The distribution of the minimum value of n independent expontially distributed variables with mean \(\mu\) would also be exponential with mean \(\mu / n\). So in this case the expected value would be 1000 hrs/100 or 10 hours.
\[f_Z(z)=(1/2)\lambda e^{−\lambda|z|}\]
\[ \begin{align} f_Z(z) = f_{x_1} * f_{-x_2}(z) &= \int_{-\infty}^{\infty} f_{-x_2}(z-x_1)\; f_{x_1}(x_1)\; dx_1 \\ f_Z(z) &= \int_{-\infty}^{\infty} f_{x_2}(x_1-z)\; f_{x_1}(x_1)\; dx_1 \end{align} \]
The propbability density function for an exponential distribution is:
\[ f_X(x) = \lambda e^{-\lambda x} \]
So plugging that into the formula above gives us:
\[ \begin{align} f_Z(z) &= \int_{-\infty}^{\infty} \lambda e^{-\lambda(x_1-z)} \lambda e^{-\lambda x_1} dx_1 \\ &= \int_{-\infty}^{\infty} \lambda^2 e^{-2\lambda x_1+\lambda z}dx_1 \\ &= \int_{-\infty}^{\infty} \lambda^2 e^{\lambda(-2 x_1+ z)}dx_1 \\ &= \int_{-\infty}^{\infty} \lambda^2 e^{\lambda(z-2 x_1)}dx_1 \\ \end{align} \]
This is as far as I could get. I don’t remember integration well enough to solve this, so I tried putting it into Wolfram Alpha to integrate and I got this:
\[f_Z(z)=-\frac{1}{2}\lambda^2 e^{z-2x}\]
When I should be getting this:
\[f_Z(z)=\frac{1}{2}\lambda e^{−\lambda|z|}\]
Just out of cuiosity I wanted to see what the distrubution would look like so I ran a simulation and plotted it. Pretty coool that \(X - Y\) is a mirror image of \(Y - X\). Makes sense now that I think about it, but I hadn’t really anticipated that…
x <- rexp(400)
y <- rexp(400)
hist(x)
hist(y)
hist(x-y)
hist(y-x)
chebyshev <- function(e, var){
pX = var / e^2
return(pX)
}
var <- 100/3
e <- 2
p <- chebyshev(e, var)
p
## [1] 8.333333
Since we can’t have a probability greater than 1…
\[P(|X−10| \geq 2) \leq 1\]
e <- 5
p <- chebyshev(e, var)
p
## [1] 1.333333
Since we can’t have a probability greater than 1…
\[P(|X−10| \geq 2) \leq 1\]
e <- 9
p <- chebyshev(e, var)
p
## [1] 0.4115226
\[P(|X−10| \geq 2) \leq 0.4115226\]
e <- 20
p <- chebyshev(e, var)
p
## [1] 0.08333333
\[P(|X−10| \geq 2) \leq 0.0833333\]