The exercise 10 illustrates that th expected value for the density of the minimum value is \(\frac{\mu}{n}\) where \(n\) is independent random variable with an exponential density of mean \(\mu\).
The expected life is 1000 hours, thus \(\lambda = \frac{1}{1000}\)
A Company buys 100 lightbulbs, thus \(100* \lambda = \frac{1}{10}\)
This distribution is exponential with mean \(\frac{1000}{100} = 10\) The expected minimum is 10 hours
.
\[f_Z(z) = \frac{1}{2}\lambda e^{-\lambda |z|}\]
The exponential probability density function (pdf) is:
\[f_{X1}(x) = f_{X2}(x) = \begin{cases} \lambda e^{-\lambda x} & \text{where } x \geq 0, \\ 0, & \text{otherwise. } \\ \end{cases}\]
Since \(x_1\) and \(x_2\) are two independent variables, the joint density function can be calculated as:
\[f(x_1, x_2) = f(x_1)f(x_2) = \lambda e^{-\lambda x_1}\lambda e^{-\lambda x_2} = \lambda^2 e^{-\lambda(x_1 + x_2)}\]
Since \(Z = X_1 − X_2\), we know that \(x_1 = z + x_2\)
Now, we can use substition to get the joint density of \(Z\) and \(X_2\), which is \(\lambda^2 e^{-\lambda((z + x_2) + x_2)}\) or \(\lambda^2 e^{-\lambda(z + 2x_2)}\)
We know that \(x_2 = x_1 - z\).
If \(z < 0\), \(x_2\) is greater than \(-z\)
If \(z \ge 0\), then \(x_2\) is positive.
Using WolframAlpha,
When z is negative, \(\int_{-z}^{\infty} \lambda^2 e^{-\lambda(z + 2x_2)} dx = \frac{\lambda}{2} e^{\lambda z}\).
When z is positive, \(\int_{0}^{\infty} \lambda^2 e^{-\lambda(z + 2x_2)} dx = \frac{\lambda}{2} e^{-\lambda z}\).
Combining two sides we get \(f_Z(z) = \begin{cases} \frac{1}{2}e^{-\lambda z}, & \mbox{if } z \ge 0, \\ \frac{1}{2}e^{\lambda z}, & \mbox{if }z <0. \end{cases}\)
Let X be a continuous random variable with mean µ = 10 and variance \(σ^2 = \frac{100}{3}\). Using Chebyshev’s Inequality, find an upper bound for the following probabilities.
P(|X − 10| ≥ 2).
P(|X − 10| ≥ 5).
P(|X − 10| ≥ 9).
P(|X − 10| ≥ 20).
Chebyshev Inequality
For any positive number \(\epsilon > 0\),
\[P(|X - \mu| \geq \epsilon) \leq \frac{\sigma^2}{\epsilon^2}\]
Since probability cannot be greater than 1, the upper bound is 1.
Since probability cannot be greater than 1, the upper bound is 1.
P(|X − 10| ≥ 9) ≤ \(\frac{\frac{100}{3}}{81} \approx\) 0.4115226