setwd("~/Dropbox/Fernando 2018/archives/data")
library("lme4", lib.loc="/Library/Frameworks/R.framework/Versions/3.5/Resources/library")
## Loading required package: Matrix
enemy<- read.table("invas_fam_out_2.csv", sep = ",", header = T)
attach(enemy)
damage<-as.factor(damage)
fam<-as.factor(fam)
##Modelo general
fit1<-glmer(seeds.2~damage*pop+(1|pop:fam), family = "poisson")
summary(fit1)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: poisson  ( log )
## Formula: seeds.2 ~ damage * pop + (1 | pop:fam)
## 
##      AIC      BIC   logLik deviance df.resid 
##   5293.9   5329.2  -2637.9   5275.9      367 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.8497 -1.2407  0.1047  1.3524 11.2331 
## 
## Random effects:
##  Groups  Name        Variance Std.Dev.
##  pop:fam (Intercept) 0.03942  0.1986  
## Number of obs: 376, groups:  pop:fam, 52
## 
## Fixed effects:
##                        Estimate Std. Error z value Pr(>|z|)    
## (Intercept)             4.06637    0.05420  75.025  < 2e-16 ***
## damage1                -0.12609    0.02513  -5.018 5.23e-07 ***
## popteotihuacan         -0.06870    0.07217  -0.952 0.341118    
## popvaldeflores         -0.31285    0.08656  -3.614 0.000301 ***
## popzubia               -0.25374    0.09695  -2.617 0.008862 ** 
## damage1:popteotihuacan  0.09467    0.03446   2.747 0.006012 ** 
## damage1:popvaldeflores  0.01645    0.04450   0.370 0.711549    
## damage1:popzubia       -0.12818    0.05137  -2.495 0.012579 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) damag1 pptthc ppvldf popzub dmg1:ppt dmg1:ppv
## damage1     -0.225                                              
## popteotihcn -0.751  0.169                                       
## popvaldflrs -0.626  0.141  0.470                                
## popzubia    -0.559  0.126  0.420  0.350                         
## dmg1:pptthc  0.164 -0.729 -0.239 -0.103 -0.092                  
## dmg1:ppvldf  0.127 -0.565 -0.095 -0.236 -0.071  0.412           
## damag1:ppzb  0.110 -0.489 -0.083 -0.069 -0.226  0.357    0.276
##Modelo nulo
fit2<-glm(seeds.2~1, family="poisson")
##Significancia modelo completo
anova(fit1, fit2)
## Data: NULL
## Models:
## fit2: seeds.2 ~ 1
## fit1: seeds.2 ~ damage * pop + (1 | pop:fam)
##      Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)    
## fit2  1 6309.2 6313.1 -3153.6   6307.2                             
## fit1  9 5293.9 5329.2 -2637.9   5275.9 1031.3      8  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Significancia de la interacción
drop1(fit1, test = "Chisq")
## Single term deletions
## 
## Model:
## seeds.2 ~ damage * pop + (1 | pop:fam)
##            Df    AIC    LRT   Pr(Chi)    
## <none>        5293.9                     
## damage:pop  3 5309.4 21.517 8.219e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Significancia del daño
fit3<-glmer(seeds.2~pop+damage:pop+(1|pop:fam), family="poisson")
drop1(fit3, test = "Chisq")
## Single term deletions
## 
## Model:
## seeds.2 ~ pop + damage:pop + (1 | pop:fam)
##            Df    AIC    LRT   Pr(Chi)    
## <none>        5293.9                     
## pop:damage  4 5354.3 68.389 4.966e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Significancia de la población
fit4<-glmer(seeds.2~damage+damage:pop+(1|pop:fam), family="poisson")
drop1(fit4, test = "Chisq")
## Single term deletions
## 
## Model:
## seeds.2 ~ damage + damage:pop + (1 | pop:fam)
##            Df    AIC    LRT   Pr(Chi)    
## <none>        5293.9                     
## damage:pop  6 5322.6 40.763 3.224e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Significancia efecto aleatorio fam
modsinfam<-glm(seeds.2~damage*pop, family="poisson")
anova(fit1, modsinfam)
## Data: NULL
## Models:
## modsinfam: seeds.2 ~ damage * pop
## fit1: seeds.2 ~ damage * pop + (1 | pop:fam)
##           Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)    
## modsinfam  8 5895.8 5927.2 -2939.9   5879.8                             
## fit1       9 5293.9 5329.2 -2637.9   5275.9 603.92      1  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Bootstrap paramétrico para confirmar significancia efecto fam (ho: la varianza es distinta de cero)
library(pbnm)
bootfam<-pbnm(fit1,modsinfam,nsim = 1000, tasks = 10, cores=2, seed=3400835)
summary(bootfam)
## Parametric bootstrap testing: (Intercept) | pop:fam = 0 
## from: glmer(formula = seeds.2 ~ damage * pop + (1 | pop:fam), family = "poisson") 
## 1000 samples were taken Sun Oct 21 08:46:19 2018 
## 2 samples had warnings, 2 in alternate model 0 in null model 
## 2 unused samples.  0 <= P(abs((Intercept) | pop:fam) > |0.03942342|) <= 0.002
#Finalmente el diagnostico de residuales del modelo...
plot(residuals(fit1)~predict(fit1,type="link"), xlab=expression(hat(eta)), ylab="Deviance residuals")

##Graficando las normas de reacción para pop con intervalos de confianza al 95% (inferencia directa)
fit1fit<-fitted(fit1)
enemy$Seeds<-fit1fit
library(ggplot2)
p<-ggplot(enemy,aes(damage,Seeds, linetype=pop, color=pop))
p + geom_smooth(method = "lm", se=F)+scale_linetype_manual(values=c("twodash","solid","dotdash","dotted"))+theme(legend.position="top")+stat_smooth(method = "lm",level = 0.95)+scale_color_hue()