If you have access to data on an entire population, say the size of every house in Ames, Iowa, it’s straight forward to answer questions like, “How big is the typical house in Ames?” and “How much variation is there in sizes of houses?”. If you have access to only a sample of the population, as is often the case, the task becomes more complicated. What is your best guess for the typical size if you only know the sizes of several dozen houses? This sort of situation requires that you use your sample to make inference on what your population looks like.
In the previous lab, ``Sampling Distributions’’, we looked at the population data of houses from Ames, Iowa. Let’s start by loading that data set.
load("more/ames.RData")
In this lab we’ll start with a simple random sample of size 60 from the population. Specifically, this is a simple random sample of size 60. Note that the data set has information on many housing variables, but for the first portion of the lab we’ll focus on the size of the house, represented by the variable Gr.Liv.Area
.
population <- ames$Gr.Liv.Area
samp <- sample(population, 60)
Looks like a normal distirbution that has few outliers. I would say typical size is around 1500. Typical to me is average size of the home. This is the same as the population mean.
par(mfrow = c(2, 1))
hist(samp)
qqnorm(samp)
qqline(samp)
mean(samp)
## [1] 1497.517
I would expect that distribution to very similar to mine as long size is 60. We are taking 60 samples from an almost normal distribution that has few outliers. Our sampling size is pretty big to reduce the impact of the otuliers.
One of the most common ways to describe the typical or central value of a distribution is to use the mean. In this case we can calculate the mean of the sample using,
sample_mean <- mean(samp)
Return for a moment to the question that first motivated this lab: based on this sample, what can we infer about the population? Based only on this single sample, the best estimate of the average living area of houses sold in Ames would be the sample mean, usually denoted as \(\bar{x}\) (here we’re calling it sample_mean
). That serves as a good point estimate but it would be useful to also communicate how uncertain we are of that estimate. This can be captured by using a confidence interval.
We can calculate a 95% confidence interval for a sample mean by adding and subtracting 1.96 standard errors to the point estimate (See Section 4.2.3 if you are unfamiliar with this formula).
se <- sd(samp) / sqrt(60)
lower <- sample_mean - 1.96 * se
upper <- sample_mean + 1.96 * se
c(lower, upper)
## [1] 1367.846 1627.187
This is an important inference that we’ve just made: even though we don’t know what the full population looks like, we’re 95% confident that the true average size of houses in Ames lies between the values lower and upper. There are a few conditions that must be met for this interval to be valid.
The population distribution is normal. If the population distribution is skewed, then sample size has to be greater 30. Also the observations are independent
95 % of the observerations are going to be with in two starndard deviation.
In this case we have the luxury of knowing the true population mean since we have data on the entire population. This value can be calculated using the following command:
mean(population)
## [1] 1499.69
Yes. sample mean is with in the confidence interval. Yes, I would say I am 95% confident their sample mean is with in the confidence interval.
I expect 95% of them to capute the true population mean based on the 95% confidence interval we calculated.
Using R, we’re going to recreate many samples to learn more about how sample means and confidence intervals vary from one sample to another. Loops come in handy here (If you are unfamiliar with loops, review the Sampling Distribution Lab).
Here is the rough outline:
But before we do all of this, we need to first create empty vectors where we can save the means and standard deviations that will be calculated from each sample. And while we’re at it, let’s also store the desired sample size as n
.
samp_mean <- rep(NA, 50)
samp_sd <- rep(NA, 50)
n <- 60
Now we’re ready for the loop where we calculate the means and standard deviations of 50 random samples.
for(i in 1:50){
samp <- sample(population, n) # obtain a sample of size n = 60 from the population
samp_mean[i] <- mean(samp) # save sample mean in ith element of samp_mean
samp_sd[i] <- sd(samp) # save sample sd in ith element of samp_sd
}
Lastly, we construct the confidence intervals.
lower_vector <- samp_mean - 1.96 * samp_sd / sqrt(n)
upper_vector <- samp_mean + 1.96 * samp_sd / sqrt(n)
Lower bounds of these 50 confidence intervals are stored in lower_vector
, and the upper bounds are in upper_vector
. Let’s view the first interval.
c(lower_vector[1], upper_vector[1])
## [1] 1353.423 1586.277
This varies each time you run this. I have seen 1 - 7 of sample means outside the confidence interval. This is an approximation so I dont expect us to caputre the confidence interval exatly 95% of the time.
plot_ci(lower_vector, upper_vector, mean(population))
99% confidence interval and critical value for this confidence interval is 2.58
plot_ci
function, plot all intervals and calculate the proportion of intervals that include the true population mean. How does this percentage compare to the confidence level selected for the intervals?With 99% confidence level,I see less the sample means mising the confidence interval(0-2).
lower_vector <- samp_mean - 2.58 * samp_sd / sqrt(n)
upper_vector <- samp_mean + 2.58 * samp_sd / sqrt(n)
plot_ci(lower_vector, upper_vector, mean(population))
This is a product of OpenIntro that is released under a Creative Commons Attribution-ShareAlike 3.0 Unported. This lab was written for OpenIntro by Andrew Bray and Mine Çetinkaya-Rundel.