\[ u=1000 \] \[ n=100 \] \[ E[x]=u/n = 10 \]
For \[ X_2 \geqslant X_1 \]
\[ fz(z)=\int_{-\infty}^{\infty}fx_1(z+x_2)fx_2(x_2)dx_2 \] \[ fz(z)=\int_{-\infty}^{0}\lambda e^{-\lambda (z+x_2)}\lambda e^{-\lambda x_2}dx_2\] \[fz(z)=\int_{-\infty}^{0}\lambda e^{-\lambda (z)}\lambda e^{-2\lambda x_2}dx_2\] \[fz(z)=\frac{-\lambda}2(e^{-\lambda z})\]
For \[ X_1 \geqslant X_2 \]
\[ fz(z)=\int_{-\infty}^{\infty}fx1(z+x_2)fx_2(x_2)dx_2\] \[fz(z)=\int_{0}^{\infty} \lambda e^{-\lambda (z+x_2)}\lambda e^{-\lambda x_2}dx_2\] \[fz(z)=\int_{0}^{\infty}\lambda e^{-\lambda (z)}\lambda e^{-2\lambda x_2}dx_2\] \[fz(z)=\frac{\lambda}2(e^{-\lambda z})\]
We know case 1 has
\[ z < 0 \]
and case 2 has
\[ z \geqslant 0\]
Therefore, we can rewrite this as
\[ f(z)= \frac{\lambda}{2} e^{-\lambda \lvert z \rvert} \]