A company buys 100 lightbulbs, each of which has an exponential lifetime of 1000 hours. What is the expected time for the first of these bulbs to burn out?
lightbulbs_total <- 100
exp_lifetime <- 1000
cat(sprintf("%s = %f \n", c("Expected time (in hours) for the first of these bulbs to burn out: E(T)"), c(exp_lifetime/lightbulbs_total)))
## Expected time (in hours) for the first of these bulbs to burn out: E(T) = 10.000000
Assume that X1 and X2 are independent random variables, each having an exponential density with parameter \(\lambda\). Show that Z = X1 - X2 has density
\[ f_Z(z) = (1/2) \lambda e- ^ {\lambda{|z|} } \]Continuous: \[ f_Z(z) = (1/2)\lambda e^{-\lambda|z|} \]
The probability density function (pdf) of an exponential distribution is
\[ f_X(x) = f_Y(x) = \begin{cases}{\lambda e^{-\lambda x},} & \text{if } x\geq 0, \\ {0} & \text{otherwise;}\end{cases} \]
\(f_Z(z) = \int_{-\infty}^{+\infty} f_X(z + y) f_Y(y) \text{dy}\)
(from pdf) => \(f_Z(z) = \int_{0}^{z} \lambda e^{-\lambda (z + y)} \lambda e^{-\lambda y} dy\)
=> \(f_Z(z) = \int_{0}^{z} \lambda^2 e^{-\lambda z} dy\)
=> \(f_Z(z) = \frac{\lambda}{2} e^{-\lambda |z|}\)
Finally, \[ f_Z(z) = f_X(z) = f_Y(z) = \begin{cases}{(1/2)\lambda e^{-\lambda|z|},} & \text{if } z\geq 0, \\ {0} & \text{otherwise.}\end{cases} \]Let X be a continuous random variable with mean \(\mu = 10\) and variance \(\sigma^2 = 100/3\). Using Chebyshev’s Inequality, find an upper bound for the following probabilities.
Given: \(\mu = 10\), \(\sigma ^2 = 100/3\)
sigma_square <- 100/3
sigma <- sqrt(sigma_square)
cat(sprintf("%s = %f \n", c(" Sigma"), c(sigma)))
## Sigma = 5.773503
\[P(|X-\mu| \geq k\sigma) \leq 1/k^2 \] \[P(|X-10|) \geq k*5.773503 \leq 1/k^2 \] Let’s find and compare the found value to the proposed one originally.
k = 2/sigma
cat(sprintf("%s = %f \n", c(" 1/k^2"), c(1/k^2)))
## 1/k^2 = 8.333333
Upper bound: \(P(|X - 10|>=2) = 8.333333\)
k = 5/sigma
cat(sprintf("%s = %f \n", c(" 1/k^2"), c(1/k^2)))
## 1/k^2 = 1.333333
Upper bound: \(P(|X - 10|>=5) = 1.333333\)
k = 9/sigma
cat(sprintf("%s = %f \n", c(" 1/k^2"), c(1/k^2)))
## 1/k^2 = 0.411523
Upper bound: \(P(|X - 10|>=9) = 0.411523\)
k = 20/sigma
cat(sprintf("%s = %f \n", c(" 1/k^2"), c(1/k^2)))
## 1/k^2 = 0.083333
Upper bound: \(P(|X - 10|>=20) = 0.083333\)