factors. Apart from having highest intercorrelations with other SAL factors, SELFEF shows the highest relative predictive power.
| INSMOT | EFFPER | SELFEF | CEXP | INTREA | INTMAT | COMLRN | SCVERB | SCMATH | SCACAD | C6_Math_rel_fac | C6_lang_rel_fac | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| INSMOT | 1 | |||||||||||
| EFFPER | 0.77 | 1 | ||||||||||
| SELFEF | 0.62 | 0.76 | 1 | |||||||||
| CEXP | 0.68 | 0.86 | 0.93 | 1 | ||||||||
| INTREA | 0.28 | 0.36 | 0.31 | 0.34 | 1 | |||||||
| INTMAT | 0.39 | 0.5 | 0.56 | 0.5 | 0.22 | 1 | ||||||
| COMLRN | 0.5 | 0.51 | 0.5 | 0.53 | 0.25 | 0.5 | 1 | |||||
| SCVERB | 0.38 | 0.47 | 0.57 | 0.53 | 0.34 | 0.17 | 0.32 | 1 | ||||
| SCMATH | 0.32 | 0.39 | 0.57 | 0.46 | 0.12 | 0.91 | 0.41 | 0.17 | 1 | |||
| SCACAD | 0.52 | 0.63 | 0.83 | 0.75 | 0.36 | 0.56 | 0.53 | 0.66 | 0.58 | 1 | ||
| C6_Math_rel_fac | -0.13 | -0.14 | -0.3 | -0.18 | -0.12 | -0.27 | -0.08 | -0.17 | -0.4 | -0.3 | 1 | |
| C6_lang_rel_fac | -0.13 | -0.17 | -0.25 | -0.2 | -0.24 | -0.07 | -0.05 | -0.37 | -0.16 | -0.29 | 0.6 | 1 |
For achievement measures
Bayes factor in favor of the alternative hypothesis (BF10) and posterior probability for model parameters (given 1:1 prior odds for H0:Ha)
Bayes factors show whether there is evidence either for Ha (effect present) or H0 (effect absent), i.e., whether the data are more consistent with Ha, H0, or inconclusive. Posterior probability refers to the probability of the parameter not being zero (as oposed to probability of the data under a null). Frequentist approach without specific procedures (like equivalence testing), on the other hand, cannot provide evidence for H0, by definition (the only possible conclusions are H0 being rejected or failed to be rejected). These are Bayes Factors based on model selection / information criteria approach as proposed by Wagenmakers, 2007. Each BF represents the relative evidence in the data favoring alternative hypothesis (parameter freely estimated) over the null (the given parameter fixed to 0). Bayes Factors using BIC approximation implicitly assume unit information prior which makes them rather conservative with regard to the alternative hypothesis.
Parameters a-u refer to covariances between Math achievement (a-j), Language achievement (k-u) and the 10 SAL factors.
Math ~~ aINSMOT Math ~~ bEFFPER Math ~~ cSELFEF Math ~~ dCEXP Math ~~ eINTREA Math ~~ fINTMAT Math ~~ gCOMLRN Math ~~ hSCVERB Math ~~ iSCMATH Math ~~ jSCACAD Language ~~ kINSMOT Language ~~ lEFFPER Language ~~ mSELFEF Language ~~ nCEXP Language ~~ oINTREA Language ~~ pINTMAT Language ~~ qCOMLRN Language ~~ rSCVERB Language ~~ sSCMATH Language ~~ tSCACAD Math ~~ u*Language
| BF10 | Posterior | |
|---|---|---|
| a | 6.174306e+15 | 1.00 |
| b | 1.007541e+19 | 1.00 |
| c | 7.030041e+98 | 1.00 |
| d | 9.019117e+31 | 1.00 |
| e | 4.081917e+14 | 1.00 |
| f | 1.863388e+78 | 1.00 |
| g | 1.873598e+05 | 1.00 |
| h | 4.183234e+30 | 1.00 |
| i | 4.415524e+194 | 1.00 |
| j | 9.613697e+93 | 1.00 |
| k | 3.345478e+16 | 1.00 |
| l | 2.199564e+28 | 1.00 |
| m | 6.875950e+65 | 1.00 |
| n | 2.878808e+39 | 1.00 |
| o | 6.793993e+64 | 1.00 |
| p | 2.773500e+03 | 1.00 |
| q | 2.780000e+00 | 0.74 |
| r | 3.326750e+151 | 1.00 |
| s | 4.739896e+26 | 1.00 |
| t | 1.175954e+90 | 1.00 |
| u | Inf | NaN |
BF10 indicates how much likely is the data under Ha as compared to H0. Table above shows that there is almost 100% posterior probability in favor of most of these effects.
Predictive validity of the 10 SAL factors with respect to grades - Language (averaged Czech and English language grades) and Math. Fit did not deteriorate due to inclusion of predictive factors of language and math achievement scores.
## chisq.scaled df.scaled pvalue.scaled
## 606.136 80.000 0.000
## cfi.scaled tli.scaled rmsea.scaled
## 0.933 0.930 0.033
## rmsea.ci.lower.scaled rmsea.ci.upper.scaled srmr
## 0.032 0.034 0.037
## pnfi bic
## 0.783 450775.989
Correlations between the SAL factors and achievement measures (Language, Math)
Grades correlate rather strongly (stronger than achievement measures) and show positive relationship towards each of the SAL factors. SCACAD and SELFEF show the highest relative predictive power.
| INSMOT | EFFPER | SELFEF | CEXP | INTREA | INTMAT | COMLRN | SCVERB | SCMATH | SCACAD | grade_math_fac | grade_lang_fac | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| INSMOT | 1 | |||||||||||
| EFFPER | 0.77 | 1 | ||||||||||
| SELFEF | 0.61 | 0.75 | 1 | |||||||||
| CEXP | 0.68 | 0.86 | 0.93 | 1 | ||||||||
| INTREA | 0.27 | 0.36 | 0.31 | 0.34 | 1 | |||||||
| INTMAT | 0.38 | 0.5 | 0.56 | 0.5 | 0.22 | 1 | ||||||
| COMLRN | 0.5 | 0.51 | 0.5 | 0.53 | 0.25 | 0.5 | 1 | |||||
| SCVERB | 0.38 | 0.47 | 0.57 | 0.53 | 0.34 | 0.16 | 0.32 | 1 | ||||
| SCMATH | 0.31 | 0.39 | 0.57 | 0.45 | 0.12 | 0.91 | 0.4 | 0.16 | 1 | |||
| SCACAD | 0.52 | 0.63 | 0.83 | 0.75 | 0.36 | 0.55 | 0.52 | 0.66 | 0.58 | 1 | ||
| grade_math_fac | 0.21 | 0.25 | 0.36 | 0.28 | 0.11 | 0.37 | 0.16 | 0.24 | 0.51 | 0.38 | 1 | |
| grade_lang_fac | 0.26 | 0.29 | 0.36 | 0.31 | 0.2 | 0.14 | 0.13 | 0.43 | 0.23 | 0.41 | 0.69 | 1 |