2 The price of a stock on a given trading day changes according to the distribution
\(\mathbf{P_x}\) = \(\left( \begin{array}{ccc} -1 & 0 & 1 & 2\\ \frac{1}{4} & \frac{1}{2} & \frac{1}{8} & \frac{1}{2} \end{array} \right)\)
Find the distribution for the change in stock price after two (independent) trading days.
Answer:
To find the distribution for the change in stock price in two days, we need to add the price change X1 + X2 = S2.
Given the distribution function m = \(\mathbf{P_x}\) above,
X1 = c(-1, 0, 1, 2)
C1 = c(0.25, 0.5, 0.125, 0.125)
X2 = X1
C2 = C1
SX1 = c(0, 0, 0, 0)
SX2 = SX1
SX3 = SX1
SX4 = SX1
SC1 = c(0, 0, 0, 0)
SC2 = SC1
SC3 = SC1
SC4 = SC1
ST = c(0, 0, 0, 0, 0, 0, 0)
SX1 = X1[1] + X2
SC1 = C1[1] * C2
SX1
## [1] -2 -1 0 1
SC1
## [1] 0.06250 0.12500 0.03125 0.03125
SX2 = X1[2] + X2
SC2 = C1[2] * C2
SX2
## [1] -1 0 1 2
SC2
## [1] 0.1250 0.2500 0.0625 0.0625
SX3 = X1[3] + X2
SC3 = C1[3] * C2
SX3
## [1] 0 1 2 3
SC3
## [1] 0.031250 0.062500 0.015625 0.015625
SX4 = X1[4] + X2
SC4 = C1[4] * C2
SX4
## [1] 1 2 3 4
SC4
## [1] 0.031250 0.062500 0.015625 0.015625
Stock Price Change Distribution Range is from minimum of -2 to a maximum of 4 for the 2 days of trading. Probability distribution is as follows -
Probablity P(X=-2)
for (i in 1:4)
{
if (SX1[i] == -2)
ST[1] = ST[1] + SC1[i]
if (SX2[i] == -2)
ST[1] = ST[1] + SC2[i]
if (SX3[i] == -2)
ST[1] = ST[1] + SC3[i]
if (SX4[i] == -2)
ST[1] = ST[1] + SC4[i]
}
ST[1]
## [1] 0.0625
Probablity P(X=-1)
for (i in 1:4)
{
if (SX1[i] == -1)
ST[2] = ST[2] + SC1[i]
if (SX2[i] == -1)
ST[2] = ST[2] + SC2[i]
if (SX3[i] == -1)
ST[2] = ST[2] + SC3[i]
if (SX4[i] == -1)
ST[2] = ST[2] + SC4[i]
}
ST[2]
## [1] 0.25
Probablity P(X=-0)
for (i in 1:4)
{
if (SX1[i] == 0)
ST[3] = ST[3] + SC1[i]
if (SX2[i] == 0)
ST[3] = ST[3] + SC2[i]
if (SX3[i] == 0)
ST[3] = ST[3] + SC3[i]
if (SX4[i] == 0)
ST[3] = ST[3] + SC4[i]
}
ST[3]
## [1] 0.3125
Probablity P(X=1)
for (i in 1:4)
{
if (SX1[i] == 1)
ST[4] = ST[4] + SC1[i]
if (SX2[i] == 1)
ST[4] = ST[4] + SC2[i]
if (SX3[i] == 1)
ST[4] = ST[4] + SC3[i]
if (SX4[i] == 1)
ST[4] = ST[4] + SC4[i]
}
ST[4]
## [1] 0.1875
Probablity P(X=2)
for (i in 1:4)
{
if (SX1[i] == 2)
ST[5] = ST[5] + SC1[i]
if (SX2[i] == 2)
ST[5] = ST[5] + SC2[i]
if (SX3[i] == 2)
ST[5] = ST[5] + SC3[i]
if (SX4[i] == 2)
ST[5] = ST[5] + SC4[i]
}
ST[5]
## [1] 0.140625
Probablity P(X=3)
for (i in 1:4)
{
if (SX1[i] == 3)
ST[6] = ST[6] + SC1[i]
if (SX2[i] == 3)
ST[6] = ST[6] + SC2[i]
if (SX3[i] == 3)
ST[6] = ST[6] + SC3[i]
if (SX4[i] == 3)
ST[6] = ST[6] + SC4[i]
}
ST[6]
## [1] 0.03125
Probablity P(X=4)
for (i in 1:4)
{
if (SX1[i] == 4)
ST[7] = ST[7] + SC1[i]
if (SX2[i] == 4)
ST[7] = ST[7] + SC2[i]
if (SX3[i] == 4)
ST[7] = ST[7] + SC3[i]
if (SX4[i] == 4)
ST[7] = ST[7] + SC4[i]
}
ST[7]
## [1] 0.015625