Autoaceptación: 1,7,17,24 Relaciones positivas: 2,8,12,22,25 Autonomía: 3,4,9,13,18,23 Dominio del entorno: 5,10,14,19,29 Crecimiento personal: 21,26,27,28 Propósito en la vida: 6,11,15,16,20



1 Muestra

Cargamos los datos iniciales y explorando las primeras líneas:

df=read_spss("IES TOTAL BE CL ES y FA.sav")

describe(df) %>% knitr::kable()
vars n mean sd median trimmed mad min max range skew kurtosis se
investigadora 1 160 758.00 2336.59 11.0 9.16 0.00 6 8000 7994 2.76 5.66 184.72
numerosujeto 2 578 1595.32 2472.26 500.5 964.04 220.91 200 10011 9811 2.10 3.21 102.83
IES 3 543 1.85 1.12 1.0 1.69 0.00 1 4 3 0.92 -0.69 0.05
curso 4 578 2.75 1.58 2.0 2.60 1.48 1 6 5 0.46 -0.94 0.07
edad 5 577 14.15 1.72 14.0 14.04 1.48 12 19 7 0.32 -1.01 0.07
sexo 6 573 1.58 0.49 2.0 1.60 0.00 1 2 1 -0.33 -1.90 0.02
separados 7 571 0.25 0.43 0.0 0.18 0.00 0 1 1 1.18 -0.61 0.02
trabajamama 8 569 0.73 0.44 1.0 0.79 0.00 0 1 1 -1.03 -0.94 0.02
enquetrabajmma 9 287 2.33 0.64 2.0 2.40 1.48 1 3 2 -0.42 -0.71 0.04
trabajapapa 10 553 0.92 0.27 1.0 1.00 0.00 0 2 2 -2.92 7.82 0.01
enquetrabajapp 11 369 2.17 0.64 2.0 2.22 0.00 1 3 2 -0.18 -0.67 0.03
numpersonascasa 12 532 4.04 1.20 4.0 3.90 0.00 2 13 11 1.97 8.41 0.05
numpersonpp 13 80 2.95 1.99 3.0 2.91 1.48 0 7 7 -0.09 -0.89 0.22
numpersonmm 14 97 2.85 1.73 3.0 2.86 1.48 0 6 6 -0.24 -0.75 0.18
calif.lugar.vive 15 571 4.46 0.67 5.0 4.55 0.00 1 5 4 -1.35 3.07 0.03
calif.rel.mm 16 575 4.57 0.73 5.0 4.72 0.00 1 5 4 -2.17 5.99 0.03
calif.rel.pp 17 568 4.41 0.92 5.0 4.60 0.00 1 5 4 -1.88 3.62 0.04
calif.rel.hnos 18 518 4.23 0.95 4.0 4.38 1.48 1 5 4 -1.39 1.94 0.04
gusta.IES 19 573 3.29 1.08 3.0 3.33 1.48 1 5 4 -0.43 -0.37 0.04
gusta.clase 20 572 3.81 0.99 4.0 3.92 1.48 1 5 4 -0.78 0.40 0.04
llevas.compIES 21 573 4.36 0.71 4.0 4.44 1.48 1 5 4 -1.43 3.85 0.03
llevas.com.clase 22 572 4.39 0.74 5.0 4.51 0.00 1 5 4 -1.43 3.09 0.03
relc.profe 23 574 4.00 0.77 4.0 4.05 0.00 1 6 5 -0.89 2.07 0.03
buenosamigosIES 24 561 1.00 0.47 1.0 1.00 0.00 0 10 10 13.56 244.56 0.02
cuantos.amigos 25 490 8.24 6.21 8.0 7.47 2.97 0 80 80 4.29 38.45 0.28
calific.estudiante 26 574 3.71 0.86 4.0 3.72 0.00 1 10 9 0.12 5.71 0.04
nota.media 27 539 6.68 1.58 7.0 6.72 1.48 0 10 10 -0.53 0.85 0.07
gusta.estudiar 28 503 0.28 0.67 0.0 0.19 0.00 0 9 9 6.87 76.35 0.03
tiempo.estudio.dia 29 542 1.62 1.17 1.5 1.53 0.74 0 12 12 1.91 11.17 0.05
lugar.estudio 30 416 1.23 0.79 1.0 1.03 0.00 0 5 5 3.23 10.58 0.04
espacio.propio 31 565 0.90 0.30 1.0 1.00 0.00 0 2 2 -2.55 5.34 0.01
ejercicio.fisico 32 575 0.69 0.54 1.0 0.73 0.00 0 7 7 2.29 31.48 0.02
cual.ej.físico 33 419 2.86 3.11 1.0 2.46 1.48 0 11 11 0.80 -0.66 0.15
activ.extraescol 34 575 0.42 0.51 0.0 0.39 0.00 0 4 4 0.86 2.01 0.02
cual.activid.extra 35 421 1.56 2.02 0.0 1.36 0.00 0 8 8 0.68 -1.22 0.10
fruta 36 555 4.27 2.44 5.0 4.44 2.97 0 9 9 -0.28 -1.28 0.10
verdura 37 550 3.20 2.41 3.0 3.12 2.97 0 7 7 0.24 -1.19 0.10
ensalada 38 551 2.66 2.40 2.0 2.44 2.97 0 7 7 0.50 -1.06 0.10
legumbres 39 549 1.91 1.61 2.0 1.72 1.48 0 7 7 0.95 0.73 0.07
pasta 40 552 2.54 1.60 2.0 2.35 1.48 0 8 8 0.96 0.43 0.07
carne 41 550 3.41 1.63 3.0 3.36 1.48 0 8 8 0.24 -0.47 0.07
pescado 42 547 1.94 1.41 2.0 1.82 1.48 0 7 7 0.90 0.72 0.06
dulces 43 547 3.01 2.41 2.0 2.89 2.97 0 9 9 0.52 -1.05 0.10
zumos 44 549 4.00 2.70 5.0 4.10 2.97 0 10 10 -0.24 -1.40 0.12
refrescoscongas 45 547 2.44 2.48 2.0 2.18 2.97 0 7 7 0.72 -0.87 0.11
pan 46 548 5.14 2.25 6.0 5.49 1.48 0 9 9 -0.93 -0.36 0.10
fritos 47 540 2.67 1.85 2.0 2.56 1.48 0 7 7 0.53 -0.38 0.08
alaplancha 48 543 2.92 1.93 3.0 2.83 1.48 0 7 7 0.39 -0.62 0.08
codidos.asados 49 542 2.54 1.74 2.0 2.41 1.48 0 9 9 0.76 0.24 0.07
horassueño 50 563 7.98 1.77 8.0 7.92 1.48 1 35 34 6.49 95.62 0.07
horasmovil.tabl 51 545 3.67 3.01 3.0 3.22 1.48 0 24 24 3.19 16.17 0.13
VAR00023 52 0 NaN NA NA NaN NA Inf -Inf -Inf NA NA NA
BPS01 53 571 4.12 1.42 4.0 4.21 1.48 1 6 5 -0.40 -0.70 0.06
BPS02 54 571 5.12 1.50 6.0 5.47 0.00 1 6 5 -1.65 1.47 0.06
BPS03 55 567 4.25 1.70 5.0 4.43 1.48 1 6 5 -0.58 -0.94 0.07
BPS04 56 560 4.39 1.66 5.0 4.60 1.48 1 6 5 -0.69 -0.75 0.07
BPS05 57 558 4.39 1.66 5.0 4.59 1.48 1 6 5 -0.68 -0.77 0.07
BPS06 58 565 4.44 1.57 5.0 4.63 1.48 1 6 5 -0.68 -0.68 0.07
BPS07 59 564 4.56 1.55 5.0 4.77 1.48 1 6 5 -0.87 -0.35 0.07
BPS08 60 566 4.83 1.61 6.0 5.12 0.00 1 6 5 -1.17 0.04 0.07
BPS09 61 566 4.35 1.73 5.0 4.56 1.48 1 6 5 -0.66 -0.94 0.07
BPS10 62 548 3.76 1.65 4.0 3.83 1.48 1 6 5 -0.21 -1.12 0.07
BPS11 63 562 4.38 1.44 5.0 4.55 1.48 1 6 5 -0.64 -0.39 0.06
BPS12 64 569 4.87 1.33 5.0 5.09 1.48 1 6 5 -1.18 0.68 0.06
BPS13 65 534 4.34 1.60 5.0 4.51 1.48 1 6 5 -0.59 -0.80 0.07
BPS14 66 559 4.41 1.44 5.0 4.59 1.48 1 6 5 -0.76 -0.20 0.06
BPS15 67 565 4.36 1.57 5.0 4.55 1.48 1 6 5 -0.69 -0.55 0.07
BPS16 68 559 4.24 1.54 4.0 4.38 1.48 1 6 5 -0.52 -0.76 0.07
BPS17 69 570 4.68 1.39 5.0 4.89 1.48 1 6 5 -0.99 0.20 0.06
BPS18 70 565 4.55 1.44 5.0 4.75 1.48 1 6 5 -0.85 -0.11 0.06
BPS19 71 548 4.03 1.63 4.0 4.15 1.48 1 6 5 -0.37 -1.00 0.07
BPS20 72 560 4.14 1.65 4.0 4.28 1.48 1 6 5 -0.47 -1.00 0.07
BPS21 73 565 4.72 1.37 5.0 4.91 1.48 1 6 5 -0.94 0.07 0.06
BPS22 74 555 4.41 1.67 5.0 4.59 1.48 1 6 5 -0.62 -0.95 0.07
BPS23 75 552 4.23 1.69 5.0 4.41 1.48 1 6 5 -0.52 -0.98 0.07
BPS24 76 563 4.74 1.45 5.0 4.98 1.48 1 6 5 -1.07 0.17 0.06
BPS25 77 563 4.93 1.41 5.0 5.19 1.48 1 6 5 -1.31 0.78 0.06
BPS26 78 567 4.45 1.71 5.0 4.68 1.48 1 6 5 -0.77 -0.76 0.07
BPS27 79 565 4.69 1.29 5.0 4.86 1.48 1 6 5 -0.88 0.20 0.05
BPS28 80 567 4.52 1.36 5.0 4.69 1.48 1 6 5 -0.76 -0.05 0.06
BPS29 81 566 4.67 1.51 5.0 4.91 1.48 1 6 5 -0.96 -0.12 0.06
VAR00006 82 0 NaN NA NA NaN NA Inf -Inf -Inf NA NA NA
CLIMA01 83 569 4.18 1.14 5.0 4.41 0.00 1 6 5 -1.35 0.95 0.05
CLIMA02 84 567 3.47 2.15 4.0 3.45 1.48 1 47 46 14.53 292.99 0.09
CLIMA3 85 555 3.94 1.15 4.0 4.11 1.48 1 5 4 -1.00 0.21 0.05
CLIMA04 86 551 3.33 1.40 4.0 3.41 1.48 1 6 5 -0.36 -1.12 0.06
CLIMA05 87 567 2.69 1.26 3.0 2.63 1.48 1 5 4 0.21 -0.99 0.05
CLIMA06 88 566 2.51 1.46 2.0 2.38 1.48 1 22 21 4.43 54.24 0.06
CLIMA07 89 564 2.63 1.15 3.0 2.58 1.48 1 5 4 0.30 -0.67 0.05
CLIMA08 90 568 3.59 1.31 4.0 3.74 1.48 1 5 4 -0.61 -0.77 0.05
CLIMA09 91 566 3.64 1.34 4.0 3.80 1.48 1 5 4 -0.66 -0.79 0.06
CLIMA10 92 567 3.39 1.31 4.0 3.49 1.48 1 5 4 -0.36 -0.97 0.05
CLIMA11 93 559 2.64 1.22 3.0 2.56 1.48 1 5 4 0.31 -0.81 0.05
CLIMA12 94 560 3.08 1.32 3.0 3.10 1.48 1 5 4 -0.12 -1.09 0.06
CLIMA13 95 562 3.22 1.34 3.0 3.27 1.48 1 5 4 -0.22 -1.08 0.06
CLIMA14 96 565 2.81 1.51 3.0 2.76 1.48 1 5 4 0.20 -1.40 0.06
VAR00007 97 0 NaN NA NA NaN NA Inf -Inf -Inf NA NA NA
FAMILIA01 98 559 0.93 0.25 1.0 1.00 0.00 0 1 1 -3.48 10.13 0.01
FAMILIA02 99 553 0.56 0.50 1.0 0.57 0.00 0 1 1 -0.23 -1.95 0.02
FAMILIA03 100 548 0.37 0.48 0.0 0.34 0.00 0 1 1 0.52 -1.73 0.02
FAMILIA07 101 557 0.49 0.50 0.0 0.49 0.00 0 1 1 0.05 -2.00 0.02
FAMILIA10 102 552 0.52 0.50 1.0 0.52 0.00 0 1 1 -0.07 -2.00 0.02
FAMILIA11 103 538 0.63 0.48 1.0 0.66 0.00 0 1 1 -0.55 -1.71 0.02
FAMILIA12 104 556 0.78 0.41 1.0 0.85 0.00 0 1 1 -1.36 -0.14 0.02
FAMILIA13 105 550 0.71 0.45 1.0 0.77 0.00 0 1 1 -0.94 -1.12 0.02
FAMILIA17 106 551 0.54 0.50 1.0 0.54 0.00 0 1 1 -0.14 -1.98 0.02
FAMILIA20 107 553 0.53 0.50 1.0 0.53 0.00 0 1 1 -0.10 -1.99 0.02
FAMILIA21 108 552 0.74 0.44 1.0 0.80 0.00 0 1 1 -1.11 -0.77 0.02
FAMILIA22 109 546 0.61 0.49 1.0 0.64 0.00 0 1 1 -0.46 -1.79 0.02
FAMILIA23 110 555 0.21 0.41 0.0 0.14 0.00 0 1 1 1.41 0.00 0.02
FAMILIA27 111 555 0.27 0.44 0.0 0.21 0.00 0 1 1 1.03 -0.94 0.02
FAMILIA30 112 556 0.44 1.04 0.0 0.37 0.00 0 22 22 16.12 331.34 0.04
FAMILIA31 113 543 0.75 0.44 1.0 0.81 0.00 0 1 1 -1.13 -0.73 0.02
FAMILIA32 114 549 0.65 0.48 1.0 0.68 0.00 0 1 1 -0.62 -1.62 0.02
FAMILIA33 115 547 0.72 0.45 1.0 0.77 0.00 0 1 1 -0.96 -1.08 0.02
FAMILIA37 116 551 0.56 0.50 1.0 0.57 0.00 0 1 1 -0.24 -1.95 0.02
FAMILIA40 117 535 0.66 0.63 1.0 0.68 0.00 0 10 10 5.87 89.83 0.03
FAMILIA41 118 550 0.55 0.50 1.0 0.56 0.00 0 1 1 -0.18 -1.97 0.02
FAMILIA42 119 546 0.50 0.50 0.0 0.50 0.00 0 1 1 0.01 -2.00 0.02
FAMILIA43 120 550 0.27 0.45 0.0 0.22 0.00 0 1 1 1.02 -0.97 0.02
FAMILIA47 121 549 0.80 0.40 1.0 0.88 0.00 0 1 1 -1.52 0.32 0.02
FAMILIA50 122 547 0.62 0.49 1.0 0.65 0.00 0 1 1 -0.48 -1.77 0.02
FAMILIA51 123 550 0.81 0.39 1.0 0.89 0.00 0 1 1 -1.57 0.46 0.02
FAMILIA52 124 540 0.52 0.50 1.0 0.52 0.00 0 1 1 -0.07 -2.00 0.02
FAMILIA53 125 548 0.19 0.39 0.0 0.11 0.00 0 1 1 1.58 0.49 0.02
FAMILIA57 126 545 0.68 0.47 1.0 0.72 0.00 0 1 1 -0.76 -1.43 0.02
FAMILIA60 127 539 0.36 0.48 0.0 0.32 0.00 0 1 1 0.60 -1.64 0.02
FAMILIA61 128 548 0.71 0.46 1.0 0.76 0.00 0 1 1 -0.91 -1.17 0.02
FAMILIA62 129 539 0.56 0.50 1.0 0.57 0.00 0 1 1 -0.23 -1.95 0.02
FAMILIA63 130 547 0.26 0.44 0.0 0.20 0.00 0 1 1 1.12 -0.76 0.02
FAMILIA67 131 534 0.41 0.49 0.0 0.39 0.00 0 1 1 0.36 -1.88 0.02
FAMILIA70 132 545 0.62 0.49 1.0 0.65 0.00 0 1 1 -0.48 -1.77 0.02
FAMILIA71 133 548 0.85 0.36 1.0 0.93 0.00 0 1 1 -1.94 1.76 0.02
FAMILIA72 134 547 0.31 0.46 0.0 0.26 0.00 0 1 1 0.83 -1.31 0.02
FAMILIA73 135 546 0.21 0.41 0.0 0.14 0.00 0 1 1 1.43 0.04 0.02
FAMILIA77 136 540 0.64 0.49 1.0 0.67 0.00 0 3 3 -0.36 -0.78 0.02
FAMILIA80 137 524 0.34 0.49 0.0 0.30 0.00 0 3 3 0.91 -0.01 0.02
FAMILIA81 138 543 0.68 0.48 1.0 0.72 0.00 0 3 3 -0.52 -0.53 0.02
FAMILIA82 139 542 0.75 0.45 1.0 0.80 0.00 0 3 3 -0.82 0.22 0.02
FAMILIA83 140 544 0.38 0.50 0.0 0.35 0.00 0 3 3 0.71 -0.48 0.02
FAMILIA87 141 548 0.67 0.48 1.0 0.70 0.00 0 3 3 -0.46 -0.64 0.02
FAMILIA90 142 532 0.45 0.50 0.0 0.44 0.00 0 1 1 0.19 -1.97 0.02
VAR00001 143 0 NaN NA NA NaN NA Inf -Inf -Inf NA NA NA
F1CLIescolar 144 540 24.79 6.27 25.0 24.69 5.93 8 40 32 0.08 -0.11 0.27
F2CLIescolar 145 526 20.38 5.21 20.0 20.38 5.93 6 63 57 0.90 7.29 0.23
AUTOACEPTACION 146 546 18.10 4.51 19.0 18.59 4.45 4 24 20 -0.90 0.41 0.19
RELApositiva 147 531 24.21 4.87 25.0 24.76 4.45 6 30 24 -0.94 0.43 0.21
AUTONOMIA 148 494 26.21 5.72 26.0 26.43 5.93 8 36 28 -0.38 -0.10 0.26
DOMINIO 149 502 21.18 4.63 21.0 21.28 4.45 8 45 37 0.02 0.74 0.21
CRECIMIENTO 150 551 18.43 3.84 19.0 18.68 4.45 6 24 18 -0.57 -0.13 0.16
PROPOSITO 151 522 21.60 5.34 22.0 21.91 5.93 5 30 25 -0.49 -0.22 0.23
TOTALbienestar 152 408 129.36 20.41 131.0 130.33 20.76 58 174 116 -0.44 -0.02 1.01
fAco 153 490 6.61 2.23 7.0 6.90 2.97 0 9 9 -0.95 0.28 0.10
FAex 154 491 5.24 1.80 5.0 5.29 1.48 0 9 9 -0.33 -0.36 0.08
FAct 155 493 3.30 1.96 3.0 3.16 1.48 0 9 9 0.67 0.07 0.09
FAsr 156 491 5.02 1.82 5.0 5.06 1.48 0 10 10 -0.16 -0.65 0.08
FAcn 157 464 4.50 2.11 4.0 4.44 1.48 0 27 27 2.96 28.67 0.10
TOTALfamiliar 158 382 24.48 4.13 25.0 24.57 4.45 12 42 30 -0.11 0.61 0.21

Las Variables se dividen en varios grupos:

varBPS = df %>% select(starts_with("BPS")) %>% names()
varCLIMA= df %>% select(starts_with("CLIMA")) %>% names()
varFAM= df %>% select(starts_with("FAMILIA")) %>% names()

Dentro de las BPS, la división es: - Autoaceptación: 1,7,17,24 - Relaciones positivas: 2,8,12,22,25 - Autonomía: 3,4,9,13,18,23 - Dominio del entorno: 5,10,14,19,29 - Crecimiento personal: 21,26,27,28 - Propósito en la vida: 6,11,15,16,20

FacBPS=list("Autoaceptación"=c(1,7,17,24),
            "Rel.positivas"=c(2,8,12,22,25),
            "Autonomía"=c(3,4,9,13,18,23),
            "Dominio"=c(5,10,14,19,29),
            "Crecimiento"=c(21,26,27,28),
            "Propósito"=c(6,11,15,16,20)) %>%
  map(~ sprintf("BPS%02d",.))
FacBPS
## $Autoaceptación
## [1] "BPS01" "BPS07" "BPS17" "BPS24"
## 
## $Rel.positivas
## [1] "BPS02" "BPS08" "BPS12" "BPS22" "BPS25"
## 
## $Autonomía
## [1] "BPS03" "BPS04" "BPS09" "BPS13" "BPS18" "BPS23"
## 
## $Dominio
## [1] "BPS05" "BPS10" "BPS14" "BPS19" "BPS29"
## 
## $Crecimiento
## [1] "BPS21" "BPS26" "BPS27" "BPS28"
## 
## $Propósito
## [1] "BPS06" "BPS11" "BPS15" "BPS16" "BPS20"

2 Exploración de los items por familia de variables

Cabría esperar que en cada familia de variables existiese una cierta asociación (directa o inversa) entre ellas. O que al menos existiese cierta estructura factorial. Exploremos todas las variables conjuntamente para pasar después a estudiarlas por familias.

dfTrabajo=df %>% select(varBPS,varCLIMA,varFAM) %>% filter(complete.cases(.))
corr <- round( cor( dfTrabajo), 1)
p.mat <- cor_pmat(dfTrabajo)
ggcorrplot(corr, hc.order = TRUE, type = "lower", lab = FALSE,tl.cex=7,tl.srt = 90)

2.1 Exploración de BPS

2.1.1 Descriptiva

Exploremosla descriptiva de cada item:

varTrabajo=FacBPS %>% unlist()
dfTrabajo=df %>% select(varTrabajo) %>% filter(complete.cases(.))


dfLong=dfTrabajo %>% gather(Item,Puntos)
table(dfLong$Puntos)
## 
##    1    2    3    4    5    6 
##  734  859 1544 2015 2465 4215

Se ve algún error de codificación. Lo dejamos fuera en las siguiente gráfica:

dfLong=dfLong %>% filter(Puntos<=6)
ggplot(dfLong,aes(x=Puntos)) + 
  geom_bar()+ 
  theme_classic()+
  facet_wrap(~Item)

Alguno de los items, como el BPS02 no parecen tener mucha capacidad de discriminar

2.1.2 Adecuación de la muestra (Índice KMO)

Lo usamos como una indicación de si los items tienen una estructura factorizable. Si la relación entre cada par de variables fuese explicable en buena medida por el resto de variables (hay estructura factorial), veríamos un KMO alto. Arriba más o menos se aprecian algunos factores, pero vamos a confirmarlo:

corr <- cor( dfTrabajo)
indicesKMO=KMO(corr)

dfKMO=data.frame(Variable=c("Global",names(indicesKMO$MSAi)),KMO=c(indicesKMO$MSA,indicesKMO$MSAi)) %>% as_tibble() %>%
  mutate(Interpretacion=cut(KMO,breaks = c(0,.5,.6,.7,.8,.9,1),labels = c("Unacceptable","Miserable","Mediocre","Middling","Meritorious","Marvelous")))


dfKMO  %>% knitr::kable()
Variable KMO Interpretacion
Global 0.88 Meritorious
Autoaceptación1 0.93 Marvelous
Autoaceptación2 0.90 Meritorious
Autoaceptación3 0.90 Meritorious
Autoaceptación4 0.91 Marvelous
Rel.positivas1 0.86 Meritorious
Rel.positivas2 0.86 Meritorious
Rel.positivas3 0.82 Meritorious
Rel.positivas4 0.84 Meritorious
Rel.positivas5 0.77 Middling
Autonomía1 0.86 Meritorious
Autonomía2 0.76 Middling
Autonomía3 0.78 Middling
Autonomía4 0.77 Middling
Autonomía5 0.89 Meritorious
Autonomía6 0.88 Meritorious
Dominio1 0.91 Marvelous
Dominio2 0.90 Meritorious
Dominio3 0.87 Meritorious
Dominio4 0.86 Meritorious
Dominio5 0.91 Marvelous
Crecimiento1 0.91 Marvelous
Crecimiento2 0.73 Middling
Crecimiento3 0.91 Marvelous
Crecimiento4 0.87 Meritorious
Propósito1 0.91 Marvelous
Propósito2 0.91 Marvelous
Propósito3 0.92 Marvelous
Propósito4 0.91 Marvelous
Propósito5 0.91 Marvelous

Las etiquetas que se han usado viene de aquí:

In his delightfully flamboyant style, Kaiser (1975) suggested that KMO > .9 were marvelous, in the .80s, mertitourious, in the .70s, middling, in the .60s, medicore, in the 50s, miserable, and less than .5, unacceptable.

2.1.3 correlaciones

Las correlaciones existentes entre los items de esta parte del cuestionario está reflejada en la siguiente matriz de correlaciones:

dfTrabajo=df %>% select(varTrabajo) %>% filter(complete.cases(.))
corr <- round( cor( dfTrabajo), 1)
ggcorrplot(corr,lab = TRUE,lab_size = 3)

Dejemos de lado las correlaciones que no sean significativas:

p.mat <- cor_pmat(dfTrabajo)
ggcorrplot(corr, p.mat = p.mat, insig = "blank")

2.2 Análisis Factorial

Vamos a ver que tal es eso de los 6 factores comparado con otras posibilidades:

There are multiple ways to determine the appropriate number of factors in exploratory factor analysis. Routines for the Very Simple Structure (VSS) criterion allow one to compare solutions of varying complexity and for different number of factors. Graphic output indicates the “optimal” number of factors for different levels of complexity. The Velicer MAP criterion is another good choice. nfactors finds and plots several of these alternative estimates.

Así que probemos con algunas posibilidades:

fa.parallel(dfTrabajo)

## Parallel analysis suggests that the number of factors =  5  and the number of components =  4
analisisvss=vss(dfTrabajo)

print(summary(analisisvss))
## 
## Very Simple Structure
## VSS complexity 1 achieves a maximimum of 0.64  with  1  factors
## VSS complexity 2 achieves a maximimum of 0.76  with  3  factors
## 
## The Velicer MAP criterion achieves a minimum of 0.02  with  2  factors
##  NULL
plot(analisisvss)

Vamos a elegir 6 factores. Aunque sabemos cuáles son de antemano, vemos si coincide con el análisis exploratorio:

analisisfa=fa(dfTrabajo,nfactors = 6)
print(summary(analisisfa))
## 
## Factor analysis with Call: fa(r = dfTrabajo, nfactors = 6)
## 
## Test of the hypothesis that 6 factors are sufficient.
## The degrees of freedom for the model is 247  and the objective function was  0.88 
## The number of observations was  408  with Chi Square =  345  with prob <  3.6e-05 
## 
## The root mean square of the residuals (RMSA) is  0.03 
## The df corrected root mean square of the residuals is  0.04 
## 
## Tucker Lewis Index of factoring reliability =  0.94
## RMSEA index =  0.033  and the 10 % confidence intervals are  0.023 0.039
## BIC =  -1140
##  With factor correlations of 
##       MR1  MR5   MR2  MR3  MR6  MR4
## MR1  1.00 0.50 -0.01 0.32 0.17 0.30
## MR5  0.50 1.00  0.20 0.37 0.23 0.26
## MR2 -0.01 0.20  1.00 0.20 0.39 0.12
## MR3  0.32 0.37  0.20 1.00 0.23 0.21
## MR6  0.17 0.23  0.39 0.23 1.00 0.10
## MR4  0.30 0.26  0.12 0.21 0.10 1.00
##       MR1  MR5   MR2  MR3  MR6  MR4
## MR1  1.00 0.50 -0.01 0.32 0.17 0.30
## MR5  0.50 1.00  0.20 0.37 0.23 0.26
## MR2 -0.01 0.20  1.00 0.20 0.39 0.12
## MR3  0.32 0.37  0.20 1.00 0.23 0.21
## MR6  0.17 0.23  0.39 0.23 1.00 0.10
## MR4  0.30 0.26  0.12 0.21 0.10 1.00

RMSEA no tiene mal aspecto con 6 factores (RMSEA<0.05, IC 95% incluido) 

plot(analisisfa)

Vamos a visualizar la estructura factorial que se nos sugiere con el número de factores elegidos.

fa.diagram(analisisfa)

Los factores automáticos por el análisis exploratorios no han coincidido con los del instrumento de medida. Pero hay otras formas de agruparlos:

iclust(dfTrabajo)

## ICLUST (Item Cluster Analysis)
## Call: iclust(r.mat = dfTrabajo)
## 
## Purified Alpha:
##  C27  C25 
## 0.87 0.75 
## 
## G6* reliability:
## C27 C25 
##   1   1 
## 
## Original Beta:
##  C27  C25 
## 0.67 0.47 
## 
## Cluster size:
## C27 C25 
##  19  10 
## 
## Item by Cluster Structure matrix:
##                   O   P   C27   C25
## Autoaceptación1 C27 C27  0.53  0.27
## Autoaceptación2 C27 C27  0.62  0.37
## Autoaceptación3 C27 C27  0.69  0.33
## Autoaceptación4 C27 C27  0.71  0.37
## Rel.positivas1  C25 C25  0.30  0.51
## Rel.positivas2  C25 C25  0.36  0.60
## Rel.positivas3  C27 C27  0.47  0.27
## Rel.positivas4  C25 C25  0.19  0.46
## Rel.positivas5  C27 C27  0.42  0.35
## Autonomía1      C27 C27  0.35  0.30
## Autonomía2      C25 C25  0.11  0.53
## Autonomía3      C25 C25  0.13  0.58
## Autonomía4      C25 C25  0.07  0.39
## Autonomía5      C27 C27  0.48  0.24
## Autonomía6      C25 C25  0.22  0.51
## Dominio1        C25 C25  0.36  0.50
## Dominio2        C27 C27  0.55  0.19
## Dominio3        C27 C27  0.28 -0.03
## Dominio4        C25 C25  0.19  0.52
## Dominio5        C27 C27  0.49  0.24
## Crecimiento1    C27 C27  0.48  0.07
## Crecimiento2    C25 C25  0.20  0.31
## Crecimiento3    C27 C27  0.63  0.32
## Crecimiento4    C27 C27  0.41  0.14
## Propósito1      C27 C27  0.49  0.09
## Propósito2      C27 C27  0.55  0.15
## Propósito3      C27 C27  0.63  0.26
## Propósito4      C27 C27  0.58  0.16
## Propósito5      C27 C27  0.49  0.16
## 
## With eigenvalues of:
## C27 C25 
## 5.3 2.8 
## 
## Purified scale intercorrelations
##  reliabilities on diagonal
##  correlations corrected for attenuation above diagonal: 
##      C27  C25
## C27 0.87 0.44
## C25 0.36 0.75
## 
## Cluster fit =  0.71   Pattern fit =  0.96  RMSR =  0.06
omega(dfTrabajo,nfactors = 6)

## Omega 
## Call: omega(m = dfTrabajo, nfactors = 6)
## Alpha:                 0.87 
## G.6:                   0.9 
## Omega Hierarchical:    0.62 
## Omega H asymptotic:    0.68 
## Omega Total            0.9 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##                     g   F1*   F2*   F3*   F4*   F5*   F6*   h2   u2   p2
## Autoaceptación1  0.42  0.37                               0.34 0.66 0.53
## Autoaceptación2  0.53  0.31  0.20        0.24             0.48 0.52 0.59
## Autoaceptación3  0.60                    0.44             0.59 0.41 0.62
## Autoaceptación4  0.58  0.29              0.20        0.22 0.53 0.47 0.63
## Rel.positivas1   0.36        0.41              0.24       0.42 0.58 0.32
## Rel.positivas2   0.41        0.46              0.20       0.49 0.51 0.34
## Rel.positivas3   0.41                          0.58       0.52 0.48 0.32
## Rel.positivas4   0.27 -0.22  0.25                    0.21 0.27 0.73 0.28
## Rel.positivas5   0.42                          0.61       0.56 0.44 0.31
## Autonomía1       0.37                    0.33             0.32 0.68 0.44
## Autonomía2       0.22              0.63                   0.46 0.54 0.11
## Autonomía3       0.25              0.69                   0.54 0.46 0.12
## Autonomía4                         0.40              0.26 0.27 0.73 0.07
## Autonomía5       0.45                    0.47             0.43 0.57 0.47
## Autonomía6       0.30              0.25                   0.29 0.71 0.32
## Dominio1         0.35  0.21  0.33                         0.34 0.66 0.37
## Dominio2         0.39  0.46                               0.37 0.63 0.42
## Dominio3               0.20                               0.11 0.89 0.26
## Dominio4         0.25        0.48                    0.20 0.37 0.63 0.18
## Dominio5         0.38  0.20                               0.26 0.74 0.56
## Crecimiento1     0.34                                0.25 0.32 0.68 0.37
## Crecimiento2                                         0.47 0.29 0.71 0.12
## Crecimiento3     0.51                                0.47 0.56 0.44 0.47
## Crecimiento4     0.30                                0.30 0.23 0.77 0.39
## Propósito1       0.34  0.31                               0.28 0.72 0.41
## Propósito2       0.38  0.43                               0.40 0.60 0.35
## Propósito3       0.47  0.46                               0.45 0.55 0.49
## Propósito4       0.43  0.43                               0.45 0.55 0.42
## Propósito5       0.34  0.41                               0.29 0.71 0.39
## 
## With eigenvalues of:
##    g  F1*  F2*  F3*  F4*  F5*  F6* 
## 4.25 1.68 1.05 1.28 0.77 0.95 0.98 
## 
## general/max  2.5   max/min =   2.2
## mean percent general =  0.37    with sd =  0.15 and cv of  0.41 
## Explained Common Variance of the general factor =  0.39 
## 
## The degrees of freedom are 247  and the fit is  0.88 
## The number of observations was  408  with Chi Square =  345  with prob <  3.6e-05
## The root mean square of the residuals is  0.03 
## The df corrected root mean square of the residuals is  0.04
## RMSEA index =  0.033  and the 10 % confidence intervals are  0.023 0.039
## BIC =  -1140
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 377  and the fit is  3.6 
## The number of observations was  408  with Chi Square =  1425  with prob <  1.8e-121
## The root mean square of the residuals is  0.11 
## The df corrected root mean square of the residuals is  0.11 
## 
## RMSEA index =  0.084  and the 10 % confidence intervals are  0.078 0.087
## BIC =  -841 
## 
## Measures of factor score adequacy             
##                                                  g  F1*  F2*  F3*   F4*
## Correlation of scores with factors            0.80 0.77 0.77 0.83  0.64
## Multiple R square of scores with factors      0.65 0.60 0.59 0.69  0.42
## Minimum correlation of factor score estimates 0.29 0.19 0.18 0.38 -0.17
##                                                F5*  F6*
## Correlation of scores with factors            0.76 0.75
## Multiple R square of scores with factors      0.57 0.56
## Minimum correlation of factor score estimates 0.14 0.13
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1*  F2*  F3*  F4*
## Omega total for total scores and subscales    0.90 0.77 0.59 0.61 0.67
## Omega general for total scores and subscales  0.62 0.44 0.25 0.11 0.38
## Omega group for total scores and subscales    0.15 0.33 0.34 0.50 0.29
##                                                F5*  F6*
## Omega total for total scores and subscales    0.69 0.54
## Omega general for total scores and subscales  0.22 0.24
## Omega group for total scores and subscales    0.47 0.30
analisisalpha=alpha(dfTrabajo)
analisisalpha$total %>% knitr::kable()
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.87 0.87 0.9 0.19 6.8 0.01 4.5 0.7 0.19
analisisalpha$item.stats
##                   n raw.r std.r r.cor r.drop mean  sd
## Autoaceptación1 408  0.53  0.53  0.51   0.48  4.1 1.4
## Autoaceptación2 408  0.62  0.63  0.62   0.57  4.5 1.6
## Autoaceptación3 408  0.65  0.66  0.66   0.60  4.6 1.4
## Autoaceptación4 408  0.68  0.69  0.69   0.64  4.8 1.4
## Rel.positivas1  408  0.46  0.45  0.43   0.40  5.0 1.6
## Rel.positivas2  408  0.53  0.52  0.50   0.47  4.8 1.6
## Rel.positivas3  408  0.47  0.48  0.46   0.42  4.9 1.3
## Rel.positivas4  408  0.37  0.36  0.32   0.30  4.5 1.7
## Rel.positivas5  408  0.47  0.48  0.46   0.41  4.9 1.4
## Autonomía1      408  0.42  0.42  0.39   0.35  4.4 1.6
## Autonomía2      408  0.34  0.32  0.29   0.27  4.4 1.6
## Autonomía3      408  0.38  0.35  0.33   0.30  4.4 1.7
## Autonomía4      408  0.26  0.25  0.20   0.19  4.4 1.5
## Autonomía5      408  0.48  0.49  0.46   0.42  4.5 1.4
## Autonomía6      408  0.42  0.40  0.36   0.34  4.3 1.7
## Dominio1        408  0.51  0.49  0.47   0.44  4.4 1.7
## Dominio2        408  0.51  0.52  0.49   0.45  3.7 1.6
## Dominio3        408  0.25  0.26  0.21   0.18  4.4 1.4
## Dominio4        408  0.40  0.38  0.35   0.33  4.0 1.6
## Dominio5        408  0.49  0.50  0.47   0.43  4.6 1.5
## Crecimiento1    408  0.42  0.43  0.40   0.36  4.7 1.4
## Crecimiento2    408  0.33  0.32  0.28   0.25  4.4 1.7
## Crecimiento3    408  0.60  0.61  0.61   0.56  4.7 1.3
## Crecimiento4    408  0.39  0.41  0.37   0.33  4.5 1.3
## Propósito1      408  0.44  0.45  0.42   0.37  4.4 1.5
## Propósito2      408  0.49  0.51  0.48   0.44  4.3 1.4
## Propósito3      408  0.59  0.60  0.59   0.54  4.3 1.6
## Propósito4      408  0.52  0.53  0.51   0.46  4.2 1.5
## Propósito5      408  0.47  0.47  0.44   0.40  4.2 1.6

3 Análisis confirmatorio

Vemo si las respuestas a los cuestionarios se adecuan a el modelo propuesto de 6 factores.

dfTrabajo=df %>% select(as.character(varTrabajo)) %>% filter(complete.cases(.))
Modelo <-
'Autoaceptacion =~ BPS01+BPS07+BPS17+BPS24
RelPositivas =~ BPS02+BPS08+BPS12+BPS22+BPS25
Autonomia =~ BPS03+BPS04+BPS09+BPS13+BPS18+BPS23
Dominio =~ BPS05+BPS10+BPS14+BPS19+BPS29
Crecimiento =~ BPS21+BPS26+BPS27+BPS28
Proposito =~ BPS06+BPS11+BPS15+BPS16+BPS20'



Modelo.fit <- cfa(model = Modelo, data = dfTrabajo )


summary(Modelo.fit,standardized = TRUE, fit.measures = TRUE)
## lavaan 0.6-3 ended normally after 64 iterations
## 
##   Optimization method                           NLMINB
##   Number of free parameters                         73
## 
##   Number of observations                           408
## 
##   Estimator                                         ML
##   Model Fit Test Statistic                     926.335
##   Degrees of freedom                               362
##   P-value (Chi-square)                           0.000
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic             3359.927
##   Degrees of freedom                               406
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    0.809
##   Tucker-Lewis Index (TLI)                       0.786
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -20459.466
##   Loglikelihood unrestricted model (H1)     -19996.299
## 
##   Number of free parameters                         73
##   Akaike (AIC)                               41064.932
##   Bayesian (BIC)                             41357.754
##   Sample-size adjusted Bayesian (BIC)        41126.113
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.062
##   90 Percent Confidence Interval          0.057  0.067
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.076
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Information saturated (h1) model          Structured
##   Standard Errors                             Standard
## 
## Latent Variables:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Autoaceptacion =~                                                      
##     BPS01              1.000                               0.794    0.561
##     BPS07              1.386    0.135   10.293    0.000    1.100    0.704
##     BPS17              1.224    0.118   10.391    0.000    0.972    0.716
##     BPS24              1.337    0.124   10.771    0.000    1.061    0.764
##   RelPositivas =~                                                        
##     BPS02              1.000                               0.954    0.615
##     BPS08              1.087    0.115    9.459    0.000    1.038    0.658
##     BPS12              0.715    0.087    8.264    0.000    0.683    0.537
##     BPS22              0.688    0.106    6.477    0.000    0.657    0.396
##     BPS25              0.826    0.095    8.694    0.000    0.788    0.576
##   Autonomia =~                                                           
##     BPS03              1.000                               0.687    0.427
##     BPS04              1.449    0.218    6.652    0.000    0.996    0.609
##     BPS09              1.623    0.239    6.782    0.000    1.115    0.646
##     BPS13              0.833    0.160    5.205    0.000    0.573    0.376
##     BPS18              0.703    0.145    4.847    0.000    0.484    0.337
##     BPS23              1.252    0.201    6.215    0.000    0.860    0.516
##   Dominio =~                                                             
##     BPS05              1.000                               0.742    0.443
##     BPS10              1.182    0.159    7.418    0.000    0.878    0.535
##     BPS14              0.463    0.110    4.196    0.000    0.344    0.238
##     BPS19              0.643    0.130    4.946    0.000    0.478    0.291
##     BPS29              0.968    0.138    7.025    0.000    0.718    0.484
##   Crecimiento =~                                                         
##     BPS21              1.000                               0.716    0.524
##     BPS26              0.820    0.152    5.405    0.000    0.587    0.338
##     BPS27              1.392    0.159    8.766    0.000    0.997    0.779
##     BPS28              0.967    0.129    7.515    0.000    0.693    0.531
##   Proposito =~                                                           
##     BPS06              1.000                               0.789    0.510
##     BPS11              1.012    0.125    8.104    0.000    0.798    0.559
##     BPS15              1.350    0.149    9.069    0.000    1.064    0.685
##     BPS16              1.259    0.143    8.804    0.000    0.993    0.646
##     BPS20              1.088    0.139    7.836    0.000    0.858    0.530
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Autoaceptacion ~~                                                      
##     RelPositivas       0.432    0.070    6.207    0.000    0.570    0.570
##     Autonomia          0.240    0.051    4.680    0.000    0.440    0.440
##     Dominio            0.539    0.083    6.473    0.000    0.915    0.915
##     Crecimiento        0.400    0.063    6.298    0.000    0.703    0.703
##     Proposito          0.524    0.077    6.806    0.000    0.836    0.836
##   RelPositivas ~~                                                        
##     Autonomia          0.404    0.075    5.375    0.000    0.615    0.615
##     Dominio            0.459    0.081    5.642    0.000    0.648    0.648
##     Crecimiento        0.294    0.060    4.904    0.000    0.430    0.430
##     Proposito          0.350    0.067    5.262    0.000    0.466    0.466
##   Autonomia ~~                                                           
##     Dominio            0.256    0.059    4.364    0.000    0.503    0.503
##     Crecimiento        0.138    0.041    3.356    0.001    0.281    0.281
##     Proposito          0.098    0.041    2.404    0.016    0.181    0.181
##   Dominio ~~                                                             
##     Crecimiento        0.389    0.069    5.602    0.000    0.731    0.731
##     Proposito          0.558    0.089    6.236    0.000    0.953    0.953
##   Crecimiento ~~                                                         
##     Proposito          0.386    0.065    5.937    0.000    0.683    0.683
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BPS01             1.371    0.104   13.194    0.000    1.371    0.685
##    .BPS07             1.229    0.103   11.901    0.000    1.229    0.504
##    .BPS17             0.898    0.077   11.734    0.000    0.898    0.487
##    .BPS24             0.804    0.074   10.838    0.000    0.804    0.416
##    .BPS02             1.495    0.130   11.499    0.000    1.495    0.622
##    .BPS08             1.412    0.131   10.785    0.000    1.412    0.567
##    .BPS12             1.153    0.093   12.450    0.000    1.153    0.712
##    .BPS22             2.316    0.172   13.445    0.000    2.316    0.843
##    .BPS25             1.253    0.104   12.026    0.000    1.253    0.669
##    .BPS03             2.118    0.162   13.104    0.000    2.118    0.818
##    .BPS04             1.687    0.152   11.122    0.000    1.687    0.630
##    .BPS09             1.734    0.166   10.428    0.000    1.734    0.582
##    .BPS13             1.996    0.149   13.417    0.000    1.996    0.859
##    .BPS18             1.820    0.134   13.607    0.000    1.820    0.886
##    .BPS23             2.036    0.165   12.348    0.000    2.036    0.733
##    .BPS05             2.251    0.166   13.538    0.000    2.251    0.803
##    .BPS10             1.924    0.151   12.751    0.000    1.924    0.714
##    .BPS14             1.959    0.138   14.161    0.000    1.959    0.943
##    .BPS19             2.461    0.175   14.079    0.000    2.461    0.915
##    .BPS29             1.683    0.127   13.251    0.000    1.683    0.765
##    .BPS21             1.359    0.108   12.585    0.000    1.359    0.726
##    .BPS26             2.677    0.195   13.722    0.000    2.677    0.886
##    .BPS27             0.642    0.089    7.180    0.000    0.642    0.392
##    .BPS28             1.224    0.098   12.516    0.000    1.224    0.718
##    .BPS06             1.771    0.133   13.280    0.000    1.771    0.740
##    .BPS11             1.403    0.108   12.975    0.000    1.403    0.688
##    .BPS15             1.285    0.110   11.648    0.000    1.285    0.531
##    .BPS16             1.377    0.113   12.175    0.000    1.377    0.583
##    .BPS20             1.887    0.143   13.166    0.000    1.887    0.719
##     Autoaceptacion    0.630    0.110    5.753    0.000    1.000    1.000
##     RelPositivas      0.911    0.153    5.957    0.000    1.000    1.000
##     Autonomia         0.473    0.123    3.853    0.000    1.000    1.000
##     Dominio           0.551    0.128    4.295    0.000    1.000    1.000
##     Crecimiento       0.513    0.104    4.953    0.000    1.000    1.000
##     Proposito         0.622    0.123    5.061    0.000    1.000    1.000

How Large a Sample Size Do I Need? Rules of Thumb Ratio of Sample Size to the Number of Free Parameters Tanaka (1987): 20 to 1 (Most analysts now think that is unrealistically high.) Goal: Bentler & Chou (1987): 5 to 1 Several published studies do not meet this goal.

En este caso el número d parámetros libres es 73. Tomando una ratio de 5 a 1, con muestra de 73*5=225 estáis bien, y ya tenéis más de 400 en la base actual. No necesitáis más.

Para estudiar la capacidad del modelo prouesto de reproducir los datos, se pueden estudiar varias medidas. Una de ellas es RMSEA, que veis con el intervalo de confianza incluido. en principio sería un modelo adecuado:

Root Mean Square Error of Approximation (RMSEA) This absolute measure of fit is based on the non-centrality parameter.The RMSEA is currently the most popular measure of model fit and it now reported in virtually all papers that use CFA or SEM and some refer to the measure as the “Ramsey.”

MacCallum, Browne and Sugawara (1996) have used 0.01, 0.05, and 0.08 to indicate excellent, good, and mediocre fit, respectively. However, others have suggested 0.10 as the cutoff for poor fitting models. These are definitions for the population. That is, a given model may have a population value of 0.05 (which would not be known), but in the sample it might be greater than 0.10. Use of confidence intervals and tests of PCLOSE can help understand the sampling error in the RMSEA. There is greater sampling error for small df and low N models, especially for the former. Thus, models with small df and low N can have artificially large values of the RMSEA. For instance, a chi square of 2.098 (a value not statistically significant), with a df of 1 and N of 70 yields an RMSEA of 0.126. For this reason, Kenny, Kaniskan, and McCoach (2014) argue to not even compute the RMSEA for low df models.

A confidence interval can be computed for the RMSEA. Ideally the lower value of the 90% confidence interval includes or is very near zero (or no worse than 0.05) and the upper value is not very large, i.e., less than .08. The width of the confidence interval is very informative about the precision in the estimate of the RMSEA.

Otro indicador es TLI que también aparece ahí:

Tucker Lewis Index or Non-normed Fit Index (NNFI) If the index is greater than one, it is set at one. A value between .90 and .95 is now considered marginal, above .95 is good, and below .90 is considered to be a poor fitting model.

Ha salido Tucker-Lewis Index (TLI) 0.787

Así que hay que intentar mejorarlo.

Note that the TLI (and the CFI which follows) depends on the average size of the correlations in the data. If the average correlation between variables is not high, then the TLI will not be very high.

Esto es algo que ocurre si miramos la matriz de correlaciones. Lo mismo habría que revisar si ciertos items deberían estar.

dfTrabajo=df %>% select(as.character(varTrabajo)) %>% filter(complete.cases(.))
Modelo <-
'Autoaceptacion =~ BPS01+BPS07+BPS17+BPS24
RelPositivas =~ BPS02+BPS08+BPS12+BPS25
Autonomia =~ BPS04+BPS09+BPS23
Crecimiento =~ BPS21+BPS27+BPS28
Proposito =~ BPS06+BPS11+BPS15+BPS16+BPS20'




Modelo.fit <- cfa(model = Modelo, data = dfTrabajo )


summary(Modelo.fit,standardized = TRUE, fit.measures = TRUE)
## lavaan 0.6-3 ended normally after 70 iterations
## 
##   Optimization method                           NLMINB
##   Number of free parameters                         48
## 
##   Number of observations                           408
## 
##   Estimator                                         ML
##   Model Fit Test Statistic                     344.505
##   Degrees of freedom                               142
##   P-value (Chi-square)                           0.000
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic             2233.883
##   Degrees of freedom                               171
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    0.902
##   Tucker-Lewis Index (TLI)                       0.882
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -13073.502
##   Loglikelihood unrestricted model (H1)     -12901.249
## 
##   Number of free parameters                         48
##   Akaike (AIC)                               26243.004
##   Bayesian (BIC)                             26435.544
##   Sample-size adjusted Bayesian (BIC)        26283.233
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.059
##   90 Percent Confidence Interval          0.051  0.067
##   P-value RMSEA <= 0.05                          0.030
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.055
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Information saturated (h1) model          Structured
##   Standard Errors                             Standard
## 
## Latent Variables:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Autoaceptacion =~                                                      
##     BPS01              1.000                               0.793    0.560
##     BPS07              1.401    0.137   10.248    0.000    1.110    0.711
##     BPS17              1.233    0.119   10.326    0.000    0.977    0.720
##     BPS24              1.326    0.125   10.605    0.000    1.051    0.756
##   RelPositivas =~                                                        
##     BPS02              1.000                               0.933    0.602
##     BPS08              1.059    0.120    8.831    0.000    0.988    0.627
##     BPS12              0.781    0.093    8.364    0.000    0.729    0.573
##     BPS25              0.897    0.103    8.707    0.000    0.837    0.611
##   Autonomia =~                                                           
##     BPS04              1.000                               1.113    0.680
##     BPS09              1.117    0.136    8.183    0.000    1.243    0.720
##     BPS23              0.667    0.097    6.843    0.000    0.742    0.445
##   Crecimiento =~                                                         
##     BPS21              1.000                               0.736    0.538
##     BPS27              1.303    0.150    8.710    0.000    0.959    0.750
##     BPS28              0.944    0.125    7.535    0.000    0.695    0.532
##   Proposito =~                                                           
##     BPS06              1.000                               0.797    0.515
##     BPS11              1.003    0.125    8.038    0.000    0.799    0.559
##     BPS15              1.348    0.149    9.027    0.000    1.074    0.691
##     BPS16              1.236    0.142    8.690    0.000    0.985    0.640
##     BPS20              1.061    0.138    7.696    0.000    0.845    0.522
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Autoaceptacion ~~                                                      
##     RelPositivas       0.425    0.069    6.123    0.000    0.574    0.574
##     Autonomia          0.261    0.066    3.951    0.000    0.296    0.296
##     Crecimiento        0.424    0.066    6.391    0.000    0.727    0.727
##     Proposito          0.528    0.078    6.787    0.000    0.836    0.836
##   RelPositivas ~~                                                        
##     Autonomia          0.513    0.094    5.483    0.000    0.494    0.494
##     Crecimiento        0.306    0.062    4.914    0.000    0.445    0.445
##     Proposito          0.362    0.068    5.332    0.000    0.487    0.487
##   Autonomia ~~                                                           
##     Crecimiento        0.099    0.061    1.624    0.104    0.120    0.120
##     Proposito          0.059    0.062    0.951    0.341    0.067    0.067
##   Crecimiento ~~                                                         
##     Proposito          0.421    0.069    6.065    0.000    0.718    0.718
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BPS01             1.373    0.105   13.127    0.000    1.373    0.686
##    .BPS07             1.208    0.104   11.654    0.000    1.208    0.495
##    .BPS17             0.887    0.077   11.502    0.000    0.887    0.481
##    .BPS24             0.826    0.076   10.804    0.000    0.826    0.428
##    .BPS02             1.535    0.134   11.444    0.000    1.535    0.638
##    .BPS08             1.511    0.137   11.042    0.000    1.511    0.607
##    .BPS12             1.087    0.092   11.845    0.000    1.087    0.672
##    .BPS25             1.174    0.104   11.296    0.000    1.174    0.626
##    .BPS04             1.440    0.171    8.421    0.000    1.440    0.538
##    .BPS09             1.433    0.198    7.238    0.000    1.433    0.481
##    .BPS23             2.225    0.174   12.792    0.000    2.225    0.802
##    .BPS21             1.331    0.108   12.305    0.000    1.331    0.711
##    .BPS27             0.717    0.092    7.762    0.000    0.717    0.438
##    .BPS28             1.221    0.099   12.363    0.000    1.221    0.717
##    .BPS06             1.758    0.134   13.115    0.000    1.758    0.735
##    .BPS11             1.403    0.110   12.805    0.000    1.403    0.687
##    .BPS15             1.264    0.112   11.241    0.000    1.264    0.523
##    .BPS16             1.394    0.116   11.992    0.000    1.394    0.590
##    .BPS20             1.908    0.146   13.072    0.000    1.908    0.728
##     Autoaceptacion    0.628    0.110    5.712    0.000    1.000    1.000
##     RelPositivas      0.871    0.153    5.712    0.000    1.000    1.000
##     Autonomia         1.239    0.210    5.900    0.000    1.000    1.000
##     Crecimiento       0.542    0.107    5.046    0.000    1.000    1.000
##     Proposito         0.635    0.125    5.061    0.000    1.000    1.000
dfTrabajo=df %>% select(as.character(varTrabajo)) %>% filter(complete.cases(.))
Modelo <-
'Autoaceptacion =~ BPS01+BPS07+BPS17+BPS24
RelPositivas =~ BPS02+BPS08+BPS12+BPS25
Autonomia =~ BPS04+BPS09+BPS23
Crecimiento =~ BPS21+BPS27+BPS28
Proposito =~ BPS06+BPS11+BPS15+BPS16+BPS20'




Modelo.fit <- cfa(model = Modelo, data = dfTrabajo )


summary(Modelo.fit,standardized = TRUE, fit.measures = TRUE)
## lavaan 0.6-3 ended normally after 70 iterations
## 
##   Optimization method                           NLMINB
##   Number of free parameters                         48
## 
##   Number of observations                           408
## 
##   Estimator                                         ML
##   Model Fit Test Statistic                     344.505
##   Degrees of freedom                               142
##   P-value (Chi-square)                           0.000
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic             2233.883
##   Degrees of freedom                               171
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    0.902
##   Tucker-Lewis Index (TLI)                       0.882
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -13073.502
##   Loglikelihood unrestricted model (H1)     -12901.249
## 
##   Number of free parameters                         48
##   Akaike (AIC)                               26243.004
##   Bayesian (BIC)                             26435.544
##   Sample-size adjusted Bayesian (BIC)        26283.233
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.059
##   90 Percent Confidence Interval          0.051  0.067
##   P-value RMSEA <= 0.05                          0.030
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.055
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Information saturated (h1) model          Structured
##   Standard Errors                             Standard
## 
## Latent Variables:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Autoaceptacion =~                                                      
##     BPS01              1.000                               0.793    0.560
##     BPS07              1.401    0.137   10.248    0.000    1.110    0.711
##     BPS17              1.233    0.119   10.326    0.000    0.977    0.720
##     BPS24              1.326    0.125   10.605    0.000    1.051    0.756
##   RelPositivas =~                                                        
##     BPS02              1.000                               0.933    0.602
##     BPS08              1.059    0.120    8.831    0.000    0.988    0.627
##     BPS12              0.781    0.093    8.364    0.000    0.729    0.573
##     BPS25              0.897    0.103    8.707    0.000    0.837    0.611
##   Autonomia =~                                                           
##     BPS04              1.000                               1.113    0.680
##     BPS09              1.117    0.136    8.183    0.000    1.243    0.720
##     BPS23              0.667    0.097    6.843    0.000    0.742    0.445
##   Crecimiento =~                                                         
##     BPS21              1.000                               0.736    0.538
##     BPS27              1.303    0.150    8.710    0.000    0.959    0.750
##     BPS28              0.944    0.125    7.535    0.000    0.695    0.532
##   Proposito =~                                                           
##     BPS06              1.000                               0.797    0.515
##     BPS11              1.003    0.125    8.038    0.000    0.799    0.559
##     BPS15              1.348    0.149    9.027    0.000    1.074    0.691
##     BPS16              1.236    0.142    8.690    0.000    0.985    0.640
##     BPS20              1.061    0.138    7.696    0.000    0.845    0.522
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Autoaceptacion ~~                                                      
##     RelPositivas       0.425    0.069    6.123    0.000    0.574    0.574
##     Autonomia          0.261    0.066    3.951    0.000    0.296    0.296
##     Crecimiento        0.424    0.066    6.391    0.000    0.727    0.727
##     Proposito          0.528    0.078    6.787    0.000    0.836    0.836
##   RelPositivas ~~                                                        
##     Autonomia          0.513    0.094    5.483    0.000    0.494    0.494
##     Crecimiento        0.306    0.062    4.914    0.000    0.445    0.445
##     Proposito          0.362    0.068    5.332    0.000    0.487    0.487
##   Autonomia ~~                                                           
##     Crecimiento        0.099    0.061    1.624    0.104    0.120    0.120
##     Proposito          0.059    0.062    0.951    0.341    0.067    0.067
##   Crecimiento ~~                                                         
##     Proposito          0.421    0.069    6.065    0.000    0.718    0.718
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BPS01             1.373    0.105   13.127    0.000    1.373    0.686
##    .BPS07             1.208    0.104   11.654    0.000    1.208    0.495
##    .BPS17             0.887    0.077   11.502    0.000    0.887    0.481
##    .BPS24             0.826    0.076   10.804    0.000    0.826    0.428
##    .BPS02             1.535    0.134   11.444    0.000    1.535    0.638
##    .BPS08             1.511    0.137   11.042    0.000    1.511    0.607
##    .BPS12             1.087    0.092   11.845    0.000    1.087    0.672
##    .BPS25             1.174    0.104   11.296    0.000    1.174    0.626
##    .BPS04             1.440    0.171    8.421    0.000    1.440    0.538
##    .BPS09             1.433    0.198    7.238    0.000    1.433    0.481
##    .BPS23             2.225    0.174   12.792    0.000    2.225    0.802
##    .BPS21             1.331    0.108   12.305    0.000    1.331    0.711
##    .BPS27             0.717    0.092    7.762    0.000    0.717    0.438
##    .BPS28             1.221    0.099   12.363    0.000    1.221    0.717
##    .BPS06             1.758    0.134   13.115    0.000    1.758    0.735
##    .BPS11             1.403    0.110   12.805    0.000    1.403    0.687
##    .BPS15             1.264    0.112   11.241    0.000    1.264    0.523
##    .BPS16             1.394    0.116   11.992    0.000    1.394    0.590
##    .BPS20             1.908    0.146   13.072    0.000    1.908    0.728
##     Autoaceptacion    0.628    0.110    5.712    0.000    1.000    1.000
##     RelPositivas      0.871    0.153    5.712    0.000    1.000    1.000
##     Autonomia         1.239    0.210    5.900    0.000    1.000    1.000
##     Crecimiento       0.542    0.107    5.046    0.000    1.000    1.000
##     Proposito         0.635    0.125    5.061    0.000    1.000    1.000

Comparative Fit Index (CFI) If the index is greater than one, it is set at one and if less than zero, it is set to zero. It is interpreted as the previous incremental indexes. If the CFI is less than one, then the CFI is always greater than the TLI. CFI pays a penalty of one for every parameter estimated. Because the TLI and CFI are highly correlated only one of the two should be reported. The CFI is reported more often than the TLI, but I think the CFI’s penalty for complexity of just 1 is too low and so I prefer the TLI even though the CFI is reported much more frequently than the TLI.

Standardized Root Mean Square Residual (SRMR) The SRMR is an absolute measure of fit and is defined as the standardized difference between the observed correlation and the predicted correlation. It is a positively biased measure and that bias is greater for small```{r}

dfTrabajo=df %>% select(as.character(varTrabajo)) %>% filter(complete.cases(.)) Modelo <- ‘Autoaceptacion =~ BPS01+BPS07+BPS17+BPS24 RelPositivas =~ BPS02+BPS08+BPS12+BPS25 Autonomia =~ BPS04+BPS09+BPS23 Crecimiento =~ BPS21+BPS27+BPS28 Proposito =~ BPS06+BPS11+BPS15+BPS16+BPS20’

Modelo.fit <- cfa(model = Modelo, data = dfTrabajo )

summary(Modelo.fit,standardized = TRUE, fit.measures = TRUE) ``` N and for low df studies. Because the SRMR is an absolute measure of fit, a value of zero indicates perfect fit. The SRMR has no penalty for model complexity. A value less than .08 is generally considered a good fit (Hu & Bentler, 1999).

En este caso tenemos un buen indicador de ajuste: Standardized Root Mean Square Residual:

SRMR 0.075

En conclusión, vais bien de muestra, tenéis casi el doble de lo necesario.

En lo siguiente os muestro qué pasaría si eliminamos alguna diumensión que no parece tener buenos coeficientes y eliminamos algunos items que numéricamente invitan a ello. Se tiene un modelo (que no se si tiene sentido), pero que está muy cerca de presentar indicadores que se suelen considerar buenos:

dfTrabajo=df %>% select(as.character(varTrabajo)) %>% filter(complete.cases(.))
Modelo <-
'Autoaceptacion =~ BPS01+BPS07+BPS17+BPS24
RelPositivas =~ BPS02+BPS08+BPS12+BPS25
Autonomia =~ BPS04+BPS09+BPS23
Crecimiento =~ BPS21+BPS27+BPS28
Proposito =~ BPS06+BPS11+BPS15+BPS16+BPS20'




Modelo.fit <- cfa(model = Modelo, data = dfTrabajo )


summary(Modelo.fit,standardized = TRUE, fit.measures = TRUE)
## lavaan 0.6-3 ended normally after 70 iterations
## 
##   Optimization method                           NLMINB
##   Number of free parameters                         48
## 
##   Number of observations                           408
## 
##   Estimator                                         ML
##   Model Fit Test Statistic                     344.505
##   Degrees of freedom                               142
##   P-value (Chi-square)                           0.000
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic             2233.883
##   Degrees of freedom                               171
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    0.902
##   Tucker-Lewis Index (TLI)                       0.882
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -13073.502
##   Loglikelihood unrestricted model (H1)     -12901.249
## 
##   Number of free parameters                         48
##   Akaike (AIC)                               26243.004
##   Bayesian (BIC)                             26435.544
##   Sample-size adjusted Bayesian (BIC)        26283.233
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.059
##   90 Percent Confidence Interval          0.051  0.067
##   P-value RMSEA <= 0.05                          0.030
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.055
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Information saturated (h1) model          Structured
##   Standard Errors                             Standard
## 
## Latent Variables:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Autoaceptacion =~                                                      
##     BPS01              1.000                               0.793    0.560
##     BPS07              1.401    0.137   10.248    0.000    1.110    0.711
##     BPS17              1.233    0.119   10.326    0.000    0.977    0.720
##     BPS24              1.326    0.125   10.605    0.000    1.051    0.756
##   RelPositivas =~                                                        
##     BPS02              1.000                               0.933    0.602
##     BPS08              1.059    0.120    8.831    0.000    0.988    0.627
##     BPS12              0.781    0.093    8.364    0.000    0.729    0.573
##     BPS25              0.897    0.103    8.707    0.000    0.837    0.611
##   Autonomia =~                                                           
##     BPS04              1.000                               1.113    0.680
##     BPS09              1.117    0.136    8.183    0.000    1.243    0.720
##     BPS23              0.667    0.097    6.843    0.000    0.742    0.445
##   Crecimiento =~                                                         
##     BPS21              1.000                               0.736    0.538
##     BPS27              1.303    0.150    8.710    0.000    0.959    0.750
##     BPS28              0.944    0.125    7.535    0.000    0.695    0.532
##   Proposito =~                                                           
##     BPS06              1.000                               0.797    0.515
##     BPS11              1.003    0.125    8.038    0.000    0.799    0.559
##     BPS15              1.348    0.149    9.027    0.000    1.074    0.691
##     BPS16              1.236    0.142    8.690    0.000    0.985    0.640
##     BPS20              1.061    0.138    7.696    0.000    0.845    0.522
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Autoaceptacion ~~                                                      
##     RelPositivas       0.425    0.069    6.123    0.000    0.574    0.574
##     Autonomia          0.261    0.066    3.951    0.000    0.296    0.296
##     Crecimiento        0.424    0.066    6.391    0.000    0.727    0.727
##     Proposito          0.528    0.078    6.787    0.000    0.836    0.836
##   RelPositivas ~~                                                        
##     Autonomia          0.513    0.094    5.483    0.000    0.494    0.494
##     Crecimiento        0.306    0.062    4.914    0.000    0.445    0.445
##     Proposito          0.362    0.068    5.332    0.000    0.487    0.487
##   Autonomia ~~                                                           
##     Crecimiento        0.099    0.061    1.624    0.104    0.120    0.120
##     Proposito          0.059    0.062    0.951    0.341    0.067    0.067
##   Crecimiento ~~                                                         
##     Proposito          0.421    0.069    6.065    0.000    0.718    0.718
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BPS01             1.373    0.105   13.127    0.000    1.373    0.686
##    .BPS07             1.208    0.104   11.654    0.000    1.208    0.495
##    .BPS17             0.887    0.077   11.502    0.000    0.887    0.481
##    .BPS24             0.826    0.076   10.804    0.000    0.826    0.428
##    .BPS02             1.535    0.134   11.444    0.000    1.535    0.638
##    .BPS08             1.511    0.137   11.042    0.000    1.511    0.607
##    .BPS12             1.087    0.092   11.845    0.000    1.087    0.672
##    .BPS25             1.174    0.104   11.296    0.000    1.174    0.626
##    .BPS04             1.440    0.171    8.421    0.000    1.440    0.538
##    .BPS09             1.433    0.198    7.238    0.000    1.433    0.481
##    .BPS23             2.225    0.174   12.792    0.000    2.225    0.802
##    .BPS21             1.331    0.108   12.305    0.000    1.331    0.711
##    .BPS27             0.717    0.092    7.762    0.000    0.717    0.438
##    .BPS28             1.221    0.099   12.363    0.000    1.221    0.717
##    .BPS06             1.758    0.134   13.115    0.000    1.758    0.735
##    .BPS11             1.403    0.110   12.805    0.000    1.403    0.687
##    .BPS15             1.264    0.112   11.241    0.000    1.264    0.523
##    .BPS16             1.394    0.116   11.992    0.000    1.394    0.590
##    .BPS20             1.908    0.146   13.072    0.000    1.908    0.728
##     Autoaceptacion    0.628    0.110    5.712    0.000    1.000    1.000
##     RelPositivas      0.871    0.153    5.712    0.000    1.000    1.000
##     Autonomia         1.239    0.210    5.900    0.000    1.000    1.000
##     Crecimiento       0.542    0.107    5.046    0.000    1.000    1.000
##     Proposito         0.635    0.125    5.061    0.000    1.000    1.000
dfTrabajo=df %>% select(as.character(varTrabajo)) %>% filter(complete.cases(.))
Modelo <-
'Autoaceptacion =~ BPS01+BPS07+BPS17+BPS24
RelPositivas =~ BPS02+BPS08+BPS12+BPS25
Autonomia =~ BPS04+BPS09+BPS23
Crecimiento =~ BPS21+BPS27+BPS28
Proposito =~ BPS06+BPS11+BPS15+BPS16+BPS20'




Modelo.fit <- cfa(model = Modelo, data = dfTrabajo )


summary(Modelo.fit,standardized = TRUE, fit.measures = TRUE)
## lavaan 0.6-3 ended normally after 70 iterations
## 
##   Optimization method                           NLMINB
##   Number of free parameters                         48
## 
##   Number of observations                           408
## 
##   Estimator                                         ML
##   Model Fit Test Statistic                     344.505
##   Degrees of freedom                               142
##   P-value (Chi-square)                           0.000
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic             2233.883
##   Degrees of freedom                               171
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    0.902
##   Tucker-Lewis Index (TLI)                       0.882
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -13073.502
##   Loglikelihood unrestricted model (H1)     -12901.249
## 
##   Number of free parameters                         48
##   Akaike (AIC)                               26243.004
##   Bayesian (BIC)                             26435.544
##   Sample-size adjusted Bayesian (BIC)        26283.233
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.059
##   90 Percent Confidence Interval          0.051  0.067
##   P-value RMSEA <= 0.05                          0.030
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.055
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Information saturated (h1) model          Structured
##   Standard Errors                             Standard
## 
## Latent Variables:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Autoaceptacion =~                                                      
##     BPS01              1.000                               0.793    0.560
##     BPS07              1.401    0.137   10.248    0.000    1.110    0.711
##     BPS17              1.233    0.119   10.326    0.000    0.977    0.720
##     BPS24              1.326    0.125   10.605    0.000    1.051    0.756
##   RelPositivas =~                                                        
##     BPS02              1.000                               0.933    0.602
##     BPS08              1.059    0.120    8.831    0.000    0.988    0.627
##     BPS12              0.781    0.093    8.364    0.000    0.729    0.573
##     BPS25              0.897    0.103    8.707    0.000    0.837    0.611
##   Autonomia =~                                                           
##     BPS04              1.000                               1.113    0.680
##     BPS09              1.117    0.136    8.183    0.000    1.243    0.720
##     BPS23              0.667    0.097    6.843    0.000    0.742    0.445
##   Crecimiento =~                                                         
##     BPS21              1.000                               0.736    0.538
##     BPS27              1.303    0.150    8.710    0.000    0.959    0.750
##     BPS28              0.944    0.125    7.535    0.000    0.695    0.532
##   Proposito =~                                                           
##     BPS06              1.000                               0.797    0.515
##     BPS11              1.003    0.125    8.038    0.000    0.799    0.559
##     BPS15              1.348    0.149    9.027    0.000    1.074    0.691
##     BPS16              1.236    0.142    8.690    0.000    0.985    0.640
##     BPS20              1.061    0.138    7.696    0.000    0.845    0.522
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Autoaceptacion ~~                                                      
##     RelPositivas       0.425    0.069    6.123    0.000    0.574    0.574
##     Autonomia          0.261    0.066    3.951    0.000    0.296    0.296
##     Crecimiento        0.424    0.066    6.391    0.000    0.727    0.727
##     Proposito          0.528    0.078    6.787    0.000    0.836    0.836
##   RelPositivas ~~                                                        
##     Autonomia          0.513    0.094    5.483    0.000    0.494    0.494
##     Crecimiento        0.306    0.062    4.914    0.000    0.445    0.445
##     Proposito          0.362    0.068    5.332    0.000    0.487    0.487
##   Autonomia ~~                                                           
##     Crecimiento        0.099    0.061    1.624    0.104    0.120    0.120
##     Proposito          0.059    0.062    0.951    0.341    0.067    0.067
##   Crecimiento ~~                                                         
##     Proposito          0.421    0.069    6.065    0.000    0.718    0.718
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BPS01             1.373    0.105   13.127    0.000    1.373    0.686
##    .BPS07             1.208    0.104   11.654    0.000    1.208    0.495
##    .BPS17             0.887    0.077   11.502    0.000    0.887    0.481
##    .BPS24             0.826    0.076   10.804    0.000    0.826    0.428
##    .BPS02             1.535    0.134   11.444    0.000    1.535    0.638
##    .BPS08             1.511    0.137   11.042    0.000    1.511    0.607
##    .BPS12             1.087    0.092   11.845    0.000    1.087    0.672
##    .BPS25             1.174    0.104   11.296    0.000    1.174    0.626
##    .BPS04             1.440    0.171    8.421    0.000    1.440    0.538
##    .BPS09             1.433    0.198    7.238    0.000    1.433    0.481
##    .BPS23             2.225    0.174   12.792    0.000    2.225    0.802
##    .BPS21             1.331    0.108   12.305    0.000    1.331    0.711
##    .BPS27             0.717    0.092    7.762    0.000    0.717    0.438
##    .BPS28             1.221    0.099   12.363    0.000    1.221    0.717
##    .BPS06             1.758    0.134   13.115    0.000    1.758    0.735
##    .BPS11             1.403    0.110   12.805    0.000    1.403    0.687
##    .BPS15             1.264    0.112   11.241    0.000    1.264    0.523
##    .BPS16             1.394    0.116   11.992    0.000    1.394    0.590
##    .BPS20             1.908    0.146   13.072    0.000    1.908    0.728
##     Autoaceptacion    0.628    0.110    5.712    0.000    1.000    1.000
##     RelPositivas      0.871    0.153    5.712    0.000    1.000    1.000
##     Autonomia         1.239    0.210    5.900    0.000    1.000    1.000
##     Crecimiento       0.542    0.107    5.046    0.000    1.000    1.000
##     Proposito         0.635    0.125    5.061    0.000    1.000    1.000