\(\lambda = \frac{1}{\1000}\)
exponential distribution = \(\lambda e^{-\lambda x}\)
\(f_{-y}(z-x) = f_{y}(x-z)\)
As both equations are exponential equations we know that
\[f_x(x) = \left\{ \begin{array}{ll} 0 & \quad x < 0 \\ \lambda e^{-\lambda x} & \quad x \geq 0 \end{array} \right.\]
Therefore \[f(z) = \int_0^{\infty} e^{-\lambda x} \lambda e^{-\lambda (z-x)}dx \ \]
Simplified
\[f(z) = \int_0^{\infty} \lambda e^{-\lambda x}* \lambda e^{-\lambda x}*\lambda e^{\lambda z}dx \ \]
\[f(z) =\lambda e^{\lambda z}\int_0^{\infty}\lambda e^{-2\lambda x }dx \]
Integrate \[f(z) =\lambda e^{\lambda z}(-\frac{1}{2} e^{-2\lambda x })\]
evaluate \[ 0-- \frac{\lambda}{2}e^{\lambda z} .... z<0 \]…
\[\frac{\lambda}{2}e^{\lambda z} .... z<0 \]
\[f(z) =\frac{\lambda}{2}e^{\lambda [z]}\]
\(P(|x-m|\geq a) \leq \frac{Var(x)}{a^2}\)
\(mean=10\)
\(variance= 100/3\)
\(\sigma = \sqrt{100/3}\)
\(P(|X - \mu |\geq k\sigma )\leq 1/k^2\)
\(\epsilon = k \ \sigma ... k= \epsilon / \sigma\)
epsilon <- 2
variance=100/3
my_std <- sqrt(variance)
get_prob <- function(epsilon,my_std,title=NULL){
k <- epsilon/my_std
paste((1/k^2),title)
}
variance/(epsilon**2)
## [1] 8.333333
get_prob(epsilon=2,my_std,title= 'at epsilon of 2')
## [1] "8.33333333333334 at epsilon of 2"
get_prob(epsilon=5,my_std, title= 'at epsilon of 5')
## [1] "1.33333333333333 at epsilon of 5"
get_prob(epsilon=9,my_std, title= 'at epsilon of 9')
## [1] "0.411522633744856 at epsilon of 9"
get_prob(epsilon=20,my_std, title= 'at epsilon of 20')
## [1] "0.0833333333333333 at epsilon of 20"