A surveying instrument makes an error of -2, -1, 0, 1, or 2 feet with equal probabilities when measuring the height of a 200-foot tower.
a - E(X) = height + error = 200 + \(\frac{(\sum error)}{total \space errors}\), V(X) = \(\frac{\sum error^2}{total \space errors}\)
error <- c(-2, -1, 0, 1, 2)
error_count <- length(error)
height <- 200
expected_value <-200+(sum(error[1:length(error)])/error_count)
variance <- sum((error[1:length(error)])^2)/error_count
cat(sprintf("%s = %f \n", c(" E(x) = expected value","V(x) = variance"), c(expected_value, variance)))
## E(x) = expected value = 200.000000
## V(x) = variance = 2.000000
b - \(S_{18}=\sum_{i=1}^{18}X_i=X_{1}+X_{2}+X_{3}...X_{18}\), \(199 \leq \frac{S^{n}}{n} \leq 201\)
count <- 18
average_expected_value <- expected_value
average_variance <- variance/count
probability_199 <- (199-expected_value)/sqrt(average_variance)
probability_201 <- (201-expected_value)/sqrt(average_variance)
cat(sprintf("%s = %f \n", c(" P(X) = probability"), c((0.5-dnorm(probability_199))+(0.5-dnorm(probability_201)))))
## P(X) = probability = 0.991136