11

14

link

\[f_x(x) = \left\{ \begin{array}{ll} 0 & \quad x < 0 \\ \lambda e^{-\lambda x} & \quad x \geq 0 \end{array} \right.\]

\[f(z) = \int_0^{\infty} \lambda e^{-\lambda x}* \lambda e^{-\lambda x}*\lambda e^{\lambda z}dx \ \]

\[f(z) =\lambda e^{\lambda z}\int_0^{\infty}\lambda e^{-2\lambda x }dx \]

\[\frac{\lambda}{2}e^{\lambda z} .... z<0 \]

\[f(z) =\frac{\lambda}{2}e^{\lambda [z]}\]

8.1

\(P(|x-m|\geq a) \leq \frac{Var(x)}{a^2}\)

\(mean=10\)

\(variance= 100/3\)

\(\sigma = \sqrt{100/3}\)

\(P(|X - \mu |\geq k\sigma )\leq 1/k^2\)

\(\epsilon = k \ \sigma ... k= \epsilon / \sigma\)

Create fucntion to solve problem

epsilon <- 2
variance=100/3
my_std <- sqrt(variance)

get_prob <- function(epsilon,my_std,title=NULL){
    k <- epsilon/my_std
    paste((1/k^2),title)
}

variance/(epsilon**2)
## [1] 8.333333
get_prob(epsilon=2,my_std,title= 'at epsilon of 2')
## [1] "8.33333333333334 at epsilon of 2"
get_prob(epsilon=5,my_std, title= 'at epsilon of 5')
## [1] "1.33333333333333 at epsilon of 5"
get_prob(epsilon=9,my_std, title= 'at epsilon of 9')
## [1] "0.411522633744856 at epsilon of 9"
get_prob(epsilon=20,my_std, title= 'at epsilon of 20')
## [1] "0.0833333333333333 at epsilon of 20"