1 2016 Primary Election Results

This project uses a data set that contains demographic data on US counties related to the 2016 US Primary Presidential Election.

The dataset contains several main files. The data was retrieved from the url: https://www.kaggle.com/benhamner/2016-us-election.

1.1 Executive Summary

1.1.1 Group Members:

Bianca Sosnovski, Elina Azrilyan, Robert Mercier, Asher Dvir-Djerassi and Charls Joseph.

1.1.2 Project Dataset:

Results from the 2016 Presidential Primaries by county.

1.1.3 Files:

  1. “Primary_Results2016”: Results of the Democratic and Republican primaries, by US County and each presidential candidate; 2) “County_Facts”: The demographic breakdown of the US Counties that voted in the primaries; and 3) “Headers”: Labels of the columns in the county_facts spreadsheet.

1.1.4 Data Source:

From the data science community at Kaggle. URL: https://kaggle.com/benhamner/2016-us-election.

1.1.5 Project Description:

Check for the differences between the counties that voted for the top presidential candidates.

1.1.6 Project Summary:

1.1.6.1 Primary Question:

“Which are the most valued data science skills?” #### Secondary Question: “What are the key elements that explain primary election results of a candidate by state?”

1.1.7 Team Tools:

R - for Analysis; Tableau - for some visualizations; Skype - for group meetings; Doodle - for synchronizing meetup times; GitHub for coding and making changes; plain old email.

1.1.8 Loading process:

The two datasets we worked with were downloaded as CSV files. We read the individual files as data frame in R using the function “read.csv.”

1.1.9 Transforming process:

Since the original datasets were separated, the files had to be merged. The most efficient way of merging them was using the unique identifier, FIPS code, in each of the two main files.

1.1.10 Key Data Challenges:

  1. While we wanted to view the results for all 50 states, one state did not have primary results. Minnesota has counties profile results but not primary results, therefore it was not included.
  2. However, the most significant challenge was getting matches for all the counties in the Primary Results and the County facts files, by no fault of our own. The FIPS code was the unique identifier needed. However, since the FIPS code is classified strictly on an individual county basis, some of the polling data did not match. While the county demographics file based on individual county info had the correct 4-digit and 5-digit codes (4-digits codes did not have a ‘leading’ zero), 11 states broke out the primary results into city, town or district results. These results manifested themselves into 8-digit codes that where not associated with FIPS. This was also the reason for the fourth dataset the ANSI county codes for subdivisions. This said as an example, Illinois has 102 counties, however Cook county is divided into Chicago and the outlying suburbs for a total of 103. Instead of inferring too much and trying to decode the multitude of rules for each state we simply struck out any state without all the matches. There were ten (10) states total and one other state (New Hampshire) which was missing the FIPS codes entirely.

1.1.11 Thoughts on Data Challenges:

  1. One thing that became clear is that your final data frame can only be as good as the individual parts. While we obtained a trove of useful data in the two sets and having the FIPS code helped greatly, if say the FIPS codes are missing in an entire state, as in the case in New Hampshire there is nothing we can do. The choice comes down to looking up the information manually which a) defeats the purpose of using an organized dataset b) is inefficient c) could lead to mistakes on our end.
  2. Having a standardized way of receiving or reordering the primary data would have been helpful. While most of the results were reported by county, the ten states that reported differently affected the merging of the data and therefore the final data frame. Though there was enough data that these omissions wouldn’t systematically affect the results, it is interesting to note of the twelve states: Alaska, Connecticut, Illinois, Kansas, Maine, Massachusetts, North Dakota, New Hampshire, Rhode Island, Vermont and Wyoming that were omitted all six (6) New England states are on the list. The other states are concentrated in the Midwest to West and Alaska.
  3. Using the County_Fact dataset as the primary table could have alleviated some of the issues, but also could have caused a lot more headaches. As mentioned, since the FIPS code was used as the primary identifier and the FIPS is based off the individual counties this dataset might have been the better table to base everything else from. However, whatever data set you use to relate to the table having that data being reported by county (and therefore FIPS) would be paramount. Instead of the example of Kansas where the data received was from congressional district rather than county, the data would have to be reported in similar fashion.

1.1.12 Recommendations for Future Analysis:

1.1.12.1 As a next level analysis from the current data it would be interesting to:

  1. Add other candidates to the mix, especially on the Republican side, since there were more.
  2. Cluster the counties into similar types and analyze those clusters’ propensity to vote on each of the candidates #### Or with additional data it would be interesting to:
  3. Compare the primary results to the general election results.

1.1.13 Conclusion:

The primary question we were asked to answer is “Which are the most valued data science skills?” Although we had our own ideas of the most valued data science skills before the assignment, it was important for us to go through the entire process to make sure we didn’t have any pre-conceived notions. While there were other vital skills that were required, the most valuable data skill, not because it was the “hardest” but because it was the most unpredictable, is data wrangling. It is exactly the unpredictability of working with large datasets that makes wrangling so valuable. In huge data sets it is often unpredictable how the data will be organized throughout. Every issue must be dealt with to be able to get the fun part: analysis of the data. The secondary question, “What are the key elements that explain which candidate wins?”, is integrated in the code that follows.

1.2 Load packages

library(knitr)
library(kableExtra)# manipulate table styles
suppressMessages(library(tidyverse))

1.3 2016 primary election results data

1.3.1 Read the data

pr_df <- read.csv(file="https://raw.githubusercontent.com/bsosnovski/Project3/master/Primary_Results2016.csv", header=TRUE, sep=",")
kable(head(pr_df))%>% kable_styling(bootstrap_options = c("striped", "condensed"))
state state_abbreviation county fips party candidate votes fraction_votes
Alabama AL Autauga 1001 Democrat Bernie Sanders 544 0.182
Alabama AL Autauga 1001 Democrat Hillary Clinton 2387 0.800
Alabama AL Baldwin 1003 Democrat Bernie Sanders 2694 0.329
Alabama AL Baldwin 1003 Democrat Hillary Clinton 5290 0.647
Alabama AL Barbour 1005 Democrat Bernie Sanders 222 0.078
Alabama AL Barbour 1005 Democrat Hillary Clinton 2567 0.906
kable(tail(pr_df))%>% kable_styling(bootstrap_options = c("striped", "condensed"))
state state_abbreviation county fips party candidate votes fraction_votes
24606 Wyoming WY Teton-Sublette 95600028 Republican Marco Rubio 19 0.475
24607 Wyoming WY Teton-Sublette 95600028 Republican Ted Cruz 0 0.000
24608 Wyoming WY Uinta-Lincoln 95600027 Republican Donald Trump 0 0.000
24609 Wyoming WY Uinta-Lincoln 95600027 Republican John Kasich 0 0.000
24610 Wyoming WY Uinta-Lincoln 95600027 Republican Marco Rubio 0 0.000
24611 Wyoming WY Uinta-Lincoln 95600027 Republican Ted Cruz 53 1.000
dim(pr_df)
## [1] 24611     8

1.3.2 Tidying the data

Spreading the data set to move candidate votes and fraction data from rows to columns.

#The code was adapted from the following help page: https://community.rstudio.com/t/spread-with-multiple-value-columns/5378
pr_df$party <- NULL
pr_df_wide <- pr_df %>%
    gather(variable, value, -(state:candidate)) %>%
    unite(temp, candidate, variable) %>%
    spread(temp, value)
kable(head(pr_df_wide))%>% kable_styling(bootstrap_options = c("striped", "condensed"))
state state_abbreviation county fips No Preference_fraction_votes No Preference_votes Uncommitted_fraction_votes Uncommitted_votes Ben Carson_fraction_votes Ben Carson_votes Bernie Sanders_fraction_votes Bernie Sanders_votes Carly Fiorina_fraction_votes Carly Fiorina_votes Chris Christie_fraction_votes Chris Christie_votes Donald Trump_fraction_votes Donald Trump_votes Hillary Clinton_fraction_votes Hillary Clinton_votes Jeb Bush_fraction_votes Jeb Bush_votes John Kasich_fraction_votes John Kasich_votes Marco Rubio_fraction_votes Marco Rubio_votes Martin O’Malley_fraction_votes Martin O’Malley_votes Mike Huckabee_fraction_votes Mike Huckabee_votes Rand Paul_fraction_votes Rand Paul_votes Rick Santorum_fraction_votes Rick Santorum_votes Ted Cruz_fraction_votes Ted Cruz_votes
Alabama AL Autauga 1001 NA NA NA NA 0.146 1764 0.182 544 NA NA NA NA 0.445 5387 0.800 2387 NA NA 0.035 421 0.148 1785 NA NA NA NA NA NA NA NA 0.205 2482
Alabama AL Baldwin 1003 NA NA NA NA 0.084 4221 0.329 2694 NA NA NA NA 0.469 23618 0.647 5290 NA NA 0.059 2987 0.193 9703 NA NA NA NA NA NA NA NA 0.170 8571
Alabama AL Barbour 1005 NA NA NA NA 0.122 417 0.078 222 NA NA NA NA 0.501 1710 0.906 2567 NA NA 0.036 123 0.146 498 NA NA NA NA NA NA NA NA 0.179 609
Alabama AL Bibb 1007 NA NA NA NA 0.099 393 0.197 246 NA NA NA NA 0.494 1959 0.755 942 NA NA 0.021 84 0.112 444 NA NA NA NA NA NA NA NA 0.255 1011
Alabama AL Blount 1009 NA NA NA NA 0.100 1523 0.386 395 NA NA NA NA 0.487 7390 0.551 564 NA NA 0.022 337 0.122 1843 NA NA NA NA NA NA NA NA 0.244 3698
Alabama AL Bullock 1011 NA NA NA NA 0.085 47 0.066 178 NA NA NA NA 0.565 313 0.913 2451 NA NA 0.042 23 0.116 64 NA NA NA NA NA NA NA NA 0.170 94
dim(pr_df_wide)
## [1] 4217   36

1.3.3 Create data frame

Now let’s create a new data frame with only the data for the 4 candidates we are intersted in: Bernie Sanders, Hillary Clinton, Ted Cruz, and Donald Trump.

new_pr_df <- data.frame(pr_df_wide$state, pr_df_wide$state_abbreviation, pr_df_wide$county, pr_df_wide$fips, pr_df_wide$`Bernie Sanders_fraction_votes`, pr_df_wide$`Bernie Sanders_votes`, pr_df_wide$`Hillary Clinton_fraction_votes`, pr_df_wide$`Hillary Clinton_votes`, pr_df_wide$`Donald Trump_fraction_votes`, pr_df_wide$`Donald Trump_votes`, pr_df_wide$`Ted Cruz_fraction_votes`, pr_df_wide$`Ted Cruz_votes`)
names(new_pr_df) <- c("state", "state_abbr", "county", "fips", "sanders fraction votes", "sanders votes", "clinton fraction votes", "clinton votes","trump fraction votes", "trump votes", "cruz fraction votes", "cruz votes")
kable(head(new_pr_df))%>% kable_styling(bootstrap_options = c("striped", "condensed"))
state state_abbr county fips sanders fraction votes sanders votes clinton fraction votes clinton votes trump fraction votes trump votes cruz fraction votes cruz votes
Alabama AL Autauga 1001 0.182 544 0.800 2387 0.445 5387 0.205 2482
Alabama AL Baldwin 1003 0.329 2694 0.647 5290 0.469 23618 0.170 8571
Alabama AL Barbour 1005 0.078 222 0.906 2567 0.501 1710 0.179 609
Alabama AL Bibb 1007 0.197 246 0.755 942 0.494 1959 0.255 1011
Alabama AL Blount 1009 0.386 395 0.551 564 0.487 7390 0.244 3698
Alabama AL Bullock 1011 0.066 178 0.913 2451 0.565 313 0.170 94
dim(new_pr_df)
## [1] 4217   12
write.csv(new_pr_df,'new_pr_df.csv')

1.4 Demographic data

1.4.1 Read the data

facts <- read.csv(file="https://raw.githubusercontent.com/bsosnovski/Project3/master/County_Facts.csv", header=TRUE, sep=",")
glimpse(facts, width = getOption("width"))
## Observations: 3,195
## Variables: 54
## $ fips               <int> 0, 1000, 1001, 1003, 1005, 1007, 1009, 1011...
## $ area_name          <fct> United States, Alabama, Autauga County, Bal...
## $ state_abbreviation <fct> , , AL, AL, AL, AL, AL, AL, AL, AL, AL, AL,...
## $ PST045214          <int> 318857056, 4849377, 55395, 200111, 26887, 2...
## $ PST040210          <int> 308758105, 4780127, 54571, 182265, 27457, 2...
## $ PST120214          <dbl> 3.3, 1.4, 1.5, 9.8, -2.1, -1.8, 0.7, -1.4, ...
## $ POP010210          <int> 308745538, 4779736, 54571, 182265, 27457, 2...
## $ AGE135214          <dbl> 6.2, 6.1, 6.0, 5.6, 5.7, 5.3, 6.1, 6.3, 6.1...
## $ AGE295214          <dbl> 23.1, 22.8, 25.2, 22.2, 21.2, 21.0, 23.6, 2...
## $ AGE775214          <dbl> 14.5, 15.3, 13.8, 18.7, 16.5, 14.8, 17.0, 1...
## $ SEX255214          <dbl> 50.8, 51.5, 51.4, 51.2, 46.6, 45.9, 50.5, 4...
## $ RHI125214          <dbl> 77.4, 69.7, 77.9, 87.1, 50.2, 76.3, 96.0, 2...
## $ RHI225214          <dbl> 13.2, 26.7, 18.7, 9.6, 47.6, 22.1, 1.8, 70....
## $ RHI325214          <dbl> 1.2, 0.7, 0.5, 0.7, 0.6, 0.4, 0.6, 0.8, 0.4...
## $ RHI425214          <dbl> 5.4, 1.3, 1.1, 0.9, 0.5, 0.2, 0.3, 0.3, 0.9...
## $ RHI525214          <dbl> 0.2, 0.1, 0.1, 0.1, 0.2, 0.1, 0.1, 0.7, 0.0...
## $ RHI625214          <dbl> 2.5, 1.5, 1.8, 1.6, 0.9, 0.9, 1.2, 1.1, 0.8...
## $ RHI725214          <dbl> 17.4, 4.1, 2.7, 4.6, 4.5, 2.1, 8.7, 7.5, 1....
## $ RHI825214          <dbl> 62.1, 66.2, 75.6, 83.0, 46.6, 74.5, 87.8, 2...
## $ POP715213          <dbl> 84.9, 85.0, 85.0, 82.1, 84.8, 86.6, 88.7, 8...
## $ POP645213          <dbl> 12.9, 3.5, 1.6, 3.6, 2.9, 1.2, 4.3, 5.4, 0....
## $ POP815213          <dbl> 20.7, 5.2, 3.5, 5.5, 5.0, 2.1, 7.3, 5.2, 1....
## $ EDU635213          <dbl> 86.0, 83.1, 85.6, 89.1, 73.7, 77.5, 77.0, 6...
## $ EDU685213          <dbl> 28.8, 22.6, 20.9, 27.7, 13.4, 12.1, 12.1, 1...
## $ VET605213          <int> 21263779, 388865, 5922, 19346, 2120, 1327, ...
## $ LFE305213          <dbl> 25.5, 24.2, 26.2, 25.9, 24.6, 27.6, 33.9, 2...
## $ HSG010214          <int> 133957180, 2207912, 22751, 107374, 11799, 8...
## $ HSG445213          <dbl> 64.9, 69.7, 76.8, 72.6, 67.7, 79.0, 81.0, 7...
## $ HSG096213          <dbl> 26.0, 15.9, 8.3, 24.4, 10.6, 7.3, 4.5, 8.7,...
## $ HSG495213          <int> 176700, 122500, 136200, 168600, 89200, 9050...
## $ HSD410213          <int> 115610216, 1838683, 20071, 73283, 9200, 709...
## $ HSD310213          <dbl> 2.63, 2.55, 2.71, 2.52, 2.66, 3.03, 2.70, 2...
## $ INC910213          <int> 28155, 23680, 24571, 26766, 16829, 17427, 2...
## $ INC110213          <int> 53046, 43253, 53682, 50221, 32911, 36447, 4...
## $ PVY020213          <dbl> 15.4, 18.6, 12.1, 13.9, 26.7, 18.1, 15.8, 2...
## $ BZA010213          <int> 7488353, 97578, 817, 4871, 464, 275, 660, 1...
## $ BZA110213          <int> 118266253, 1603100, 10120, 54988, 6611, 314...
## $ BZA115213          <dbl> 2.0, 1.1, 2.1, 3.7, -5.6, 7.5, 3.4, 0.0, 2....
## $ NES010213          <int> 23005620, 311578, 2947, 16508, 1546, 1126, ...
## $ SBO001207          <int> 27092908, 382350, 4067, 19035, 1667, 1385, ...
## $ SBO315207          <dbl> 7.1, 14.8, 15.2, 2.7, 0.0, 14.9, 0.0, 0.0, ...
## $ SBO115207          <dbl> 0.9, 0.8, 0.0, 0.4, 0.0, 0.0, 0.0, 0.0, 0.0...
## $ SBO215207          <dbl> 5.7, 1.8, 1.3, 1.0, 0.0, 0.0, 0.0, 0.0, 3.3...
## $ SBO515207          <dbl> 0.1, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0...
## $ SBO415207          <dbl> 8.3, 1.2, 0.7, 1.3, 0.0, 0.0, 0.0, 0.0, 0.0...
## $ SBO015207          <dbl> 28.8, 28.1, 31.7, 27.3, 27.0, 0.0, 23.2, 38...
## $ MAN450207          <dbl> 5319456312, 112858843, 0, 1410273, 0, 0, 34...
## $ WTN220207          <dbl> 4174286516, 52252752, 0, 0, 0, 0, 0, 0, 567...
## $ RTN130207          <dbl> 3917663456, 57344851, 598175, 2966489, 1883...
## $ RTN131207          <int> 12990, 12364, 12003, 17166, 6334, 5804, 562...
## $ AFN120207          <int> 613795732, 6426342, 88157, 436955, 0, 10757...
## $ BPS030214          <int> 1046363, 13369, 131, 1384, 8, 19, 3, 1, 2, ...
## $ LND110210          <dbl> 3531905.43, 50645.33, 594.44, 1589.78, 884....
## $ POP060210          <dbl> 87.4, 94.4, 91.8, 114.6, 31.0, 36.8, 88.9, ...
headers <- read.csv(file="https://raw.githubusercontent.com/bsosnovski/Project3/master/Headers.csv", header=TRUE, sep=",", stringsAsFactors = F)
glimpse(headers, width = getOption("width"))
## Observations: 51
## Variables: 2
## $ column_name <chr> "PST045214", "PST040210", "PST120214", "POP010210"...
## $ description <chr> "Population, 2014 estimate", "Population, 2010 (Ap...

1.4.2 Tidying the data

The data set contains rows with total figures for each state and for the country. Because we can use the summary function to obtains these figures, and also to facilitate the data reading, we filter these rows out. To do so, we note that such rows have the variable state_abbreviation with blanks.

facts <- facts %>% filter(state_abbreviation!="")
kable(head(facts))%>% kable_styling(bootstrap_options = c("striped", "condensed"))
fips area_name state_abbreviation PST045214 PST040210 PST120214 POP010210 AGE135214 AGE295214 AGE775214 SEX255214 RHI125214 RHI225214 RHI325214 RHI425214 RHI525214 RHI625214 RHI725214 RHI825214 POP715213 POP645213 POP815213 EDU635213 EDU685213 VET605213 LFE305213 HSG010214 HSG445213 HSG096213 HSG495213 HSD410213 HSD310213 INC910213 INC110213 PVY020213 BZA010213 BZA110213 BZA115213 NES010213 SBO001207 SBO315207 SBO115207 SBO215207 SBO515207 SBO415207 SBO015207 MAN450207 WTN220207 RTN130207 RTN131207 AFN120207 BPS030214 LND110210 POP060210
1001 Autauga County AL 55395 54571 1.5 54571 6.0 25.2 13.8 51.4 77.9 18.7 0.5 1.1 0.1 1.8 2.7 75.6 85.0 1.6 3.5 85.6 20.9 5922 26.2 22751 76.8 8.3 136200 20071 2.71 24571 53682 12.1 817 10120 2.1 2947 4067 15.2 0.0 1.3 0 0.7 31.7 0 0 598175 12003 88157 131 594.44 91.8
1003 Baldwin County AL 200111 182265 9.8 182265 5.6 22.2 18.7 51.2 87.1 9.6 0.7 0.9 0.1 1.6 4.6 83.0 82.1 3.6 5.5 89.1 27.7 19346 25.9 107374 72.6 24.4 168600 73283 2.52 26766 50221 13.9 4871 54988 3.7 16508 19035 2.7 0.4 1.0 0 1.3 27.3 1410273 0 2966489 17166 436955 1384 1589.78 114.6
1005 Barbour County AL 26887 27457 -2.1 27457 5.7 21.2 16.5 46.6 50.2 47.6 0.6 0.5 0.2 0.9 4.5 46.6 84.8 2.9 5.0 73.7 13.4 2120 24.6 11799 67.7 10.6 89200 9200 2.66 16829 32911 26.7 464 6611 -5.6 1546 1667 0.0 0.0 0.0 0 0.0 27.0 0 0 188337 6334 0 8 884.88 31.0
1007 Bibb County AL 22506 22919 -1.8 22915 5.3 21.0 14.8 45.9 76.3 22.1 0.4 0.2 0.1 0.9 2.1 74.5 86.6 1.2 2.1 77.5 12.1 1327 27.6 8978 79.0 7.3 90500 7091 3.03 17427 36447 18.1 275 3145 7.5 1126 1385 14.9 0.0 0.0 0 0.0 0.0 0 0 124707 5804 10757 19 622.58 36.8
1009 Blount County AL 57719 57322 0.7 57322 6.1 23.6 17.0 50.5 96.0 1.8 0.6 0.3 0.1 1.2 8.7 87.8 88.7 4.3 7.3 77.0 12.1 4540 33.9 23826 81.0 4.5 117100 21108 2.70 20730 44145 15.8 660 6798 3.4 3563 4458 0.0 0.0 0.0 0 0.0 23.2 341544 0 319700 5622 20941 3 644.78 88.9
1011 Bullock County AL 10764 10915 -1.4 10914 6.3 21.4 14.9 45.3 26.9 70.1 0.8 0.3 0.7 1.1 7.5 22.1 84.7 5.4 5.2 67.8 12.5 636 26.9 4461 74.3 8.7 70600 3741 2.73 18628 32033 21.6 112 0 0.0 470 417 0.0 0.0 0.0 0 0.0 38.8 0 0 43810 3995 3670 1 622.81 17.5

1.4.3 Adjust table headers

The file Headers.csv contains the descriptions of what some of the variables are. We replace the codes in the table headers with those decriptions accordingly.

# Function that matches the code in the dataframe column
# and replace it with dictionary value
new.headers <- function(headers,facts){
        n <- nrow(headers)
        for (i in seq(n)){
                col.Ind <- which(colnames(facts)==headers[i,1])
                colnames(facts)[col.Ind] <- headers[i,2]
        }
        return(facts)
}

facts2 <- new.headers(headers,facts)
kable(head(facts2))%>% kable_styling(bootstrap_options = c("striped", "condensed"))
fips area_name state_abbreviation Population, 2014 estimate Population, 2010 (April 1) estimates base Population, percent change - April 1, 2010 to July 1, 2014 Population, 2010 Persons under 5 years, percent, 2014 Persons under 18 years, percent, 2014 Persons 65 years and over, percent, 2014 Female persons, percent, 2014 White alone, percent, 2014 Black or African American alone, percent, 2014 American Indian and Alaska Native alone, percent, 2014 Asian alone, percent, 2014 Native Hawaiian and Other Pacific Islander alone, percent, 2014 Two or More Races, percent, 2014 Hispanic or Latino, percent, 2014 White alone, not Hispanic or Latino, percent, 2014 Living in same house 1 year & over, percent, 2009-2013 Foreign born persons, percent, 2009-2013 Language other than English spoken at home, pct age 5+, 2009-2013 High school graduate or higher, percent of persons age 25+, 2009-2013 Bachelor’s degree or higher, percent of persons age 25+, 2009-2013 Veterans, 2009-2013 Mean travel time to work (minutes), workers age 16+, 2009-2013 Housing units, 2014 Homeownership rate, 2009-2013 Housing units in multi-unit structures, percent, 2009-2013 Median value of owner-occupied housing units, 2009-2013 Households, 2009-2013 Persons per household, 2009-2013 Per capita money income in past 12 months (2013 dollars), 2009-2013 Median household income, 2009-2013 Persons below poverty level, percent, 2009-2013 Private nonfarm establishments, 2013 Private nonfarm employment, 2013 Private nonfarm employment, percent change, 2012-2013 Nonemployer establishments, 2013 Total number of firms, 2007 Black-owned firms, percent, 2007 American Indian- and Alaska Native-owned firms, percent, 2007 Asian-owned firms, percent, 2007 Native Hawaiian- and Other Pacific Islander-owned firms, percent, 2007 Hispanic-owned firms, percent, 2007 Women-owned firms, percent, 2007 Manufacturers shipments, 2007 ($1,000) Merchant wholesaler sales, 2007 ($1,000) Retail sales, 2007 ($1,000) Retail sales per capita, 2007 Accommodation and food services sales, 2007 ($1,000) Building permits, 2014 Land area in square miles, 2010 Population per square mile, 2010
1001 Autauga County AL 55395 54571 1.5 54571 6.0 25.2 13.8 51.4 77.9 18.7 0.5 1.1 0.1 1.8 2.7 75.6 85.0 1.6 3.5 85.6 20.9 5922 26.2 22751 76.8 8.3 136200 20071 2.71 24571 53682 12.1 817 10120 2.1 2947 4067 15.2 0.0 1.3 0 0.7 31.7 0 0 598175 12003 88157 131 594.44 91.8
1003 Baldwin County AL 200111 182265 9.8 182265 5.6 22.2 18.7 51.2 87.1 9.6 0.7 0.9 0.1 1.6 4.6 83.0 82.1 3.6 5.5 89.1 27.7 19346 25.9 107374 72.6 24.4 168600 73283 2.52 26766 50221 13.9 4871 54988 3.7 16508 19035 2.7 0.4 1.0 0 1.3 27.3 1410273 0 2966489 17166 436955 1384 1589.78 114.6
1005 Barbour County AL 26887 27457 -2.1 27457 5.7 21.2 16.5 46.6 50.2 47.6 0.6 0.5 0.2 0.9 4.5 46.6 84.8 2.9 5.0 73.7 13.4 2120 24.6 11799 67.7 10.6 89200 9200 2.66 16829 32911 26.7 464 6611 -5.6 1546 1667 0.0 0.0 0.0 0 0.0 27.0 0 0 188337 6334 0 8 884.88 31.0
1007 Bibb County AL 22506 22919 -1.8 22915 5.3 21.0 14.8 45.9 76.3 22.1 0.4 0.2 0.1 0.9 2.1 74.5 86.6 1.2 2.1 77.5 12.1 1327 27.6 8978 79.0 7.3 90500 7091 3.03 17427 36447 18.1 275 3145 7.5 1126 1385 14.9 0.0 0.0 0 0.0 0.0 0 0 124707 5804 10757 19 622.58 36.8
1009 Blount County AL 57719 57322 0.7 57322 6.1 23.6 17.0 50.5 96.0 1.8 0.6 0.3 0.1 1.2 8.7 87.8 88.7 4.3 7.3 77.0 12.1 4540 33.9 23826 81.0 4.5 117100 21108 2.70 20730 44145 15.8 660 6798 3.4 3563 4458 0.0 0.0 0.0 0 0.0 23.2 341544 0 319700 5622 20941 3 644.78 88.9
1011 Bullock County AL 10764 10915 -1.4 10914 6.3 21.4 14.9 45.3 26.9 70.1 0.8 0.3 0.7 1.1 7.5 22.1 84.7 5.4 5.2 67.8 12.5 636 26.9 4461 74.3 8.7 70600 3741 2.73 18628 32033 21.6 112 0 0.0 470 417 0.0 0.0 0.0 0 0.0 38.8 0 0 43810 3995 3670 1 622.81 17.5

1.5 Merging the demographic data and the primary election results data.

We determine what keys will foster the optimal join. Before merging the data sets, we prepare them by matching data types of columns.

1.5.1 Prepare data sets for merging

facts2$county <- sapply(facts2$area_name , function(x) {
  str_replace_all(x, " County" , "")
})

typeof(facts2$county) #Data type of county in facts2
## [1] "character"
typeof(new_pr_df$county) #Data type of county in new_pr_df
## [1] "integer"
new_pr_df$county <- as.character(new_pr_df$county) # Convert county in new_pr_df to character

typeof(facts2$state_abbreviation) #Data type of the state abbreviation in facts2
## [1] "integer"
typeof(new_pr_df$state_abbr)  #Data type of the state abbreviation in new_pr_df
## [1] "integer"
facts2$state_abbreviation <- as.character(facts2$state_abbreviation) # Convert county in new_pr_df to character
new_pr_df$state_abbr <- as.character(new_pr_df$state_abbr) # Convert county in new_pr_df to character

#Trim white space around character data
facts2$state_abbreviation <- trimws(facts2$state_abbreviation)
new_pr_df$state_abbr <- trimws(new_pr_df$state_abbr)
facts2$county <- trimws(facts2$county)
new_pr_df$county <- trimws(new_pr_df$county)

1.5.2 Left join by county and state

#Left join by count and state abbreviation
complete_data <- left_join(new_pr_df, facts2, by = c("county", "state_abbr" = "state_abbreviation" ))

1.5.2.1 Dimensions of merged data and original data

dim(new_pr_df) # Dimension of primary election data
## [1] 4217   12
dim(facts2) # Dimensions of the demographic data, which is organized on the county level. 
## [1] 3143   55
dim(complete_data) # Dimensions of the two datasets merged by an inner join, which is a left join that creates a dataset that only contains exact matches across the two data frame.
## [1] 4217   65
unique(complete_data$state_abbr) # Listed here are the states that were accurately joined. 
##  [1] "AL" "AK" "AZ" "AR" "CA" "CO" "CT" "DE" "FL" "GA" "HI" "ID" "IL" "IN"
## [15] "IA" "KS" "KY" "LA" "ME" "MD" "MA" "MI" "MS" "MO" "MT" "NE" "NV" "NH"
## [29] "NJ" "NM" "NY" "NC" "ND" "OH" "OK" "OR" "PA" "RI" "SC" "SD" "TN" "TX"
## [43] "UT" "VT" "VA" "WA" "WV" "WI" "WY"

1.5.2.2 Where did the two data frames not match (i.e. the rows with NA values)

anyNA(complete_data) #There are missing values
## [1] TRUE
#Create a subset of the merged data that only contains those rows where there are NA values.
df_did_not_match <- subset(complete_data, is.na(complete_data$area_name))
dim(df_did_not_match) #There are 1491 rows where the primary election data did not match the demographic data
## [1] 1491   65
df_did_not_match$fips_length <- sapply(df_did_not_match$fips.x, nchar)
unique(df_did_not_match$fips_length) #In the df_did_not_match subset, there are FIPS code 4, 5, and 8 digits in length. 
## [1] 8 4 5
count((subset(df_did_not_match, fips_length==4))) #Number of fips codes that are 4 digits long
## # A tibble: 1 x 1
##       n
##   <int>
## 1     1
count((subset(df_did_not_match, fips_length==5))) #Number of fips codes that are 5 digits long
## # A tibble: 1 x 1
##       n
##   <int>
## 1   121
count((subset(df_did_not_match, fips_length==8))) #Number of fips codes that are 8 digits long
## # A tibble: 1 x 1
##       n
##   <int>
## 1  1369
unique(df_did_not_match$state) #States that did not properly match. 
##  [1] Alaska        Arkansas      Connecticut   Idaho         Illinois     
##  [6] Kansas        Kentucky      Louisiana     Maine         Maryland     
## [11] Massachusetts Mississippi   Missouri      New Mexico    New York     
## [16] North Dakota  Oklahoma      Rhode Island  South Dakota  Texas        
## [21] Vermont       Virginia      Wyoming      
## 49 Levels: Alabama Alaska Arizona Arkansas California ... Wyoming

1.5.3 Left join by fips code

As shown below, this merge leads to better results. Rather than 1491 rows not matching as was the case when joining by the state and county, using the FIPS code as join by key leads to 1419 rows to not match. On top of this, when joining by the FIPS code a mere 11 states’ primary election results do not accurately match.

complete_data <- left_join(new_pr_df, facts2, by = c("fips"))

1.5.3.1 Dimensions of merged data and original data

dim(new_pr_df) # Dimension of primary election data
## [1] 4217   12
dim(facts2) # Dimensions of the demographic data, which is organized on the county level. 
## [1] 3143   55
dim(complete_data) # Dimensions of the two datasets merged by an inner join, which is a left join that creates a dataset that only contains exact matches across the two data frame.
## [1] 4217   66
unique(complete_data$state_abbr) # Listed here are the states that were accurately joined. 
##  [1] "AL" "AK" "AZ" "AR" "CA" "CO" "CT" "DE" "FL" "GA" "HI" "ID" "IL" "IN"
## [15] "IA" "KS" "KY" "LA" "ME" "MD" "MA" "MI" "MS" "MO" "MT" "NE" "NV" "NH"
## [29] "NJ" "NM" "NY" "NC" "ND" "OH" "OK" "OR" "PA" "RI" "SC" "SD" "TN" "TX"
## [43] "UT" "VT" "VA" "WA" "WV" "WI" "WY"

1.5.3.2 Where did the two data frames not match (i.e. the rows with NA values)?

anyNA(complete_data) #There are missing values
## [1] TRUE

We create a subset of the merged data that only contains those rows where there are NA values.

df_did_not_match <- subset(complete_data, is.na(complete_data$area_name))
dim(df_did_not_match) #There are 1419 rows where the primary election data did not match the demographic data. This is compared to the 1491 rows that did not match when using state and county names. 
## [1] 1419   66
df_did_not_match$fips_length <- sapply(df_did_not_match$fips, nchar)
unique(df_did_not_match$fips_length) #In the df_did_not_match subset, are only FIPS code 8 digits in length and observations without a FIPS code.
## [1]  8 NA
count((subset(df_did_not_match, fips_length==4))) #Number of fips codes that are 4 digits long
## # A tibble: 1 x 1
##       n
##   <int>
## 1     0
count((subset(df_did_not_match, fips_length==5))) #Number of fips codes that are 5 digits long
## # A tibble: 1 x 1
##       n
##   <int>
## 1     0
count((subset(df_did_not_match, fips_length==8))) #Number of fips codes that are 8 digits long
## # A tibble: 1 x 1
##       n
##   <int>
## 1  1409
unique(df_did_not_match$state) 
##  [1] Alaska        Connecticut   Illinois      Kansas        Maine        
##  [6] Massachusetts New Hampshire North Dakota  Rhode Island  Vermont      
## [11] Wyoming      
## 49 Levels: Alabama Alaska Arizona Arkansas California ... Wyoming

1.6 Data limitations

The election data (new_pr_df) is organized on the basis of towns and cities for many states, while the demographic data we are using is solely organized on the basis of counties. The FIPS code only refers to counties, so for those states that are not organized by county, they have a code in the FIPS code column that is not actually a FIPS code.

Take the case of Connecticut (CT), for instance. Connecticut has a mere 8 counties in reality. However, in the primary election data, new_pr_df, there are 169 observations. In the column labeled county for the state of Connecticut, the names listed do not refer to county names; rather, they refer to town and city names. While each of these towns and cities are in a county and can be assigned to a county, neither the new_pr_df or the facts2 data frames contain the necessary information to do this.

For the analysis we would like to conduct, these 11 states that are not organized on a county basis can be ignored. Moving forward, we will use the data below.

1.7 Data analysis

For the analysis of this data, we use the following data frame, created by an inner join by FIPS codes.

complete_data <- inner_join(new_pr_df, facts2, by = c("fips"))
dim(complete_data) # 2798 counties
## [1] 2798   66
unique(complete_data$state) #40 states 
##  [1] Alabama        Arizona        Arkansas       California    
##  [5] Colorado       Delaware       Florida        Georgia       
##  [9] Hawaii         Idaho          Illinois       Indiana       
## [13] Iowa           Kentucky       Louisiana      Maryland      
## [17] Michigan       Mississippi    Missouri       Montana       
## [21] Nebraska       Nevada         New Jersey     New Mexico    
## [25] New York       North Carolina Ohio           Oklahoma      
## [29] Oregon         Pennsylvania   South Carolina South Dakota  
## [33] Tennessee      Texas          Utah           Virginia      
## [37] Washington     West Virginia  Wisconsin      Wyoming       
## 49 Levels: Alabama Alaska Arizona Arkansas California ... Wyoming
write.csv(complete_data, "complete_data.csv")

trump_data <- complete_data %>% filter(`trump votes`> 0)  
write.csv(trump_data, "trump_data.csv")

1.7.1 Analysis on votes gained by Trump and Clinton

Let’s do a Backward elimination process to find the relationship of demographic metrics on Votes gained by Trump and Clinton. Backward elimination is the process of removing the metrics which are less statisically significant to a particular target metric. The idea here is that the metrics having less p-value (significance) has high co-relation to the target metrics. Once this is done, we will look at those metrics which are having less p-value (high significance).

First, we will do it for Trump.

  • Target metric : Votes gained by Trump

  • Metrics used : Since there are lot of demographic metrics in the data set, we will use some possible metrics by doing conscious judgment.

    + Persons under 5 years, percent, 2014
    + Persons under 18 years, percent, 2014
    + Persons 65 years and over, percent, 2014
    + Female persons, percent, 2014
    + White alone, percent, 2014
    + Black or African American alone, percent, 2014
    + American Indian and Alaska Native alone, percent, 2014
    + Asian alone, percent, 2014
    + Native Hawaiian and Other Pacific Islander alone, percent, 2014
    + Two or More Races, percent, 2014
    + Hispanic or Latino, percent, 2014
    + White alone, not Hispanic or Latino, percent, 2014
    + Households, 2009-2013
    + Per capita money income in past 12 months (2013 dollars), 2009-2013
    + Retail sales per capita, 2007


1.7.1.1 Trump analysis

trump_data <- complete_data %>% filter(`trump votes`> 0 )  %>% select("sanders fraction votes","sanders votes","clinton fraction votes","clinton votes","trump fraction votes","trump votes","cruz fraction votes","cruz votes", "Persons under 5 years, percent, 2014","Persons under 18 years, percent, 2014","Persons 65 years and over, percent, 2014","Female persons, percent, 2014","White alone, percent, 2014","Black or African American alone, percent, 2014","American Indian and Alaska Native alone, percent, 2014","Asian alone, percent, 2014","Native Hawaiian and Other Pacific Islander alone, percent, 2014","Two or More Races, percent, 2014","Hispanic or Latino, percent, 2014","White alone, not Hispanic or Latino, percent, 2014","Households, 2009-2013" , "Per capita money income in past 12 months (2013 dollars), 2009-2013" , "Retail sales per capita, 2007")


full_model <- lm(`trump votes` ~ `Persons under 18 years, percent, 2014`+`Persons 65 years and over, percent, 2014`+`Female persons, percent, 2014`+`White alone, percent, 2014`+`Black or African American alone, percent, 2014`+`American Indian and Alaska Native alone, percent, 2014`+`Asian alone, percent, 2014`+`Native Hawaiian and Other Pacific Islander alone, percent, 2014`+`Two or More Races, percent, 2014`+ `Hispanic or Latino, percent, 2014` + `White alone, not Hispanic or Latino, percent, 2014` + `Households, 2009-2013` + `Per capita money income in past 12 months (2013 dollars), 2009-2013` + `Retail sales per capita, 2007`  , data= trump_data)

summary(full_model)
## 
## Call:
## lm(formula = `trump votes` ~ `Persons under 18 years, percent, 2014` + 
##     `Persons 65 years and over, percent, 2014` + `Female persons, percent, 2014` + 
##     `White alone, percent, 2014` + `Black or African American alone, percent, 2014` + 
##     `American Indian and Alaska Native alone, percent, 2014` + 
##     `Asian alone, percent, 2014` + `Native Hawaiian and Other Pacific Islander alone, percent, 2014` + 
##     `Two or More Races, percent, 2014` + `Hispanic or Latino, percent, 2014` + 
##     `White alone, not Hispanic or Latino, percent, 2014` + `Households, 2009-2013` + 
##     `Per capita money income in past 12 months (2013 dollars), 2009-2013` + 
##     `Retail sales per capita, 2007`, data = trump_data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -65821  -1580   -446    637  70362 
## 
## Coefficients:
##                                                                         Estimate
## (Intercept)                                                           -5.682e+04
## `Persons under 18 years, percent, 2014`                               -9.272e+00
## `Persons 65 years and over, percent, 2014`                            -3.741e+01
## `Female persons, percent, 2014`                                        6.134e+01
## `White alone, percent, 2014`                                           1.071e+03
## `Black or African American alone, percent, 2014`                       5.048e+02
## `American Indian and Alaska Native alone, percent, 2014`               4.964e+02
## `Asian alone, percent, 2014`                                           3.362e+02
## `Native Hawaiian and Other Pacific Islander alone, percent, 2014`     -1.291e+02
## `Two or More Races, percent, 2014`                                     8.235e+02
## `Hispanic or Latino, percent, 2014`                                   -5.522e+02
## `White alone, not Hispanic or Latino, percent, 2014`                  -5.584e+02
## `Households, 2009-2013`                                                7.594e-02
## `Per capita money income in past 12 months (2013 dollars), 2009-2013`  1.923e-01
## `Retail sales per capita, 2007`                                        1.044e-01
##                                                                       Std. Error
## (Intercept)                                                            1.353e+05
## `Persons under 18 years, percent, 2014`                                4.537e+01
## `Persons 65 years and over, percent, 2014`                             3.358e+01
## `Female persons, percent, 2014`                                        5.133e+01
## `White alone, percent, 2014`                                           1.359e+03
## `Black or African American alone, percent, 2014`                       1.353e+03
## `American Indian and Alaska Native alone, percent, 2014`               1.353e+03
## `Asian alone, percent, 2014`                                           1.354e+03
## `Native Hawaiian and Other Pacific Islander alone, percent, 2014`      1.395e+03
## `Two or More Races, percent, 2014`                                     1.355e+03
## `Hispanic or Latino, percent, 2014`                                    1.463e+02
## `White alone, not Hispanic or Latino, percent, 2014`                   1.536e+02
## `Households, 2009-2013`                                                1.050e-03
## `Per capita money income in past 12 months (2013 dollars), 2009-2013`  2.324e-02
## `Retail sales per capita, 2007`                                        1.959e-02
##                                                                       t value
## (Intercept)                                                            -0.420
## `Persons under 18 years, percent, 2014`                                -0.204
## `Persons 65 years and over, percent, 2014`                             -1.114
## `Female persons, percent, 2014`                                         1.195
## `White alone, percent, 2014`                                            0.788
## `Black or African American alone, percent, 2014`                        0.373
## `American Indian and Alaska Native alone, percent, 2014`                0.367
## `Asian alone, percent, 2014`                                            0.248
## `Native Hawaiian and Other Pacific Islander alone, percent, 2014`      -0.093
## `Two or More Races, percent, 2014`                                      0.608
## `Hispanic or Latino, percent, 2014`                                    -3.774
## `White alone, not Hispanic or Latino, percent, 2014`                   -3.636
## `Households, 2009-2013`                                                72.315
## `Per capita money income in past 12 months (2013 dollars), 2009-2013`   8.274
## `Retail sales per capita, 2007`                                         5.329
##                                                                       Pr(>|t|)
## (Intercept)                                                           0.674625
## `Persons under 18 years, percent, 2014`                               0.838097
## `Persons 65 years and over, percent, 2014`                            0.265377
## `Female persons, percent, 2014`                                       0.232147
## `White alone, percent, 2014`                                          0.430603
## `Black or African American alone, percent, 2014`                      0.709101
## `American Indian and Alaska Native alone, percent, 2014`              0.713708
## `Asian alone, percent, 2014`                                          0.803979
## `Native Hawaiian and Other Pacific Islander alone, percent, 2014`     0.926265
## `Two or More Races, percent, 2014`                                    0.543274
## `Hispanic or Latino, percent, 2014`                                   0.000164
## `White alone, not Hispanic or Latino, percent, 2014`                  0.000282
## `Households, 2009-2013`                                                < 2e-16
## `Per capita money income in past 12 months (2013 dollars), 2009-2013`  < 2e-16
## `Retail sales per capita, 2007`                                       1.07e-07
##                                                                          
## (Intercept)                                                              
## `Persons under 18 years, percent, 2014`                                  
## `Persons 65 years and over, percent, 2014`                               
## `Female persons, percent, 2014`                                          
## `White alone, percent, 2014`                                             
## `Black or African American alone, percent, 2014`                         
## `American Indian and Alaska Native alone, percent, 2014`                 
## `Asian alone, percent, 2014`                                             
## `Native Hawaiian and Other Pacific Islander alone, percent, 2014`        
## `Two or More Races, percent, 2014`                                       
## `Hispanic or Latino, percent, 2014`                                   ***
## `White alone, not Hispanic or Latino, percent, 2014`                  ***
## `Households, 2009-2013`                                               ***
## `Per capita money income in past 12 months (2013 dollars), 2009-2013` ***
## `Retail sales per capita, 2007`                                       ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4992 on 2694 degrees of freedom
## Multiple R-squared:  0.7506, Adjusted R-squared:  0.7493 
## F-statistic: 579.2 on 14 and 2694 DF,  p-value: < 2.2e-16
step(full_model ,data= trump_data , direction = "backward" ,test = "F")
## Start:  AIC=46152.09
## `trump votes` ~ `Persons under 18 years, percent, 2014` + `Persons 65 years and over, percent, 2014` + 
##     `Female persons, percent, 2014` + `White alone, percent, 2014` + 
##     `Black or African American alone, percent, 2014` + `American Indian and Alaska Native alone, percent, 2014` + 
##     `Asian alone, percent, 2014` + `Native Hawaiian and Other Pacific Islander alone, percent, 2014` + 
##     `Two or More Races, percent, 2014` + `Hispanic or Latino, percent, 2014` + 
##     `White alone, not Hispanic or Latino, percent, 2014` + `Households, 2009-2013` + 
##     `Per capita money income in past 12 months (2013 dollars), 2009-2013` + 
##     `Retail sales per capita, 2007`
## 
##                                                                         Df
## - `Native Hawaiian and Other Pacific Islander alone, percent, 2014`      1
## - `Persons under 18 years, percent, 2014`                                1
## - `Asian alone, percent, 2014`                                           1
## - `American Indian and Alaska Native alone, percent, 2014`               1
## - `Black or African American alone, percent, 2014`                       1
## - `Two or More Races, percent, 2014`                                     1
## - `White alone, percent, 2014`                                           1
## - `Persons 65 years and over, percent, 2014`                             1
## - `Female persons, percent, 2014`                                        1
## <none>                                                                    
## - `White alone, not Hispanic or Latino, percent, 2014`                   1
## - `Hispanic or Latino, percent, 2014`                                    1
## - `Retail sales per capita, 2007`                                        1
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013`  1
## - `Households, 2009-2013`                                                1
##                                                                          Sum of Sq
## - `Native Hawaiian and Other Pacific Islander alone, percent, 2014`     2.1344e+05
## - `Persons under 18 years, percent, 2014`                               1.0405e+06
## - `Asian alone, percent, 2014`                                          1.5353e+06
## - `American Indian and Alaska Native alone, percent, 2014`              3.3546e+06
## - `Black or African American alone, percent, 2014`                      3.4686e+06
## - `Two or More Races, percent, 2014`                                    9.2092e+06
## - `White alone, percent, 2014`                                          1.5483e+07
## - `Persons 65 years and over, percent, 2014`                            3.0922e+07
## - `Female persons, percent, 2014`                                       3.5589e+07
## <none>                                                                            
## - `White alone, not Hispanic or Latino, percent, 2014`                  3.2942e+08
## - `Hispanic or Latino, percent, 2014`                                   3.5496e+08
## - `Retail sales per capita, 2007`                                       7.0755e+08
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` 1.7057e+09
## - `Households, 2009-2013`                                               1.3030e+11
##                                                                                RSS
## - `Native Hawaiian and Other Pacific Islander alone, percent, 2014`     6.7126e+10
## - `Persons under 18 years, percent, 2014`                               6.7127e+10
## - `Asian alone, percent, 2014`                                          6.7128e+10
## - `American Indian and Alaska Native alone, percent, 2014`              6.7129e+10
## - `Black or African American alone, percent, 2014`                      6.7129e+10
## - `Two or More Races, percent, 2014`                                    6.7135e+10
## - `White alone, percent, 2014`                                          6.7142e+10
## - `Persons 65 years and over, percent, 2014`                            6.7157e+10
## - `Female persons, percent, 2014`                                       6.7162e+10
## <none>                                                                  6.7126e+10
## - `White alone, not Hispanic or Latino, percent, 2014`                  6.7455e+10
## - `Hispanic or Latino, percent, 2014`                                   6.7481e+10
## - `Retail sales per capita, 2007`                                       6.7834e+10
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` 6.8832e+10
## - `Households, 2009-2013`                                               1.9743e+11
##                                                                           AIC
## - `Native Hawaiian and Other Pacific Islander alone, percent, 2014`     46150
## - `Persons under 18 years, percent, 2014`                               46150
## - `Asian alone, percent, 2014`                                          46150
## - `American Indian and Alaska Native alone, percent, 2014`              46150
## - `Black or African American alone, percent, 2014`                      46150
## - `Two or More Races, percent, 2014`                                    46150
## - `White alone, percent, 2014`                                          46151
## - `Persons 65 years and over, percent, 2014`                            46151
## - `Female persons, percent, 2014`                                       46152
## <none>                                                                  46152
## - `White alone, not Hispanic or Latino, percent, 2014`                  46163
## - `Hispanic or Latino, percent, 2014`                                   46164
## - `Retail sales per capita, 2007`                                       46178
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` 46218
## - `Households, 2009-2013`                                               49073
##                                                                           F value
## - `Native Hawaiian and Other Pacific Islander alone, percent, 2014`        0.0086
## - `Persons under 18 years, percent, 2014`                                  0.0418
## - `Asian alone, percent, 2014`                                             0.0616
## - `American Indian and Alaska Native alone, percent, 2014`                 0.1346
## - `Black or African American alone, percent, 2014`                         0.1392
## - `Two or More Races, percent, 2014`                                       0.3696
## - `White alone, percent, 2014`                                             0.6214
## - `Persons 65 years and over, percent, 2014`                               1.2410
## - `Female persons, percent, 2014`                                          1.4283
## <none>                                                                           
## - `White alone, not Hispanic or Latino, percent, 2014`                    13.2207
## - `Hispanic or Latino, percent, 2014`                                     14.2459
## - `Retail sales per capita, 2007`                                         28.3966
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013`   68.4561
## - `Households, 2009-2013`                                               5229.4221
##                                                                            Pr(>F)
## - `Native Hawaiian and Other Pacific Islander alone, percent, 2014`     0.9262653
## - `Persons under 18 years, percent, 2014`                               0.8380972
## - `Asian alone, percent, 2014`                                          0.8039785
## - `American Indian and Alaska Native alone, percent, 2014`              0.7137075
## - `Black or African American alone, percent, 2014`                      0.7091012
## - `Two or More Races, percent, 2014`                                    0.5432743
## - `White alone, percent, 2014`                                          0.4306025
## - `Persons 65 years and over, percent, 2014`                            0.2653769
## - `Female persons, percent, 2014`                                       0.2321470
## <none>                                                                           
## - `White alone, not Hispanic or Latino, percent, 2014`                  0.0002821
## - `Hispanic or Latino, percent, 2014`                                   0.0001639
## - `Retail sales per capita, 2007`                                        1.07e-07
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` < 2.2e-16
## - `Households, 2009-2013`                                               < 2.2e-16
##                                                                            
## - `Native Hawaiian and Other Pacific Islander alone, percent, 2014`        
## - `Persons under 18 years, percent, 2014`                                  
## - `Asian alone, percent, 2014`                                             
## - `American Indian and Alaska Native alone, percent, 2014`                 
## - `Black or African American alone, percent, 2014`                         
## - `Two or More Races, percent, 2014`                                       
## - `White alone, percent, 2014`                                             
## - `Persons 65 years and over, percent, 2014`                               
## - `Female persons, percent, 2014`                                          
## <none>                                                                     
## - `White alone, not Hispanic or Latino, percent, 2014`                  ***
## - `Hispanic or Latino, percent, 2014`                                   ***
## - `Retail sales per capita, 2007`                                       ***
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` ***
## - `Households, 2009-2013`                                               ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Step:  AIC=46150.1
## `trump votes` ~ `Persons under 18 years, percent, 2014` + `Persons 65 years and over, percent, 2014` + 
##     `Female persons, percent, 2014` + `White alone, percent, 2014` + 
##     `Black or African American alone, percent, 2014` + `American Indian and Alaska Native alone, percent, 2014` + 
##     `Asian alone, percent, 2014` + `Two or More Races, percent, 2014` + 
##     `Hispanic or Latino, percent, 2014` + `White alone, not Hispanic or Latino, percent, 2014` + 
##     `Households, 2009-2013` + `Per capita money income in past 12 months (2013 dollars), 2009-2013` + 
##     `Retail sales per capita, 2007`
## 
##                                                                         Df
## - `Persons under 18 years, percent, 2014`                                1
## - `Persons 65 years and over, percent, 2014`                             1
## - `Female persons, percent, 2014`                                        1
## - `Asian alone, percent, 2014`                                           1
## <none>                                                                    
## - `Black or African American alone, percent, 2014`                       1
## - `American Indian and Alaska Native alone, percent, 2014`               1
## - `Two or More Races, percent, 2014`                                     1
## - `White alone, percent, 2014`                                           1
## - `White alone, not Hispanic or Latino, percent, 2014`                   1
## - `Hispanic or Latino, percent, 2014`                                    1
## - `Retail sales per capita, 2007`                                        1
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013`  1
## - `Households, 2009-2013`                                                1
##                                                                          Sum of Sq
## - `Persons under 18 years, percent, 2014`                               1.0754e+06
## - `Persons 65 years and over, percent, 2014`                            3.0980e+07
## - `Female persons, percent, 2014`                                       3.5718e+07
## - `Asian alone, percent, 2014`                                          4.1625e+07
## <none>                                                                            
## - `Black or African American alone, percent, 2014`                      8.9653e+07
## - `American Indian and Alaska Native alone, percent, 2014`              9.0093e+07
## - `Two or More Races, percent, 2014`                                    1.3861e+08
## - `White alone, percent, 2014`                                          2.8500e+08
## - `White alone, not Hispanic or Latino, percent, 2014`                  3.2944e+08
## - `Hispanic or Latino, percent, 2014`                                   3.5502e+08
## - `Retail sales per capita, 2007`                                       7.0763e+08
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` 1.7100e+09
## - `Households, 2009-2013`                                               1.3040e+11
##                                                                                RSS
## - `Persons under 18 years, percent, 2014`                               6.7127e+10
## - `Persons 65 years and over, percent, 2014`                            6.7157e+10
## - `Female persons, percent, 2014`                                       6.7162e+10
## - `Asian alone, percent, 2014`                                          6.7168e+10
## <none>                                                                  6.7126e+10
## - `Black or African American alone, percent, 2014`                      6.7216e+10
## - `American Indian and Alaska Native alone, percent, 2014`              6.7216e+10
## - `Two or More Races, percent, 2014`                                    6.7265e+10
## - `White alone, percent, 2014`                                          6.7411e+10
## - `White alone, not Hispanic or Latino, percent, 2014`                  6.7456e+10
## - `Hispanic or Latino, percent, 2014`                                   6.7481e+10
## - `Retail sales per capita, 2007`                                       6.7834e+10
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` 6.8836e+10
## - `Households, 2009-2013`                                               1.9753e+11
##                                                                           AIC
## - `Persons under 18 years, percent, 2014`                               46148
## - `Persons 65 years and over, percent, 2014`                            46149
## - `Female persons, percent, 2014`                                       46150
## - `Asian alone, percent, 2014`                                          46150
## <none>                                                                  46150
## - `Black or African American alone, percent, 2014`                      46152
## - `American Indian and Alaska Native alone, percent, 2014`              46152
## - `Two or More Races, percent, 2014`                                    46154
## - `White alone, percent, 2014`                                          46160
## - `White alone, not Hispanic or Latino, percent, 2014`                  46161
## - `Hispanic or Latino, percent, 2014`                                   46162
## - `Retail sales per capita, 2007`                                       46177
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` 46216
## - `Households, 2009-2013`                                               49072
##                                                                           F value
## - `Persons under 18 years, percent, 2014`                                  0.0432
## - `Persons 65 years and over, percent, 2014`                               1.2438
## - `Female persons, percent, 2014`                                          1.4340
## - `Asian alone, percent, 2014`                                             1.6712
## <none>                                                                           
## - `Black or African American alone, percent, 2014`                         3.5994
## - `American Indian and Alaska Native alone, percent, 2014`                 3.6171
## - `Two or More Races, percent, 2014`                                       5.5648
## - `White alone, percent, 2014`                                            11.4424
## - `White alone, not Hispanic or Latino, percent, 2014`                    13.2265
## - `Hispanic or Latino, percent, 2014`                                     14.2535
## - `Retail sales per capita, 2007`                                         28.4102
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013`   68.6529
## - `Households, 2009-2013`                                               5235.3434
##                                                                            Pr(>F)
## - `Persons under 18 years, percent, 2014`                               0.8354108
## - `Persons 65 years and over, percent, 2014`                            0.2648416
## - `Female persons, percent, 2014`                                       0.2312138
## - `Asian alone, percent, 2014`                                          0.1962120
## <none>                                                                           
## - `Black or African American alone, percent, 2014`                      0.0579071
## - `American Indian and Alaska Native alone, percent, 2014`              0.0572954
## - `Two or More Races, percent, 2014`                                    0.0183956
## - `White alone, percent, 2014`                                          0.0007281
## - `White alone, not Hispanic or Latino, percent, 2014`                  0.0002812
## - `Hispanic or Latino, percent, 2014`                                   0.0001632
## - `Retail sales per capita, 2007`                                       1.063e-07
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` < 2.2e-16
## - `Households, 2009-2013`                                               < 2.2e-16
##                                                                            
## - `Persons under 18 years, percent, 2014`                                  
## - `Persons 65 years and over, percent, 2014`                               
## - `Female persons, percent, 2014`                                          
## - `Asian alone, percent, 2014`                                             
## <none>                                                                     
## - `Black or African American alone, percent, 2014`                      .  
## - `American Indian and Alaska Native alone, percent, 2014`              .  
## - `Two or More Races, percent, 2014`                                    *  
## - `White alone, percent, 2014`                                          ***
## - `White alone, not Hispanic or Latino, percent, 2014`                  ***
## - `Hispanic or Latino, percent, 2014`                                   ***
## - `Retail sales per capita, 2007`                                       ***
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` ***
## - `Households, 2009-2013`                                               ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Step:  AIC=46148.14
## `trump votes` ~ `Persons 65 years and over, percent, 2014` + 
##     `Female persons, percent, 2014` + `White alone, percent, 2014` + 
##     `Black or African American alone, percent, 2014` + `American Indian and Alaska Native alone, percent, 2014` + 
##     `Asian alone, percent, 2014` + `Two or More Races, percent, 2014` + 
##     `Hispanic or Latino, percent, 2014` + `White alone, not Hispanic or Latino, percent, 2014` + 
##     `Households, 2009-2013` + `Per capita money income in past 12 months (2013 dollars), 2009-2013` + 
##     `Retail sales per capita, 2007`
## 
##                                                                         Df
## - `Female persons, percent, 2014`                                        1
## - `Persons 65 years and over, percent, 2014`                             1
## - `Asian alone, percent, 2014`                                           1
## <none>                                                                    
## - `American Indian and Alaska Native alone, percent, 2014`               1
## - `Black or African American alone, percent, 2014`                       1
## - `Two or More Races, percent, 2014`                                     1
## - `White alone, percent, 2014`                                           1
## - `White alone, not Hispanic or Latino, percent, 2014`                   1
## - `Hispanic or Latino, percent, 2014`                                    1
## - `Retail sales per capita, 2007`                                        1
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013`  1
## - `Households, 2009-2013`                                                1
##                                                                          Sum of Sq
## - `Female persons, percent, 2014`                                       3.7903e+07
## - `Persons 65 years and over, percent, 2014`                            4.2856e+07
## - `Asian alone, percent, 2014`                                          4.5993e+07
## <none>                                                                            
## - `American Indian and Alaska Native alone, percent, 2014`              9.5863e+07
## - `Black or African American alone, percent, 2014`                      9.6385e+07
## - `Two or More Races, percent, 2014`                                    1.4802e+08
## - `White alone, percent, 2014`                                          2.9863e+08
## - `White alone, not Hispanic or Latino, percent, 2014`                  3.2921e+08
## - `Hispanic or Latino, percent, 2014`                                   3.5556e+08
## - `Retail sales per capita, 2007`                                       7.2012e+08
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` 1.7118e+09
## - `Households, 2009-2013`                                               1.3107e+11
##                                                                                RSS
## - `Female persons, percent, 2014`                                       6.7165e+10
## - `Persons 65 years and over, percent, 2014`                            6.7170e+10
## - `Asian alone, percent, 2014`                                          6.7173e+10
## <none>                                                                  6.7127e+10
## - `American Indian and Alaska Native alone, percent, 2014`              6.7223e+10
## - `Black or African American alone, percent, 2014`                      6.7224e+10
## - `Two or More Races, percent, 2014`                                    6.7275e+10
## - `White alone, percent, 2014`                                          6.7426e+10
## - `White alone, not Hispanic or Latino, percent, 2014`                  6.7457e+10
## - `Hispanic or Latino, percent, 2014`                                   6.7483e+10
## - `Retail sales per capita, 2007`                                       6.7847e+10
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` 6.8839e+10
## - `Households, 2009-2013`                                               1.9819e+11
##                                                                           AIC
## - `Female persons, percent, 2014`                                       46148
## - `Persons 65 years and over, percent, 2014`                            46148
## - `Asian alone, percent, 2014`                                          46148
## <none>                                                                  46148
## - `American Indian and Alaska Native alone, percent, 2014`              46150
## - `Black or African American alone, percent, 2014`                      46150
## - `Two or More Races, percent, 2014`                                    46152
## - `White alone, percent, 2014`                                          46158
## - `White alone, not Hispanic or Latino, percent, 2014`                  46159
## - `Hispanic or Latino, percent, 2014`                                   46160
## - `Retail sales per capita, 2007`                                       46175
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` 46214
## - `Households, 2009-2013`                                               49079
##                                                                           F value
## - `Female persons, percent, 2014`                                          1.5223
## - `Persons 65 years and over, percent, 2014`                               1.7212
## - `Asian alone, percent, 2014`                                             1.8472
## <none>                                                                           
## - `American Indian and Alaska Native alone, percent, 2014`                 3.8501
## - `Black or African American alone, percent, 2014`                         3.8711
## - `Two or More Races, percent, 2014`                                       5.9450
## - `White alone, percent, 2014`                                            11.9939
## - `White alone, not Hispanic or Latino, percent, 2014`                    13.2218
## - `Hispanic or Latino, percent, 2014`                                     14.2801
## - `Retail sales per capita, 2007`                                         28.9219
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013`   68.7516
## - `Households, 2009-2013`                                               5263.8982
##                                                                            Pr(>F)
## - `Female persons, percent, 2014`                                       0.2173808
## - `Persons 65 years and over, percent, 2014`                            0.1896517
## - `Asian alone, percent, 2014`                                          0.1742260
## <none>                                                                           
## - `American Indian and Alaska Native alone, percent, 2014`              0.0498464
## - `Black or African American alone, percent, 2014`                      0.0492279
## - `Two or More Races, percent, 2014`                                    0.0148232
## - `White alone, percent, 2014`                                          0.0005421
## - `White alone, not Hispanic or Latino, percent, 2014`                  0.0002819
## - `Hispanic or Latino, percent, 2014`                                   0.0001609
## - `Retail sales per capita, 2007`                                       8.182e-08
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` < 2.2e-16
## - `Households, 2009-2013`                                               < 2.2e-16
##                                                                            
## - `Female persons, percent, 2014`                                          
## - `Persons 65 years and over, percent, 2014`                               
## - `Asian alone, percent, 2014`                                             
## <none>                                                                     
## - `American Indian and Alaska Native alone, percent, 2014`              *  
## - `Black or African American alone, percent, 2014`                      *  
## - `Two or More Races, percent, 2014`                                    *  
## - `White alone, percent, 2014`                                          ***
## - `White alone, not Hispanic or Latino, percent, 2014`                  ***
## - `Hispanic or Latino, percent, 2014`                                   ***
## - `Retail sales per capita, 2007`                                       ***
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` ***
## - `Households, 2009-2013`                                               ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Step:  AIC=46147.67
## `trump votes` ~ `Persons 65 years and over, percent, 2014` + 
##     `White alone, percent, 2014` + `Black or African American alone, percent, 2014` + 
##     `American Indian and Alaska Native alone, percent, 2014` + 
##     `Asian alone, percent, 2014` + `Two or More Races, percent, 2014` + 
##     `Hispanic or Latino, percent, 2014` + `White alone, not Hispanic or Latino, percent, 2014` + 
##     `Households, 2009-2013` + `Per capita money income in past 12 months (2013 dollars), 2009-2013` + 
##     `Retail sales per capita, 2007`
## 
##                                                                         Df
## - `Persons 65 years and over, percent, 2014`                             1
## - `Asian alone, percent, 2014`                                           1
## <none>                                                                    
## - `American Indian and Alaska Native alone, percent, 2014`               1
## - `Black or African American alone, percent, 2014`                       1
## - `Two or More Races, percent, 2014`                                     1
## - `White alone, percent, 2014`                                           1
## - `White alone, not Hispanic or Latino, percent, 2014`                   1
## - `Hispanic or Latino, percent, 2014`                                    1
## - `Retail sales per capita, 2007`                                        1
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013`  1
## - `Households, 2009-2013`                                                1
##                                                                          Sum of Sq
## - `Persons 65 years and over, percent, 2014`                            3.4398e+07
## - `Asian alone, percent, 2014`                                          4.5628e+07
## <none>                                                                            
## - `American Indian and Alaska Native alone, percent, 2014`              9.6192e+07
## - `Black or African American alone, percent, 2014`                      9.6775e+07
## - `Two or More Races, percent, 2014`                                    1.4852e+08
## - `White alone, percent, 2014`                                          3.0215e+08
## - `White alone, not Hispanic or Latino, percent, 2014`                  3.3814e+08
## - `Hispanic or Latino, percent, 2014`                                   3.6656e+08
## - `Retail sales per capita, 2007`                                       8.1231e+08
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` 1.8054e+09
## - `Households, 2009-2013`                                               1.3268e+11
##                                                                                RSS
## - `Persons 65 years and over, percent, 2014`                            6.7200e+10
## - `Asian alone, percent, 2014`                                          6.7211e+10
## <none>                                                                  6.7165e+10
## - `American Indian and Alaska Native alone, percent, 2014`              6.7261e+10
## - `Black or African American alone, percent, 2014`                      6.7262e+10
## - `Two or More Races, percent, 2014`                                    6.7314e+10
## - `White alone, percent, 2014`                                          6.7467e+10
## - `White alone, not Hispanic or Latino, percent, 2014`                  6.7503e+10
## - `Hispanic or Latino, percent, 2014`                                   6.7532e+10
## - `Retail sales per capita, 2007`                                       6.7978e+10
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` 6.8971e+10
## - `Households, 2009-2013`                                               1.9984e+11
##                                                                           AIC
## - `Persons 65 years and over, percent, 2014`                            46147
## - `Asian alone, percent, 2014`                                          46148
## <none>                                                                  46148
## - `American Indian and Alaska Native alone, percent, 2014`              46150
## - `Black or African American alone, percent, 2014`                      46150
## - `Two or More Races, percent, 2014`                                    46152
## - `White alone, percent, 2014`                                          46158
## - `White alone, not Hispanic or Latino, percent, 2014`                  46159
## - `Hispanic or Latino, percent, 2014`                                   46160
## - `Retail sales per capita, 2007`                                       46178
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` 46218
## - `Households, 2009-2013`                                               49100
##                                                                           F value
## - `Persons 65 years and over, percent, 2014`                               1.3812
## - `Asian alone, percent, 2014`                                             1.8322
## <none>                                                                           
## - `American Indian and Alaska Native alone, percent, 2014`                 3.8626
## - `Black or African American alone, percent, 2014`                         3.8860
## - `Two or More Races, percent, 2014`                                       5.9636
## - `White alone, percent, 2014`                                            12.1329
## - `White alone, not Hispanic or Latino, percent, 2014`                    13.5781
## - `Hispanic or Latino, percent, 2014`                                     14.7192
## - `Retail sales per capita, 2007`                                         32.6180
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013`   72.4963
## - `Households, 2009-2013`                                               5327.7099
##                                                                            Pr(>F)
## - `Persons 65 years and over, percent, 2014`                            0.2399922
## - `Asian alone, percent, 2014`                                          0.1759858
## <none>                                                                           
## - `American Indian and Alaska Native alone, percent, 2014`              0.0494774
## - `Black or African American alone, percent, 2014`                      0.0487928
## - `Two or More Races, percent, 2014`                                    0.0146680
## - `White alone, percent, 2014`                                          0.0005033
## - `White alone, not Hispanic or Latino, percent, 2014`                  0.0002333
## - `Hispanic or Latino, percent, 2014`                                   0.0001276
## - `Retail sales per capita, 2007`                                       1.244e-08
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` < 2.2e-16
## - `Households, 2009-2013`                                               < 2.2e-16
##                                                                            
## - `Persons 65 years and over, percent, 2014`                               
## - `Asian alone, percent, 2014`                                             
## <none>                                                                     
## - `American Indian and Alaska Native alone, percent, 2014`              *  
## - `Black or African American alone, percent, 2014`                      *  
## - `Two or More Races, percent, 2014`                                    *  
## - `White alone, percent, 2014`                                          ***
## - `White alone, not Hispanic or Latino, percent, 2014`                  ***
## - `Hispanic or Latino, percent, 2014`                                   ***
## - `Retail sales per capita, 2007`                                       ***
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` ***
## - `Households, 2009-2013`                                               ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Step:  AIC=46147.06
## `trump votes` ~ `White alone, percent, 2014` + `Black or African American alone, percent, 2014` + 
##     `American Indian and Alaska Native alone, percent, 2014` + 
##     `Asian alone, percent, 2014` + `Two or More Races, percent, 2014` + 
##     `Hispanic or Latino, percent, 2014` + `White alone, not Hispanic or Latino, percent, 2014` + 
##     `Households, 2009-2013` + `Per capita money income in past 12 months (2013 dollars), 2009-2013` + 
##     `Retail sales per capita, 2007`
## 
##                                                                         Df
## <none>                                                                    
## - `Asian alone, percent, 2014`                                           1
## - `American Indian and Alaska Native alone, percent, 2014`               1
## - `Black or African American alone, percent, 2014`                       1
## - `Two or More Races, percent, 2014`                                     1
## - `White alone, percent, 2014`                                           1
## - `White alone, not Hispanic or Latino, percent, 2014`                   1
## - `Hispanic or Latino, percent, 2014`                                    1
## - `Retail sales per capita, 2007`                                        1
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013`  1
## - `Households, 2009-2013`                                                1
##                                                                          Sum of Sq
## <none>                                                                            
## - `Asian alone, percent, 2014`                                          5.1833e+07
## - `American Indian and Alaska Native alone, percent, 2014`              1.0263e+08
## - `Black or African American alone, percent, 2014`                      1.0295e+08
## - `Two or More Races, percent, 2014`                                    1.5391e+08
## - `White alone, percent, 2014`                                          3.1164e+08
## - `White alone, not Hispanic or Latino, percent, 2014`                  3.3874e+08
## - `Hispanic or Latino, percent, 2014`                                   3.6493e+08
## - `Retail sales per capita, 2007`                                       8.6681e+08
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` 1.7865e+09
## - `Households, 2009-2013`                                               1.3303e+11
##                                                                                RSS
## <none>                                                                  6.7200e+10
## - `Asian alone, percent, 2014`                                          6.7251e+10
## - `American Indian and Alaska Native alone, percent, 2014`              6.7302e+10
## - `Black or African American alone, percent, 2014`                      6.7303e+10
## - `Two or More Races, percent, 2014`                                    6.7354e+10
## - `White alone, percent, 2014`                                          6.7511e+10
## - `White alone, not Hispanic or Latino, percent, 2014`                  6.7538e+10
## - `Hispanic or Latino, percent, 2014`                                   6.7565e+10
## - `Retail sales per capita, 2007`                                       6.8066e+10
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` 6.8986e+10
## - `Households, 2009-2013`                                               2.0023e+11
##                                                                           AIC
## <none>                                                                  46147
## - `Asian alone, percent, 2014`                                          46147
## - `American Indian and Alaska Native alone, percent, 2014`              46149
## - `Black or African American alone, percent, 2014`                      46149
## - `Two or More Races, percent, 2014`                                    46151
## - `White alone, percent, 2014`                                          46158
## - `White alone, not Hispanic or Latino, percent, 2014`                  46159
## - `Hispanic or Latino, percent, 2014`                                   46160
## - `Retail sales per capita, 2007`                                       46180
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` 46216
## - `Households, 2009-2013`                                               49103
##                                                                           F value
## <none>                                                                           
## - `Asian alone, percent, 2014`                                             2.0810
## - `American Indian and Alaska Native alone, percent, 2014`                 4.1203
## - `Black or African American alone, percent, 2014`                         4.1332
## - `Two or More Races, percent, 2014`                                       6.1792
## - `White alone, percent, 2014`                                            12.5119
## - `White alone, not Hispanic or Latino, percent, 2014`                    13.6002
## - `Hispanic or Latino, percent, 2014`                                     14.6517
## - `Retail sales per capita, 2007`                                         34.8016
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013`   71.7245
## - `Households, 2009-2013`                                               5340.9454
##                                                                            Pr(>F)
## <none>                                                                           
## - `Asian alone, percent, 2014`                                          0.1492547
## - `American Indian and Alaska Native alone, percent, 2014`              0.0424690
## - `Black or African American alone, percent, 2014`                      0.0421483
## - `Two or More Races, percent, 2014`                                    0.0129865
## - `White alone, percent, 2014`                                          0.0004112
## - `White alone, not Hispanic or Latino, percent, 2014`                  0.0002306
## - `Hispanic or Latino, percent, 2014`                                   0.0001323
## - `Retail sales per capita, 2007`                                       4.106e-09
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` < 2.2e-16
## - `Households, 2009-2013`                                               < 2.2e-16
##                                                                            
## <none>                                                                     
## - `Asian alone, percent, 2014`                                             
## - `American Indian and Alaska Native alone, percent, 2014`              *  
## - `Black or African American alone, percent, 2014`                      *  
## - `Two or More Races, percent, 2014`                                    *  
## - `White alone, percent, 2014`                                          ***
## - `White alone, not Hispanic or Latino, percent, 2014`                  ***
## - `Hispanic or Latino, percent, 2014`                                   ***
## - `Retail sales per capita, 2007`                                       ***
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` ***
## - `Households, 2009-2013`                                               ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Call:
## lm(formula = `trump votes` ~ `White alone, percent, 2014` + `Black or African American alone, percent, 2014` + 
##     `American Indian and Alaska Native alone, percent, 2014` + 
##     `Asian alone, percent, 2014` + `Two or More Races, percent, 2014` + 
##     `Hispanic or Latino, percent, 2014` + `White alone, not Hispanic or Latino, percent, 2014` + 
##     `Households, 2009-2013` + `Per capita money income in past 12 months (2013 dollars), 2009-2013` + 
##     `Retail sales per capita, 2007`, data = trump_data)
## 
## Coefficients:
##                                                           (Intercept)  
##                                                            -6.988e+04  
##                                          `White alone, percent, 2014`  
##                                                             1.229e+03  
##                      `Black or African American alone, percent, 2014`  
##                                                             6.592e+02  
##              `American Indian and Alaska Native alone, percent, 2014`  
##                                                             6.498e+02  
##                                          `Asian alone, percent, 2014`  
##                                                             4.991e+02  
##                                    `Two or More Races, percent, 2014`  
##                                                             9.766e+02  
##                                   `Hispanic or Latino, percent, 2014`  
##                                                            -5.593e+02  
##                  `White alone, not Hispanic or Latino, percent, 2014`  
##                                                            -5.658e+02  
##                                               `Households, 2009-2013`  
##                                                             7.613e-02  
## `Per capita money income in past 12 months (2013 dollars), 2009-2013`  
##                                                             1.948e-01  
##                                       `Retail sales per capita, 2007`  
##                                                             1.121e-01


Inference from backward elimination process [Trump]

We see from the above results, the votes gain for Trump has some high co-relation to below metrics.

  • White alone, percent, 2014 12.5119 0.0004112 ***
  • White alone, not Hispanic or Latino, percent, 2014 13.6002 0.0002306 ***
  • Hispanic or Latino, percent, 2014 14.6517 0.0001323 ***
  • Retail sales per capita, 2007 34.8016 4.106e-09 ***
  • Per capita money income in past 12 months (2013 dollars), 2009-2013 71.7245 < 2.2e-16 ***
  • Households, 2009-2013 5340.9454 < 2.2e-16 ***


1.7.1.2 Clinton analysis

clinton_data <- complete_data %>% filter(`clinton votes`> 0 )  %>% select("sanders fraction votes","sanders votes","clinton fraction votes","clinton votes","trump fraction votes","trump votes","cruz fraction votes","cruz votes", "Persons under 5 years, percent, 2014","Persons under 18 years, percent, 2014","Persons 65 years and over, percent, 2014","Female persons, percent, 2014","White alone, percent, 2014","Black or African American alone, percent, 2014","American Indian and Alaska Native alone, percent, 2014","Asian alone, percent, 2014","Native Hawaiian and Other Pacific Islander alone, percent, 2014","Two or More Races, percent, 2014","Hispanic or Latino, percent, 2014","White alone, not Hispanic or Latino, percent, 2014","Households, 2009-2013" , "Per capita money income in past 12 months (2013 dollars), 2009-2013" , "Retail sales per capita, 2007")


full_model <- lm(`clinton votes` ~ `Persons under 18 years, percent, 2014`+`Persons 65 years and over, percent, 2014`+`Female persons, percent, 2014`+`White alone, percent, 2014`+`Black or African American alone, percent, 2014`+`American Indian and Alaska Native alone, percent, 2014`+`Asian alone, percent, 2014`+`Native Hawaiian and Other Pacific Islander alone, percent, 2014`+`Two or More Races, percent, 2014`+ `Hispanic or Latino, percent, 2014` + `White alone, not Hispanic or Latino, percent, 2014` + `Households, 2009-2013` + `Per capita money income in past 12 months (2013 dollars), 2009-2013` + `Retail sales per capita, 2007`  , data= trump_data)

summary(full_model)
## 
## Call:
## lm(formula = `clinton votes` ~ `Persons under 18 years, percent, 2014` + 
##     `Persons 65 years and over, percent, 2014` + `Female persons, percent, 2014` + 
##     `White alone, percent, 2014` + `Black or African American alone, percent, 2014` + 
##     `American Indian and Alaska Native alone, percent, 2014` + 
##     `Asian alone, percent, 2014` + `Native Hawaiian and Other Pacific Islander alone, percent, 2014` + 
##     `Two or More Races, percent, 2014` + `Hispanic or Latino, percent, 2014` + 
##     `White alone, not Hispanic or Latino, percent, 2014` + `Households, 2009-2013` + 
##     `Per capita money income in past 12 months (2013 dollars), 2009-2013` + 
##     `Retail sales per capita, 2007`, data = trump_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -122141   -1131     226    1223  116968 
## 
## Coefficients:
##                                                                         Estimate
## (Intercept)                                                           -1.835e+05
## `Persons under 18 years, percent, 2014`                               -1.965e+02
## `Persons 65 years and over, percent, 2014`                             2.608e+01
## `Female persons, percent, 2014`                                        1.574e+02
## `White alone, percent, 2014`                                           9.920e+02
## `Black or African American alone, percent, 2014`                       1.846e+03
## `American Indian and Alaska Native alone, percent, 2014`               1.818e+03
## `Asian alone, percent, 2014`                                           1.910e+03
## `Native Hawaiian and Other Pacific Islander alone, percent, 2014`     -2.834e+02
## `Two or More Races, percent, 2014`                                     1.371e+03
## `Hispanic or Latino, percent, 2014`                                    7.517e+02
## `White alone, not Hispanic or Latino, percent, 2014`                   7.685e+02
## `Households, 2009-2013`                                                1.555e-01
## `Per capita money income in past 12 months (2013 dollars), 2009-2013`  1.281e-01
## `Retail sales per capita, 2007`                                       -8.968e-02
##                                                                       Std. Error
## (Intercept)                                                            1.828e+05
## `Persons under 18 years, percent, 2014`                                6.130e+01
## `Persons 65 years and over, percent, 2014`                             4.537e+01
## `Female persons, percent, 2014`                                        6.935e+01
## `White alone, percent, 2014`                                           1.836e+03
## `Black or African American alone, percent, 2014`                       1.828e+03
## `American Indian and Alaska Native alone, percent, 2014`               1.828e+03
## `Asian alone, percent, 2014`                                           1.830e+03
## `Native Hawaiian and Other Pacific Islander alone, percent, 2014`      1.885e+03
## `Two or More Races, percent, 2014`                                     1.830e+03
## `Hispanic or Latino, percent, 2014`                                    1.977e+02
## `White alone, not Hispanic or Latino, percent, 2014`                   2.075e+02
## `Households, 2009-2013`                                                1.419e-03
## `Per capita money income in past 12 months (2013 dollars), 2009-2013`  3.140e-02
## `Retail sales per capita, 2007`                                        2.646e-02
##                                                                       t value
## (Intercept)                                                            -1.004
## `Persons under 18 years, percent, 2014`                                -3.206
## `Persons 65 years and over, percent, 2014`                              0.575
## `Female persons, percent, 2014`                                         2.270
## `White alone, percent, 2014`                                            0.540
## `Black or African American alone, percent, 2014`                        1.010
## `American Indian and Alaska Native alone, percent, 2014`                0.995
## `Asian alone, percent, 2014`                                            1.044
## `Native Hawaiian and Other Pacific Islander alone, percent, 2014`      -0.150
## `Two or More Races, percent, 2014`                                      0.749
## `Hispanic or Latino, percent, 2014`                                     3.803
## `White alone, not Hispanic or Latino, percent, 2014`                    3.704
## `Households, 2009-2013`                                               109.572
## `Per capita money income in past 12 months (2013 dollars), 2009-2013`   4.079
## `Retail sales per capita, 2007`                                        -3.389
##                                                                       Pr(>|t|)
## (Intercept)                                                           0.315623
## `Persons under 18 years, percent, 2014`                               0.001363
## `Persons 65 years and over, percent, 2014`                            0.565423
## `Female persons, percent, 2014`                                       0.023271
## `White alone, percent, 2014`                                          0.589038
## `Black or African American alone, percent, 2014`                      0.312537
## `American Indian and Alaska Native alone, percent, 2014`              0.319869
## `Asian alone, percent, 2014`                                          0.296606
## `Native Hawaiian and Other Pacific Islander alone, percent, 2014`     0.880499
## `Two or More Races, percent, 2014`                                    0.453887
## `Hispanic or Latino, percent, 2014`                                   0.000146
## `White alone, not Hispanic or Latino, percent, 2014`                  0.000217
## `Households, 2009-2013`                                                < 2e-16
## `Per capita money income in past 12 months (2013 dollars), 2009-2013` 4.65e-05
## `Retail sales per capita, 2007`                                       0.000712
##                                                                          
## (Intercept)                                                              
## `Persons under 18 years, percent, 2014`                               ** 
## `Persons 65 years and over, percent, 2014`                               
## `Female persons, percent, 2014`                                       *  
## `White alone, percent, 2014`                                             
## `Black or African American alone, percent, 2014`                         
## `American Indian and Alaska Native alone, percent, 2014`                 
## `Asian alone, percent, 2014`                                             
## `Native Hawaiian and Other Pacific Islander alone, percent, 2014`        
## `Two or More Races, percent, 2014`                                       
## `Hispanic or Latino, percent, 2014`                                   ***
## `White alone, not Hispanic or Latino, percent, 2014`                  ***
## `Households, 2009-2013`                                               ***
## `Per capita money income in past 12 months (2013 dollars), 2009-2013` ***
## `Retail sales per capita, 2007`                                       ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6744 on 2694 degrees of freedom
## Multiple R-squared:  0.8751, Adjusted R-squared:  0.8745 
## F-statistic:  1348 on 14 and 2694 DF,  p-value: < 2.2e-16
step(full_model ,data= clinton_data , direction = "backward" ,test = "F")
## Start:  AIC=47782.23
## `clinton votes` ~ `Persons under 18 years, percent, 2014` + `Persons 65 years and over, percent, 2014` + 
##     `Female persons, percent, 2014` + `White alone, percent, 2014` + 
##     `Black or African American alone, percent, 2014` + `American Indian and Alaska Native alone, percent, 2014` + 
##     `Asian alone, percent, 2014` + `Native Hawaiian and Other Pacific Islander alone, percent, 2014` + 
##     `Two or More Races, percent, 2014` + `Hispanic or Latino, percent, 2014` + 
##     `White alone, not Hispanic or Latino, percent, 2014` + `Households, 2009-2013` + 
##     `Per capita money income in past 12 months (2013 dollars), 2009-2013` + 
##     `Retail sales per capita, 2007`
## 
##                                                                         Df
## - `Native Hawaiian and Other Pacific Islander alone, percent, 2014`      1
## - `White alone, percent, 2014`                                           1
## - `Persons 65 years and over, percent, 2014`                             1
## - `Two or More Races, percent, 2014`                                     1
## - `American Indian and Alaska Native alone, percent, 2014`               1
## - `Black or African American alone, percent, 2014`                       1
## - `Asian alone, percent, 2014`                                           1
## <none>                                                                    
## - `Female persons, percent, 2014`                                        1
## - `Persons under 18 years, percent, 2014`                                1
## - `Retail sales per capita, 2007`                                        1
## - `White alone, not Hispanic or Latino, percent, 2014`                   1
## - `Hispanic or Latino, percent, 2014`                                    1
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013`  1
## - `Households, 2009-2013`                                                1
##                                                                          Sum of Sq
## - `Native Hawaiian and Other Pacific Islander alone, percent, 2014`     1.0281e+06
## - `White alone, percent, 2014`                                          1.3277e+07
## - `Persons 65 years and over, percent, 2014`                            1.5031e+07
## - `Two or More Races, percent, 2014`                                    2.5519e+07
## - `American Indian and Alaska Native alone, percent, 2014`              4.5019e+07
## - `Black or African American alone, percent, 2014`                      4.6404e+07
## - `Asian alone, percent, 2014`                                          4.9566e+07
## <none>                                                                            
## - `Female persons, percent, 2014`                                       2.3441e+08
## - `Persons under 18 years, percent, 2014`                               4.6742e+08
## - `Retail sales per capita, 2007`                                       5.2236e+08
## - `White alone, not Hispanic or Latino, percent, 2014`                  6.2388e+08
## - `Hispanic or Latino, percent, 2014`                                   6.5773e+08
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` 7.5673e+08
## - `Households, 2009-2013`                                               5.4605e+11
##                                                                                RSS
## - `Native Hawaiian and Other Pacific Islander alone, percent, 2014`     1.2253e+11
## - `White alone, percent, 2014`                                          1.2254e+11
## - `Persons 65 years and over, percent, 2014`                            1.2254e+11
## - `Two or More Races, percent, 2014`                                    1.2255e+11
## - `American Indian and Alaska Native alone, percent, 2014`              1.2257e+11
## - `Black or African American alone, percent, 2014`                      1.2257e+11
## - `Asian alone, percent, 2014`                                          1.2258e+11
## <none>                                                                  1.2253e+11
## - `Female persons, percent, 2014`                                       1.2276e+11
## - `Persons under 18 years, percent, 2014`                               1.2299e+11
## - `Retail sales per capita, 2007`                                       1.2305e+11
## - `White alone, not Hispanic or Latino, percent, 2014`                  1.2315e+11
## - `Hispanic or Latino, percent, 2014`                                   1.2318e+11
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` 1.2328e+11
## - `Households, 2009-2013`                                               6.6858e+11
##                                                                           AIC
## - `Native Hawaiian and Other Pacific Islander alone, percent, 2014`     47780
## - `White alone, percent, 2014`                                          47781
## - `Persons 65 years and over, percent, 2014`                            47781
## - `Two or More Races, percent, 2014`                                    47781
## - `American Indian and Alaska Native alone, percent, 2014`              47781
## - `Black or African American alone, percent, 2014`                      47781
## - `Asian alone, percent, 2014`                                          47781
## <none>                                                                  47782
## - `Female persons, percent, 2014`                                       47785
## - `Persons under 18 years, percent, 2014`                               47791
## - `Retail sales per capita, 2007`                                       47792
## - `White alone, not Hispanic or Latino, percent, 2014`                  47794
## - `Hispanic or Latino, percent, 2014`                                   47795
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` 47797
## - `Households, 2009-2013`                                               52377
##                                                                            F value
## - `Native Hawaiian and Other Pacific Islander alone, percent, 2014`         0.0226
## - `White alone, percent, 2014`                                              0.2919
## - `Persons 65 years and over, percent, 2014`                                0.3305
## - `Two or More Races, percent, 2014`                                        0.5611
## - `American Indian and Alaska Native alone, percent, 2014`                  0.9898
## - `Black or African American alone, percent, 2014`                          1.0203
## - `Asian alone, percent, 2014`                                              1.0898
## <none>                                                                            
## - `Female persons, percent, 2014`                                           5.1540
## - `Persons under 18 years, percent, 2014`                                  10.2773
## - `Retail sales per capita, 2007`                                          11.4853
## - `White alone, not Hispanic or Latino, percent, 2014`                     13.7174
## - `Hispanic or Latino, percent, 2014`                                      14.4617
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013`    16.6384
## - `Households, 2009-2013`                                               12006.1001
##                                                                            Pr(>F)
## - `Native Hawaiian and Other Pacific Islander alone, percent, 2014`     0.8804987
## - `White alone, percent, 2014`                                          0.5890381
## - `Persons 65 years and over, percent, 2014`                            0.5654232
## - `Two or More Races, percent, 2014`                                    0.4538869
## - `American Indian and Alaska Native alone, percent, 2014`              0.3198689
## - `Black or African American alone, percent, 2014`                      0.3125374
## - `Asian alone, percent, 2014`                                          0.2966056
## <none>                                                                           
## - `Female persons, percent, 2014`                                       0.0232711
## - `Persons under 18 years, percent, 2014`                               0.0013625
## - `Retail sales per capita, 2007`                                       0.0007116
## - `White alone, not Hispanic or Latino, percent, 2014`                  0.0002167
## - `Hispanic or Latino, percent, 2014`                                   0.0001462
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` 4.654e-05
## - `Households, 2009-2013`                                               < 2.2e-16
##                                                                            
## - `Native Hawaiian and Other Pacific Islander alone, percent, 2014`        
## - `White alone, percent, 2014`                                             
## - `Persons 65 years and over, percent, 2014`                               
## - `Two or More Races, percent, 2014`                                       
## - `American Indian and Alaska Native alone, percent, 2014`                 
## - `Black or African American alone, percent, 2014`                         
## - `Asian alone, percent, 2014`                                             
## <none>                                                                     
## - `Female persons, percent, 2014`                                       *  
## - `Persons under 18 years, percent, 2014`                               ** 
## - `Retail sales per capita, 2007`                                       ***
## - `White alone, not Hispanic or Latino, percent, 2014`                  ***
## - `Hispanic or Latino, percent, 2014`                                   ***
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` ***
## - `Households, 2009-2013`                                               ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Step:  AIC=47780.25
## `clinton votes` ~ `Persons under 18 years, percent, 2014` + `Persons 65 years and over, percent, 2014` + 
##     `Female persons, percent, 2014` + `White alone, percent, 2014` + 
##     `Black or African American alone, percent, 2014` + `American Indian and Alaska Native alone, percent, 2014` + 
##     `Asian alone, percent, 2014` + `Two or More Races, percent, 2014` + 
##     `Hispanic or Latino, percent, 2014` + `White alone, not Hispanic or Latino, percent, 2014` + 
##     `Households, 2009-2013` + `Per capita money income in past 12 months (2013 dollars), 2009-2013` + 
##     `Retail sales per capita, 2007`
## 
##                                                                         Df
## - `Persons 65 years and over, percent, 2014`                             1
## <none>                                                                    
## - `Female persons, percent, 2014`                                        1
## - `White alone, percent, 2014`                                           1
## - `Two or More Races, percent, 2014`                                     1
## - `Persons under 18 years, percent, 2014`                                1
## - `Retail sales per capita, 2007`                                        1
## - `White alone, not Hispanic or Latino, percent, 2014`                   1
## - `Hispanic or Latino, percent, 2014`                                    1
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013`  1
## - `Asian alone, percent, 2014`                                           1
## - `Black or African American alone, percent, 2014`                       1
## - `American Indian and Alaska Native alone, percent, 2014`               1
## - `Households, 2009-2013`                                                1
##                                                                          Sum of Sq
## - `Persons 65 years and over, percent, 2014`                            1.4949e+07
## <none>                                                                            
## - `Female persons, percent, 2014`                                       2.3515e+08
## - `White alone, percent, 2014`                                          3.1735e+08
## - `Two or More Races, percent, 2014`                                    4.1577e+08
## - `Persons under 18 years, percent, 2014`                               4.6956e+08
## - `Retail sales per capita, 2007`                                       5.2223e+08
## - `White alone, not Hispanic or Latino, percent, 2014`                  6.2381e+08
## - `Hispanic or Latino, percent, 2014`                                   6.5757e+08
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` 7.6019e+08
## - `Asian alone, percent, 2014`                                          9.4274e+08
## - `Black or African American alone, percent, 2014`                      1.0206e+09
## - `American Indian and Alaska Native alone, percent, 2014`              1.0259e+09
## - `Households, 2009-2013`                                               5.4647e+11
##                                                                                RSS
## - `Persons 65 years and over, percent, 2014`                            1.2254e+11
## <none>                                                                  1.2253e+11
## - `Female persons, percent, 2014`                                       1.2276e+11
## - `White alone, percent, 2014`                                          1.2284e+11
## - `Two or More Races, percent, 2014`                                    1.2294e+11
## - `Persons under 18 years, percent, 2014`                               1.2300e+11
## - `Retail sales per capita, 2007`                                       1.2305e+11
## - `White alone, not Hispanic or Latino, percent, 2014`                  1.2315e+11
## - `Hispanic or Latino, percent, 2014`                                   1.2318e+11
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` 1.2329e+11
## - `Asian alone, percent, 2014`                                          1.2347e+11
## - `Black or African American alone, percent, 2014`                      1.2355e+11
## - `American Indian and Alaska Native alone, percent, 2014`              1.2355e+11
## - `Households, 2009-2013`                                               6.6900e+11
##                                                                           AIC
## - `Persons 65 years and over, percent, 2014`                            47779
## <none>                                                                  47780
## - `Female persons, percent, 2014`                                       47783
## - `White alone, percent, 2014`                                          47785
## - `Two or More Races, percent, 2014`                                    47787
## - `Persons under 18 years, percent, 2014`                               47789
## - `Retail sales per capita, 2007`                                       47790
## - `White alone, not Hispanic or Latino, percent, 2014`                  47792
## - `Hispanic or Latino, percent, 2014`                                   47793
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` 47795
## - `Asian alone, percent, 2014`                                          47799
## - `Black or African American alone, percent, 2014`                      47801
## - `American Indian and Alaska Native alone, percent, 2014`              47801
## - `Households, 2009-2013`                                               52377
##                                                                            F value
## - `Persons 65 years and over, percent, 2014`                                0.3288
## <none>                                                                            
## - `Female persons, percent, 2014`                                           5.1723
## - `White alone, percent, 2014`                                              6.9803
## - `Two or More Races, percent, 2014`                                        9.1450
## - `Persons under 18 years, percent, 2014`                                  10.3281
## - `Retail sales per capita, 2007`                                          11.4866
## - `White alone, not Hispanic or Latino, percent, 2014`                     13.7208
## - `Hispanic or Latino, percent, 2014`                                      14.4635
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013`    16.7205
## - `Asian alone, percent, 2014`                                             20.7357
## - `Black or African American alone, percent, 2014`                         22.4480
## - `American Indian and Alaska Native alone, percent, 2014`                 22.5652
## - `Households, 2009-2013`                                               12019.6905
##                                                                            Pr(>F)
## - `Persons 65 years and over, percent, 2014`                            0.5664092
## <none>                                                                           
## - `Female persons, percent, 2014`                                       0.0230285
## - `White alone, percent, 2014`                                          0.0082891
## - `Two or More Races, percent, 2014`                                    0.0025175
## - `Persons under 18 years, percent, 2014`                               0.0013257
## - `Retail sales per capita, 2007`                                       0.0007111
## - `White alone, not Hispanic or Latino, percent, 2014`                  0.0002164
## - `Hispanic or Latino, percent, 2014`                                   0.0001461
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` 4.458e-05
## - `Asian alone, percent, 2014`                                          5.506e-06
## - `Black or African American alone, percent, 2014`                      2.271e-06
## - `American Indian and Alaska Native alone, percent, 2014`              2.138e-06
## - `Households, 2009-2013`                                               < 2.2e-16
##                                                                            
## - `Persons 65 years and over, percent, 2014`                               
## <none>                                                                     
## - `Female persons, percent, 2014`                                       *  
## - `White alone, percent, 2014`                                          ** 
## - `Two or More Races, percent, 2014`                                    ** 
## - `Persons under 18 years, percent, 2014`                               ** 
## - `Retail sales per capita, 2007`                                       ***
## - `White alone, not Hispanic or Latino, percent, 2014`                  ***
## - `Hispanic or Latino, percent, 2014`                                   ***
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` ***
## - `Asian alone, percent, 2014`                                          ***
## - `Black or African American alone, percent, 2014`                      ***
## - `American Indian and Alaska Native alone, percent, 2014`              ***
## - `Households, 2009-2013`                                               ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Step:  AIC=47778.58
## `clinton votes` ~ `Persons under 18 years, percent, 2014` + `Female persons, percent, 2014` + 
##     `White alone, percent, 2014` + `Black or African American alone, percent, 2014` + 
##     `American Indian and Alaska Native alone, percent, 2014` + 
##     `Asian alone, percent, 2014` + `Two or More Races, percent, 2014` + 
##     `Hispanic or Latino, percent, 2014` + `White alone, not Hispanic or Latino, percent, 2014` + 
##     `Households, 2009-2013` + `Per capita money income in past 12 months (2013 dollars), 2009-2013` + 
##     `Retail sales per capita, 2007`
## 
##                                                                         Df
## <none>                                                                    
## - `White alone, percent, 2014`                                           1
## - `Female persons, percent, 2014`                                        1
## - `Two or More Races, percent, 2014`                                     1
## - `Retail sales per capita, 2007`                                        1
## - `White alone, not Hispanic or Latino, percent, 2014`                   1
## - `Hispanic or Latino, percent, 2014`                                    1
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013`  1
## - `Asian alone, percent, 2014`                                           1
## - `Black or African American alone, percent, 2014`                       1
## - `American Indian and Alaska Native alone, percent, 2014`               1
## - `Persons under 18 years, percent, 2014`                                1
## - `Households, 2009-2013`                                                1
##                                                                          Sum of Sq
## <none>                                                                            
## - `White alone, percent, 2014`                                          3.0425e+08
## - `Female persons, percent, 2014`                                       3.2773e+08
## - `Two or More Races, percent, 2014`                                    4.0155e+08
## - `Retail sales per capita, 2007`                                       5.6948e+08
## - `White alone, not Hispanic or Latino, percent, 2014`                  6.2399e+08
## - `Hispanic or Latino, percent, 2014`                                   6.5893e+08
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` 7.6277e+08
## - `Asian alone, percent, 2014`                                          9.3083e+08
## - `Black or African American alone, percent, 2014`                      1.0070e+09
## - `American Indian and Alaska Native alone, percent, 2014`              1.0117e+09
## - `Persons under 18 years, percent, 2014`                               1.0611e+09
## - `Households, 2009-2013`                                               5.4966e+11
##                                                                                RSS
## <none>                                                                  1.2254e+11
## - `White alone, percent, 2014`                                          1.2285e+11
## - `Female persons, percent, 2014`                                       1.2287e+11
## - `Two or More Races, percent, 2014`                                    1.2294e+11
## - `Retail sales per capita, 2007`                                       1.2311e+11
## - `White alone, not Hispanic or Latino, percent, 2014`                  1.2317e+11
## - `Hispanic or Latino, percent, 2014`                                   1.2320e+11
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` 1.2330e+11
## - `Asian alone, percent, 2014`                                          1.2347e+11
## - `Black or African American alone, percent, 2014`                      1.2355e+11
## - `American Indian and Alaska Native alone, percent, 2014`              1.2355e+11
## - `Persons under 18 years, percent, 2014`                               1.2360e+11
## - `Households, 2009-2013`                                               6.7220e+11
##                                                                           AIC
## <none>                                                                  47779
## - `White alone, percent, 2014`                                          47783
## - `Female persons, percent, 2014`                                       47784
## - `Two or More Races, percent, 2014`                                    47785
## - `Retail sales per capita, 2007`                                       47789
## - `White alone, not Hispanic or Latino, percent, 2014`                  47790
## - `Hispanic or Latino, percent, 2014`                                   47791
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` 47793
## - `Asian alone, percent, 2014`                                          47797
## - `Black or African American alone, percent, 2014`                      47799
## - `American Indian and Alaska Native alone, percent, 2014`              47799
## - `Persons under 18 years, percent, 2014`                               47800
## - `Households, 2009-2013`                                               52388
##                                                                            F value
## <none>                                                                            
## - `White alone, percent, 2014`                                              6.6936
## - `Female persons, percent, 2014`                                           7.2103
## - `Two or More Races, percent, 2014`                                        8.8344
## - `Retail sales per capita, 2007`                                          12.5289
## - `White alone, not Hispanic or Latino, percent, 2014`                     13.7282
## - `Hispanic or Latino, percent, 2014`                                      14.4968
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013`    16.7814
## - `Asian alone, percent, 2014`                                             20.4789
## - `Black or African American alone, percent, 2014`                         22.1556
## - `American Indian and Alaska Native alone, percent, 2014`                 22.2582
## - `Persons under 18 years, percent, 2014`                                  23.3452
## - `Households, 2009-2013`                                               12092.7989
##                                                                            Pr(>F)
## <none>                                                                           
## - `White alone, percent, 2014`                                          0.0097277
## - `Female persons, percent, 2014`                                       0.0072931
## - `Two or More Races, percent, 2014`                                    0.0029822
## - `Retail sales per capita, 2007`                                       0.0004075
## - `White alone, not Hispanic or Latino, percent, 2014`                  0.0002155
## - `Hispanic or Latino, percent, 2014`                                   0.0001435
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` 4.318e-05
## - `Asian alone, percent, 2014`                                          6.290e-06
## - `Black or African American alone, percent, 2014`                      2.641e-06
## - `American Indian and Alaska Native alone, percent, 2014`              2.505e-06
## - `Persons under 18 years, percent, 2014`                               1.430e-06
## - `Households, 2009-2013`                                               < 2.2e-16
##                                                                            
## <none>                                                                     
## - `White alone, percent, 2014`                                          ** 
## - `Female persons, percent, 2014`                                       ** 
## - `Two or More Races, percent, 2014`                                    ** 
## - `Retail sales per capita, 2007`                                       ***
## - `White alone, not Hispanic or Latino, percent, 2014`                  ***
## - `Hispanic or Latino, percent, 2014`                                   ***
## - `Per capita money income in past 12 months (2013 dollars), 2009-2013` ***
## - `Asian alone, percent, 2014`                                          ***
## - `Black or African American alone, percent, 2014`                      ***
## - `American Indian and Alaska Native alone, percent, 2014`              ***
## - `Persons under 18 years, percent, 2014`                               ***
## - `Households, 2009-2013`                                               ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Call:
## lm(formula = `clinton votes` ~ `Persons under 18 years, percent, 2014` + 
##     `Female persons, percent, 2014` + `White alone, percent, 2014` + 
##     `Black or African American alone, percent, 2014` + `American Indian and Alaska Native alone, percent, 2014` + 
##     `Asian alone, percent, 2014` + `Two or More Races, percent, 2014` + 
##     `Hispanic or Latino, percent, 2014` + `White alone, not Hispanic or Latino, percent, 2014` + 
##     `Households, 2009-2013` + `Per capita money income in past 12 months (2013 dollars), 2009-2013` + 
##     `Retail sales per capita, 2007`, data = trump_data)
## 
## Coefficients:
##                                                           (Intercept)  
##                                                            -2.060e+05  
##                               `Persons under 18 years, percent, 2014`  
##                                                            -2.203e+02  
##                                       `Female persons, percent, 2014`  
##                                                             1.726e+02  
##                                          `White alone, percent, 2014`  
##                                                             1.220e+03  
##                      `Black or African American alone, percent, 2014`  
##                                                             2.073e+03  
##              `American Indian and Alaska Native alone, percent, 2014`  
##                                                             2.048e+03  
##                                          `Asian alone, percent, 2014`  
##                                                             2.126e+03  
##                                    `Two or More Races, percent, 2014`  
##                                                             1.588e+03  
##                                   `Hispanic or Latino, percent, 2014`  
##                                                             7.523e+02  
##                  `White alone, not Hispanic or Latino, percent, 2014`  
##                                                             7.685e+02  
##                                               `Households, 2009-2013`  
##                                                             1.554e-01  
## `Per capita money income in past 12 months (2013 dollars), 2009-2013`  
##                                                             1.285e-01  
##                                       `Retail sales per capita, 2007`  
##                                                            -9.226e-02


Inference from backward elimination process [Clinton]

We see from the above results, the votes gain for Clinton has some high co-relation to below metrics.

  • Retail sales per capita, 2007 12.5289 0.0004075 ***
  • White alone, not Hispanic or Latino, percent, 2014 13.7282 0.0002155 ***
  • Hispanic or Latino, percent, 2014 14.4968 0.0001435 ***
  • Per capita money income in past 12 months (2013 dollars), 2009-2013 16.7814 4.318e-05 ***
  • Asian alone, percent, 2014 20.4789 6.290e-06 ***
  • Black or African American alone, percent, 2014 22.1556 2.641e-06 ***
  • American Indian and Alaska Native alone, percent, 2014 22.2582 2.505e-06 ***
  • Persons under 18 years, percent, 2014 23.3452 1.430e-06 ***
  • Households, 2009-2013 12092.7989 < 2.2e-16 ***

1.7.2 Relationship between Households with Trump, Clinton votes gained

Based on the above results, we see the metrics “Households, 2009-2013” has a high significance level on votes gained regardless of candidates. In fact, there are a couple of other metrics too [Per capita money income, Retail sales per capita, 2007] which are common to both candidates, but highly significant to the target metric.

Let’s create a scatterplot for trump favored states [Indiana, Florida, Pennsylvania counties] that shows mean household and total votes gained for Trump/Clinton for each states. We see a linear relationship between Households and votes gained [Trump]. But slope of line is different in both cases. Clinton has higher slope than Trump which means that counties having low household is favoring Trump and counties having high household favoring Clinton.

Please read this article which commends on “Richer people vote more”: https://www.weforum.org/agenda/2018/07/low-voter-turnout-increasing-household-income-may-help/

States where Trump won.

States where Trump won.

Now let’s create a scatterplot for Clinton favored states [California, New York, New Jersey counties] that shows mean household and total votes gained for Trump/Clinton for each states. Here as well, we get a linear relation, but slope is more or less same which means there is not much favorism towards Trump in these states.


States where Clinton won.

States where Clinton won.

1.7.3 More analysis

1.7.3.1 Number and percentage of votes

First let’s take a look at how close the election was - let’s look at the average percentage and number of votes for all 4 candidates.

perc_votes<-complete_data %>%
  select ("sanders fraction votes", "clinton fraction votes", "trump fraction votes", "cruz fraction votes")
count_votes<-complete_data %>%
  select ("sanders votes", "clinton votes", "trump votes", "cruz votes")

# Average
sort(apply(perc_votes, 2, mean, na.rm=TRUE), decreasing = TRUE)
## clinton fraction votes   trump fraction votes sanders fraction votes 
##              0.5360086              0.4697300              0.4297484 
##    cruz fraction votes 
##              0.2814360
# Sum of votes
sort(apply(count_votes, 2, sum, na.rm=TRUE), decreasing = TRUE)
## clinton votes   trump votes sanders votes    cruz votes 
##      14122335      12559572      10332812       7359825

We can see that Clinton was in the lead by both average percentage and total count of votes in the states we have the data for.

1.7.3.2 Votes of female population

Let’s take a look at how gender correlates with the results by examining the relationship of female population with results for each candidate.

#Democrats
plot(complete_data$"Female persons, percent, 2014", complete_data$`clinton fraction votes`, main = "Clinton Data", xlab = "% of female population", ylab = "Percentage of votes for Candidate")

plot(complete_data$"Female persons, percent, 2014", complete_data$`sanders fraction votes`, main = "Sanders Data", xlab = "% of female population", ylab = "Percentage of votes for Candidate")

#Republicans
plot(complete_data$"Female persons, percent, 2014", complete_data$`trump fraction votes`, main = "Trump Data", xlab = "% of female population", ylab = "Percentage of votes for Candidate")

plot(complete_data$"Female persons, percent, 2014", complete_data$`cruz fraction votes`, main = "Cruz Data", xlab = "% of female population", ylab = "Percentage of votes for Candidate")

It looks like the “Clinton” data shows a correlation - the counties with higher female population - seem to be showing higher Clinton votes in the primary election. There is also the opposite effect for Bernie Sanders.

1.7.3.3 Votes of white population

Let’s take a look at how race correlates with the results by examining the relationship of white population with results for each candidate.

#Democrats
plot(complete_data$"White alone, percent, 2014", complete_data$`clinton fraction votes`, main = "Clinton Data", xlab = "% of white population", ylab = "Percentage of votes for Candidate")

plot(complete_data$"White alone, percent, 2014", complete_data$`sanders fraction votes`, main = "Sanders Data", xlab = "% of white population", ylab = "Percentage of votes for Candidate")

#Republicans
plot(complete_data$"White alone, percent, 2014", complete_data$`trump fraction votes`, main = "Trump Data", xlab = "% of white population", ylab = "Percentage of votes for Candidate")

plot(complete_data$"White alone, percent, 2014", complete_data$`cruz fraction votes`, main = "Cruz Data", xlab = "% of white population", ylab = "Percentage of votes for Candidate")

From visual inspection it looks like “Sanders” and “Trump” were slightly more popular in the counties with higher white only population.

1.7.3.4 Votes of foreign born population

Let’s see if percentage of foreign born population impacts results.

#Democrats
boxplot(complete_data[complete_data$'Foreign born persons, percent, 2009-2013' >=15,]$'clinton fraction votes', complete_data$'clinton fraction votes', names = c("in counties with over 15% foreign born", "overall votes"), ylab = "Clinton")

boxplot(complete_data[complete_data$'Foreign born persons, percent, 2009-2013' >=15,]$'sanders fraction votes', complete_data$'sanders fraction votes', names = c("in counties with over 15% foreign born", "overall votes"), ylab = "Sanders")

#Republicans
boxplot(complete_data[complete_data$'Foreign born persons, percent, 2009-2013' >=15,]$'trump fraction votes', complete_data$'trump fraction votes', names = c("in counties with over 15% foreign born", "overall votes"), ylab = "Trump")

boxplot(complete_data[complete_data$'Foreign born persons, percent, 2009-2013' >=15,]$'cruz fraction votes', complete_data$'cruz fraction votes', names = c("in counties with over 15% foreign born", "overall votes"), ylab = "Cruz")

It looks like Clinton and Trump were more popular in counties with a higher percentage of foreign born population but the differnce doesn’t seem very drastic.

1.7.3.5 Median household effect in votes

Let’s see if median household income impacts results. We compare overall results with results of households with median income over 80K.

#Democrats
boxplot(complete_data[complete_data$'Median household income, 2009-2013' >=80000,]$'clinton fraction votes', complete_data$'clinton fraction votes', names = c("median income over 80K", "overall votes"), ylab = "Clinton")

boxplot(complete_data[complete_data$'Median household income, 2009-2013' >=80000,]$'sanders fraction votes', complete_data$'clinton fraction votes', names = c("median income over 80K", "overall votes"), ylab = "Sanders")

#Republicans
boxplot(complete_data[complete_data$'Median household income, 2009-2013' >=80000,]$'trump fraction votes', complete_data$'clinton fraction votes', names = c("median income over 80K", "overall votes"), ylab = "Trump")

boxplot(complete_data[complete_data$'Median household income, 2009-2013' >=80000,]$'cruz fraction votes', complete_data$'clinton fraction votes', names = c("median income over 80K", "overall votes"), ylab = "Cruz")

Clinton and Trump are very significantly favored by household with median income over 80K.