The team composed of Jason Givens-Doyle, Soumya Ghosh, and Romerl Elizes was formed at the start of the semester. After a week of individual research, the team decided to invest its time in the World War 2 Allied Bombing data found in Data.World. We held a weekly meeting since inception to make sure all goals and issues were satisfied in a timely manner. Because Jason lives in Japan, it was best if we all collaborated using Google Hangout as our primary communication tool. In the end, Soumya became the project manager and database guru, Jason was our maps expert, and Romerl developed relevant questions and analyzed them using the variety of R-tools. Romerl also developed the analysis and summary documentation. However, all team members corrected each others work as needed in order to bring this project out to its successful conclusion.
We have submitted a fully comprehensive project deliverable. However, hiccups occurred with this team project.
Which are the most valued data science skills? Each of the individual team members come from different backgrounds and experiences. Each team member has his own individual strengths. As a team, the team members performed with elan. The team learned to trust each other and give generous input on what should be done for the next week. Soumya and Jason all wanted to accomplish more tasks for each week, but Romerl wanted to make sure that the group objectives were completed in a timely manner before the deadline. The team imposed deadlines on itself and that helped keep the project moving at a sustainable pace. The team is fortunate in that it had no personality issues or concerns and accomplished much from its inception. The team joked around in the beginning of the team meetings, but got down to the business of accomplishing its objectives. The team exhibited some excellent soft skills that are quite important not only in a data science team environment, but for any project team:
Trust in One Another. This is a very important characteristic. If not for trust, then the team could not accomplish what it can do given the current deadline.
Listen to One Another. The open feedback between team members was quite important. Not one individual dominated the conversation. Each team member contributed a solution that would be beneficial to the team and the project.
Capitalize on Each Other’s Strengths. A team member finds some way to do something, why not use it for our own indvidual activities? It definitely acknowledges that team member’s contributions but implementing it also gives the other team members new tools to work with in our data science journey.
Have Fun. This project was certainly fun. It was not a burden to develop a project solution. Each team member was happy to contribute something and to learn something new from his other team members.
Allow for Flexibility. - Between our different personalities, time difference, and the fact that we could only collaborate online, we had to allow for flexibility in determining responsibilities and executing our deliverables. This kept our team motivated throught the project development.
A snapshot of our activities are listed below:
The RMD document will begin by showing how the data was uploaded into a MySQL database and how it could easily be queried from that point forward. This section will also give step-by-step instructions on how to upload the data onto a MySQL database and how to generate a DSN connection to the database via Microsoft ODBC DSN. Next, some verification steps were executed to verify that the data can be queried easily, placed in data frames, and displayed using kable R package. Data Cleansing operations were executed to make the data useful for answering questions. The focus on this Project will be on the European and Pacific Theaters of Operations. However, some summary questions can be asked about the whole data set and this will be addressed. Using our combined knowledge of data cleansing, kable, tidy, dplyr, mapping technologies, etc. we developed some innovate answers to the following scenarios:
Theater History of Operations (THOR), is a painstakingly cultivated database of historic aerial bombings from World War I through Vietnam. The value of THOR is immense, and has already proven useful in finding unexploded ordinance in Southeast Asia and improving Air Force combat tactics. This dataset combines digitized paper mission reports from WWII. It can be searched by date, conflict, geographic location and more than 60 other data elements to form a live-action sequence of the air war from 1939 to 1945. The records include U.S. and Royal Air Force data, as well as some Australian, New Zealand and South African air force missions.
Note: MySQL database software need to be installed in the local computer in order to successfully execute the R markdown code.
Below are the steps involved in preparing the MySQL DB environment necesaary for the R markdown code to run successfully -
GitHub location:DDL Script
GitHub Location: Bulk Load Script
Note: All the source CSV data files are also available in the below mention location - GitHub Location: Source Data Files
Alternatively, MySQL Database dump files can also be loaded from below location in order to set up the database locally to analyze this data set -
GitHub Location: MySQL Dump Files
Load necessary libraries -
Use an ODBC data source called ‘MySQL_WW2Analyis’ in order to connect to the database.
aircraftDF <- as.data.frame(sqlFetch(con,"dimaircraft"),stringsAsFactors = FALSE)
aircraftDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="300px")
gloss_id | aircraft | name | full_name | aircraft_type | hyperlink |
---|---|---|---|---|---|
1 | A20 | A20 | Douglas A-20 Havoc | Boston Light Bomber / Night-Fighter | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=186 |
2 | A24 | A24 | Douglass A-24 Banshee | Dive Bomber / Reconnaissance | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=491 |
3 | A26 | A26 | Douglas A-26 Invader | Medium Bomber / Heavy Assault | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=91 |
4 | A36 | A36 | North American A-36 Apache (Invader) | Ground Attack / Dive Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=687 |
5 | ALBA | Albacore | Fairey Albacore | Naval Torpedo Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=1390 |
6 | AUDA | Audax | Hawker Audax | Biplane Light Bomber | http://en.wikipedia.org/wiki/Hawker_Hart |
7 | B17 | FORT | B-17 Flying Fortress | Heavy Bomber | http://boeing.com/history/products/b-17-flying-fortress.page |
8 | B24 | Liberator | B-24 Liberator | Heavy Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=80 |
9 | B25 | B25 | B-25 Mitchell | Medium Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=81 |
10 | B26 | B26 | Martin B-26 Marauder | Medium Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=299 |
11 | B29 | B29 | Boeing B-29 Superfortress | “Strategic Long-Range, High-Altitude Heavy Bomber” | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=825 |
12 | B32 | B32 | B-32 Dominator | Heavy Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=655 |
13 | BALT | Baltimore | Martin Baltimore | Light / Medium Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=264 |
14 | BATT | Fairey Battle | Fairey Battle | Light Bomber / Trainer | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=851 |
15 | BEAU | Beaufighter | Bristol Beaufighter | Heavy Fighter / Night-Fighter | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=135 |
16 | BEAUF | Beaufort | Bristol Beaufort | Torpedo Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=307 |
17 | BLEN | Blenheim | Bristol Blenheim | Light / Medium Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=293 |
18 | BOM | Bombay | Bristol Bombay | Troop Transport / Medium Bomber | http://en.wikipedia.org/wiki/Bristol_Bombay |
19 | Catalina | Catalina | PBY Catalina | Long-Range Maritime Patrol Flying Boat | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=318 |
20 | F4U | F4U | Vought F4U Corsair | Carrier-Based Fighter / Fighter-Bomber / Night Fighter | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=87 |
21 | GLAD | Gladiator | Gloster Gladiator | Biplane Fighter | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=624 |
22 | HALI | Halifax | Handley Page Halifax | Heavy Night Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=233 |
23 | HAMP | Hampden | Handley Page HP.52 Hampden | Medium Bomber | http://en.wikipedia.org/wiki/Handley_Page_Hampden |
24 | HAR | Hawker Hardy | Hawker Hardy | Biplane Light Bomber | http://en.wikipedia.org/wiki/Hawker_Hart#Hardy |
25 | Hudson | Hudson | Lockheed Hudson | Light Bomber | http://en.wikipedia.org/wiki/Lockheed_Hudson |
26 | HURR | Hurricane | Hawker Hurricane | Fighter / Ground Attack | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=125 |
27 | HVY | Lancaster | Avro Lancaster | Heavy Bomber / Reconnaissance | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=234 |
28 | JU86 | Ju 86 | Junkers Ju 86 | Reconnaissance / Medium Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=825 |
29 | LYS | Lysander | Westland Lysander | Liaison Aircraft | http://en.wikipedia.org/wiki/Westland_Lysander |
30 | MANC | Manchester | Avro Manchester | Heavy Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=691 |
31 | MARY | Maryland | Martin Maryland | Light Bomber / Reconnaissance | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=485 |
32 | MOHA | Mohawk | Curtiss P-36 Hawk (Hawk 75 / Mohawk) | Fighter | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=155 |
33 | P38 | P38 | Lockheed P-38 Lightning | Heavy Fighter / Fighter-Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=74 |
34 | P39 | P39 | Bell P-39 Airacobra | Fighter / Fighter-Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=140 |
35 | P40 | P40 | Curtiss P-40 Warhawk | Fighter-Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=75 |
36 | P400 | P400 | P-400 Airacobra (P-39 Airacobra) | Fighter / Fighter-Bomber | http://en.wikipedia.org/wiki/Bell_P-39_Airacobra#P-400 |
37 | P47 | P47 | Republic P-47 Thunderbolt | Fighter / Fighter-Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=76 |
38 | P51 | P51 | North American P-51 Mustang | Fighter / Fighter-Bomber / Reconnaissance | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=77 |
39 | P61 | P61 | Northrop P-61 / F-61 Black Widow | Night Fighter / Reconnaissance | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=78 |
40 | P70 | P70 | Douglas P-70 Nighthawk | Night-Fighter | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=1214 |
41 | PV-1 Ventura | PV-1 Ventura | PV-1 Lockeed Ventura | Patrol Bomber | http://en.wikipedia.org/wiki/Lockeed_Ventura |
42 | SBD | SBD Dauntless | Douglas SBD Dauntless | Carrier-borne Dive Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=297 |
43 | STIR | Short Stirling | Short Stirling | Heavy Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=308 |
44 | SUND | Sunderland | Short S25 Sunderland | Long-Range Maritime / Reconnaissance Flying Boat | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=319 |
45 | SWORD | Swordfish | Fairey Swordfish | Torpedo Bomber / Anti-Submarine / Reconnaissance / Trainer | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=571 |
46 | TBF Avenger | TBF Avenger | Grumman TBF Avenger | Carrier-Borne Torpedo Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=300 |
47 | TOM | Tomahawk | Curtis P-40 Tomahawk | Fighter | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=1433 |
48 | VALE | Valentia | Vikers Valentia | Bombing Transport / Cargo | http://en.wikipedia.org/wiki/Vickers_Type_264_Valentia |
49 | VENGEANCE (A31) | VENGEANCE (A31) | Vultee A-31 Vengeance | Dive Bomber | http://en.wikipedia.org/wiki/Vultee_A-31_Vengeance |
50 | WELL | WELLINGTON | Vickers Wellington | Medium Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=295 |
51 | WHIT | WHITLEY | Armstrong Whitworth Whitley | Heavy Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=309 |
52 | Wirraway | Wirraway | CAC Wirraway | Multi-role Aircraft / Trainer | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=846 |
weaponsDF <- as.data.frame(sqlFetch(con,"dimweapon"),stringsAsFactors = FALSE)
aircraftDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="300px")
gloss_id | aircraft | name | full_name | aircraft_type | hyperlink |
---|---|---|---|---|---|
1 | A20 | A20 | Douglas A-20 Havoc | Boston Light Bomber / Night-Fighter | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=186 |
2 | A24 | A24 | Douglass A-24 Banshee | Dive Bomber / Reconnaissance | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=491 |
3 | A26 | A26 | Douglas A-26 Invader | Medium Bomber / Heavy Assault | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=91 |
4 | A36 | A36 | North American A-36 Apache (Invader) | Ground Attack / Dive Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=687 |
5 | ALBA | Albacore | Fairey Albacore | Naval Torpedo Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=1390 |
6 | AUDA | Audax | Hawker Audax | Biplane Light Bomber | http://en.wikipedia.org/wiki/Hawker_Hart |
7 | B17 | FORT | B-17 Flying Fortress | Heavy Bomber | http://boeing.com/history/products/b-17-flying-fortress.page |
8 | B24 | Liberator | B-24 Liberator | Heavy Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=80 |
9 | B25 | B25 | B-25 Mitchell | Medium Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=81 |
10 | B26 | B26 | Martin B-26 Marauder | Medium Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=299 |
11 | B29 | B29 | Boeing B-29 Superfortress | “Strategic Long-Range, High-Altitude Heavy Bomber” | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=825 |
12 | B32 | B32 | B-32 Dominator | Heavy Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=655 |
13 | BALT | Baltimore | Martin Baltimore | Light / Medium Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=264 |
14 | BATT | Fairey Battle | Fairey Battle | Light Bomber / Trainer | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=851 |
15 | BEAU | Beaufighter | Bristol Beaufighter | Heavy Fighter / Night-Fighter | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=135 |
16 | BEAUF | Beaufort | Bristol Beaufort | Torpedo Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=307 |
17 | BLEN | Blenheim | Bristol Blenheim | Light / Medium Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=293 |
18 | BOM | Bombay | Bristol Bombay | Troop Transport / Medium Bomber | http://en.wikipedia.org/wiki/Bristol_Bombay |
19 | Catalina | Catalina | PBY Catalina | Long-Range Maritime Patrol Flying Boat | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=318 |
20 | F4U | F4U | Vought F4U Corsair | Carrier-Based Fighter / Fighter-Bomber / Night Fighter | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=87 |
21 | GLAD | Gladiator | Gloster Gladiator | Biplane Fighter | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=624 |
22 | HALI | Halifax | Handley Page Halifax | Heavy Night Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=233 |
23 | HAMP | Hampden | Handley Page HP.52 Hampden | Medium Bomber | http://en.wikipedia.org/wiki/Handley_Page_Hampden |
24 | HAR | Hawker Hardy | Hawker Hardy | Biplane Light Bomber | http://en.wikipedia.org/wiki/Hawker_Hart#Hardy |
25 | Hudson | Hudson | Lockheed Hudson | Light Bomber | http://en.wikipedia.org/wiki/Lockheed_Hudson |
26 | HURR | Hurricane | Hawker Hurricane | Fighter / Ground Attack | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=125 |
27 | HVY | Lancaster | Avro Lancaster | Heavy Bomber / Reconnaissance | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=234 |
28 | JU86 | Ju 86 | Junkers Ju 86 | Reconnaissance / Medium Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=825 |
29 | LYS | Lysander | Westland Lysander | Liaison Aircraft | http://en.wikipedia.org/wiki/Westland_Lysander |
30 | MANC | Manchester | Avro Manchester | Heavy Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=691 |
31 | MARY | Maryland | Martin Maryland | Light Bomber / Reconnaissance | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=485 |
32 | MOHA | Mohawk | Curtiss P-36 Hawk (Hawk 75 / Mohawk) | Fighter | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=155 |
33 | P38 | P38 | Lockheed P-38 Lightning | Heavy Fighter / Fighter-Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=74 |
34 | P39 | P39 | Bell P-39 Airacobra | Fighter / Fighter-Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=140 |
35 | P40 | P40 | Curtiss P-40 Warhawk | Fighter-Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=75 |
36 | P400 | P400 | P-400 Airacobra (P-39 Airacobra) | Fighter / Fighter-Bomber | http://en.wikipedia.org/wiki/Bell_P-39_Airacobra#P-400 |
37 | P47 | P47 | Republic P-47 Thunderbolt | Fighter / Fighter-Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=76 |
38 | P51 | P51 | North American P-51 Mustang | Fighter / Fighter-Bomber / Reconnaissance | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=77 |
39 | P61 | P61 | Northrop P-61 / F-61 Black Widow | Night Fighter / Reconnaissance | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=78 |
40 | P70 | P70 | Douglas P-70 Nighthawk | Night-Fighter | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=1214 |
41 | PV-1 Ventura | PV-1 Ventura | PV-1 Lockeed Ventura | Patrol Bomber | http://en.wikipedia.org/wiki/Lockeed_Ventura |
42 | SBD | SBD Dauntless | Douglas SBD Dauntless | Carrier-borne Dive Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=297 |
43 | STIR | Short Stirling | Short Stirling | Heavy Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=308 |
44 | SUND | Sunderland | Short S25 Sunderland | Long-Range Maritime / Reconnaissance Flying Boat | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=319 |
45 | SWORD | Swordfish | Fairey Swordfish | Torpedo Bomber / Anti-Submarine / Reconnaissance / Trainer | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=571 |
46 | TBF Avenger | TBF Avenger | Grumman TBF Avenger | Carrier-Borne Torpedo Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=300 |
47 | TOM | Tomahawk | Curtis P-40 Tomahawk | Fighter | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=1433 |
48 | VALE | Valentia | Vikers Valentia | Bombing Transport / Cargo | http://en.wikipedia.org/wiki/Vickers_Type_264_Valentia |
49 | VENGEANCE (A31) | VENGEANCE (A31) | Vultee A-31 Vengeance | Dive Bomber | http://en.wikipedia.org/wiki/Vultee_A-31_Vengeance |
50 | WELL | WELLINGTON | Vickers Wellington | Medium Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=295 |
51 | WHIT | WHITLEY | Armstrong Whitworth Whitley | Heavy Bomber | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=309 |
52 | Wirraway | Wirraway | CAC Wirraway | Multi-role Aircraft / Trainer | http://militaryfactory.com/aircraft/detail.asp?aircraft_id=846 |
tableWW2 <- tbl_df(as.data.frame(sqlFetch(con,"airbombingops"),stringsAsFactors = FALSE,na.strings=""))
glimpse(tableWW2)
## Observations: 178,281
## Variables: 62
## $ wwii_id <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12...
## $ master_index_number <int> 0, 9366, 0, 0, 22585, 9349, 11287, 11...
## $ msndate <date> 1943-08-15, 1943-08-15, 1943-08-15, ...
## $ theater <fctr> MTO, PTO, MTO, MTO, PTO, PTO, PTO, P...
## $ naf <fctr> 12 AF, 5 AF, 12 AF, 12 AF, 5 AF, 5 A...
## $ country_flying_mission <fctr> USA, USA, USA, USA, USA, USA, USA, U...
## $ tgt_country_code <int> 13, 0, 13, 13, 0, 0, 0, 0, 13, 13, 0,...
## $ tgt_country <fctr> ITALY, NEW GUINEA, ITALY, ITALY, SUM...
## $ tgt_location <fctr> SPADAFORA, KOMIATUM, COSENZA, GIOJA ...
## $ tgt_type <fctr> , RIDGE, , , VILLAGE, UNIDENTIFIED T...
## $ tgt_id <int> 40675, 0, 9630, 16140, 0, 0, 0, 0, 39...
## $ tgt_industry_code <int> 650, 0, 810, 631, 0, 0, 0, 0, 830, 20...
## $ tgt_industry <fctr> , , , , , , , , , ARMAMENT AND ORDNA...
## $ source_latitude <fctr> 38.2166667, 710, 3916N, 3826N, 107, ...
## $ source_longitude <dbl> 15.36667, 14700.00000, 1615.00000, 15...
## $ latitude <dbl> 38, -7, 39, 38, -1, -7, -7, -7, 38, 3...
## $ longitude <dbl> 15, 147, 16, 16, 104, 147, 147, 147, ...
## $ unit_id <fctr> 27 FBG/86 FBG, 400 BS, 27 FBG/86 FBG...
## $ mds <fctr> A36, B24, A36, A36, B24, B24, B24, B...
## $ aircraft_name <fctr> A36, B24, A36, A36, B24, B24, B24, B...
## $ msn_type <int> 0, 1, 0, 0, 1, 1, 12, 1, 0, 0, 2, 0, ...
## $ tgt_priority <int> NA, 1, NA, NA, 1, 1, 1, 1, NA, NA, 1,...
## $ tgt_priority_explanation <fctr> , , , , , , , , , , , , , SECONDARY ...
## $ ac_attacking <int> 0, 6, 0, 0, 6, 6, 1, 8, 0, 0, 6, 0, 5...
## $ altitude <int> 0, 44, 0, 0, 60, 35, 70, 40, 0, 0, 83...
## $ altitude_feet <int> 0, 4400, 0, 0, 6000, 3500, 7000, 4000...
## $ number_of_he <int> 40, 40, 36, 30, 16, 8, 4, 4, 0, 0, 0,...
## $ type_of_he <fctr> 500 LB GP (GP-M43/M64), 1000 LB GP (...
## $ lbs_he <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ tons_of_he <int> 10, 20, 9, 8, 8, 4, 1, 2, 0, 0, 0, 1,...
## $ number_of_ic <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ type_of_ic <fctr> , , , , , , , , , , , , , , , , , , ...
## $ lbs_ic <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ tons_of_ic <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ number_of_frag <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ type_of_frag <fctr> , , , , , , , , , , , , , , , , , , ...
## $ lbs_frag <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ tons_of_frag <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ total_lbs <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ total_tons <int> 10, 20, 9, 8, 8, 4, 1, 2, 0, 0, 0, 1,...
## $ takeoff_base <fctr> PONTE OLIVO AIRFIELD, , PONTE OLIVO ...
## $ takeoff_country <fctr> SICILY, , SICILY, SICILY, , , , , SI...
## $ takeoff_latitude <int> 37, 0, 37, 37, 0, 0, 0, 0, 37, 37, 0,...
## $ takeoff_longitude <int> 14, 0, 14, 14, 0, 0, 0, 0, 14, 14, 0,...
## $ ac_lost <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ ac_damaged <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ ac_airborne <int> 20, 0, 18, 15, 0, 0, 0, 0, 0, 0, 0, 0...
## $ ac_dropping <int> 20, 0, 36, 15, 0, 0, 0, 0, 0, 0, 0, 0...
## $ time_over_target <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, N...
## $ sighting_method_code <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, N...
## $ sighting_explanation <fctr> , , , , , , , , , , , , , , , , , , ...
## $ bda <fctr> , , , , , , , , , , , , , , , , , , ...
## $ callsign <fctr> , , , , , , , , , , , , , , , , , , ...
## $ rounds_ammo <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ spares_return_ac <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ wx_fail_ac <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ mech_fail_ac <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ misc_fail_ac <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ target_comment <fctr> , , , , , , , , , , , , , , , , , , ...
## $ mission_comments <fctr> , , , , , , , , , , , , , , , , , , ...
## $ source <fctr> , , , , , , , , , , , , , , , , , , ...
## $ database_edit_comments <fctr> , , , , , , , , , , , , , , , , , , ...
wwii_id | master_index_number | msndate | theater | naf | country_flying_mission | tgt_country_code | tgt_country | tgt_location | tgt_type | tgt_id | tgt_industry_code | tgt_industry | source_latitude | source_longitude | latitude | longitude | unit_id | mds | aircraft_name | msn_type | tgt_priority | tgt_priority_explanation | ac_attacking | altitude | altitude_feet | number_of_he | type_of_he | lbs_he | tons_of_he | number_of_ic | type_of_ic | lbs_ic | tons_of_ic | number_of_frag | type_of_frag | lbs_frag | tons_of_frag | total_lbs | total_tons | takeoff_base | takeoff_country | takeoff_latitude | takeoff_longitude | ac_lost | ac_damaged | ac_airborne | ac_dropping | time_over_target | sighting_method_code | sighting_explanation | bda | callsign | rounds_ammo | spares_return_ac | wx_fail_ac | mech_fail_ac | misc_fail_ac | target_comment | mission_comments | source | database_edit_comments |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 1943-08-15 | MTO | 12 AF | USA | 13 | ITALY | SPADAFORA | 40675 | 650 | 38.2166667 | 15.36667 | 38 | 15 | 27 FBG/86 FBG | A36 | A36 | 0 | NA | 0 | 0 | 0 | 40 | 500 LB GP (GP-M43/M64) | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | PONTE OLIVO AIRFIELD | SICILY | 37 | 14 | 0 | 0 | 20 | 20 | NA | NA | 0 | 0 | 0 | 0 | 0 | ||||||||||||
2 | 9366 | 1943-08-15 | PTO | 5 AF | USA | 0 | NEW GUINEA | KOMIATUM | RIDGE | 0 | 0 | 710 | 14700.00000 | -7 | 147 | 400 BS | B24 | B24 | 1 | 1 | 6 | 44 | 4400 | 40 | 1000 LB GP (GP-M44/M65) | 0 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | NA | NA | 0 | 0 | 0 | 0 | 0 | |||||||||||||
3 | 0 | 1943-08-15 | MTO | 12 AF | USA | 13 | ITALY | COSENZA | 9630 | 810 | 3916N | 1615.00000 | 39 | 16 | 27 FBG/86 FBG | A36 | A36 | 0 | NA | 0 | 0 | 0 | 36 | 500 LB GP (GP-M43/M64) | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | PONTE OLIVO AIRFIELD | SICILY | 37 | 14 | 0 | 0 | 18 | 36 | NA | NA | 0 | 0 | 0 | 0 | 0 | ||||||||||||
4 | 0 | 1943-08-15 | MTO | 12 AF | USA | 13 | ITALY | GIOJA TAURO | 16140 | 631 | 3826N | 1554.00000 | 38 | 16 | 27 FBG/86 FBG | A36 | A36 | 0 | NA | 0 | 0 | 0 | 30 | 500 LB GP (GP-M43/M64) | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | PONTE OLIVO AIRFIELD | SICILY | 37 | 14 | 0 | 0 | 15 | 15 | NA | NA | 0 | 0 | 0 | 0 | 1 | ||||||||||||
5 | 22585 | 1943-08-15 | PTO | 5 AF | USA | 0 | SUMATRA | KILA | VILLAGE | 0 | 0 | 107 | 10353.00000 | -1 | 104 | 321 BS | B24 | B24 | 1 | 1 | 6 | 60 | 6000 | 16 | 1000 LB GP (GP-M44/M65) | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | NA | NA | 0 | 0 | 0 | 0 | 0 | |||||||||||||
6 | 9349 | 1943-08-15 | PTO | 5 AF | USA | 0 | NEW GUINEA | KDMIATUM | UNIDENTIFIED TARGET | 0 | 0 | 710 | 14700.00000 | -7 | 147 | 319 BS | B24 | B24 | 1 | 1 | 6 | 35 | 3500 | 8 | 1000 LB GP (GP-M44/M65) | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | NA | NA | 0 | 0 | 0 | 0 | 0 | |||||||||||||
7 | 11287 | 1943-08-15 | PTO | 5 AF | USA | 0 | NEW GUINEA | SALAMAUA | UNIDENTIFIED TARGET | 0 | 0 | 701 | 14707.00000 | -7 | 147 | 400 BS | B24 | B24 | 12 | 1 | 1 | 70 | 7000 | 4 | 500 LB GP (GP-M43/M64) | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | NA | NA | 0 | 0 | 0 | 0 | 0 | |||||||||||||
8 | 11326 | 1943-08-15 | PTO | 5 AF | USA | 0 | NEW GUINEA | SALAMAUA | AIRDROME | 0 | 0 | 701 | 14707.00000 | -7 | 147 | 65 BS | B17 | B17 | 1 | 1 | 8 | 40 | 4000 | 4 | 1000 LB GP (GP-M44/M65) | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | NA | NA | 0 | 0 | 0 | 0 | 0 | |||||||||||||
9 | 0 | 1943-08-15 | MTO | 12 AF | USA | 13 | ITALY | SCILLA | 39469 | 830 | 3814N | 1543.00000 | 38 | 16 | 27 FBG/86 FBG | A36 | A36 | 0 | NA | 0 | 0 | 0 | 0 | 500 LB GP (GP-M43/M64) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | PONTE OLIVO AIRFIELD | SICILY | 37 | 14 | 0 | 0 | 0 | 0 | NA | NA | 0 | 0 | 0 | 0 | 0 | ||||||||||||
10 | 0 | 1943-08-15 | MTO | 12 AF | USA | 13 | ITALY | GIOJA TAURO | 16140 | 20 | ARMAMENT AND ORDNANCE PLANTS | 3826N | 1554.00000 | 38 | 16 | 27 FBG/86 FBG | A36 | A36 | 0 | NA | 0 | 0 | 0 | 0 | 500 LB GP (GP-M43/M64) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | PONTE OLIVO AIRFIELD | SICILY | 37 | 14 | 0 | 0 | 0 | 0 | NA | NA | 0 | 0 | 0 | 0 | 0 | |||||||||||
11 | 37192 | 1943-08-15 | CBI | 10 AF | USA | 0 | BURMA | PORT BLAIR | UNIDENTIFIELD TARGET | 0 | 0 | 1141 | 9243.00000 | 12 | 93 | 436 BS | B24 | B24 | 2 | 1 | 6 | 83 | 8300 | 0 | 500 LB GP (GP-M43/M64) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NA | NA | 0 | 0 | 0 | 0 | 0 | |||||||||||||
12 | 292817 | 1943-08-15 | ETO | RAF | GREAT BRITAIN | 8 | GERMANY | BERLIN | CITY AREA | 3735 | 2 | CITIES TOWNS AND URBAN AREAS | 5232 | 1325.00000 | 53 | 13 | LGT | LIGHT | 0 | NA | 0 | 250 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | NA | NA | 0 | 0 | 0 | 0 | 0 | ||||||||||||||
13 | 292818 | 1943-08-15 | ETO | RAF | GREAT BRITAIN | 8 | GERMANY | BERLIN | CITY AREA | 3735 | 2 | CITIES TOWNS AND URBAN AREAS | 5232 | 1325.00000 | 53 | 13 | LGT | LIGHT | 0 | NA | 5 | 250 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 5 | 5 | NA | NA | 0 | 0 | 0 | 0 | 0 | ||||||||||||||
14 | 95435 | 1943-08-15 | ETO | 11 | HOLLAND OR NETHERLANDS | FLUSHING | 14129 | 78 | AIR FIELDS AND AIRDROMES | 5124 | 332.00000 | 51 | 4 | B17 | B17 | 0 | 2 | SECONDARY TARGET | 0 | 245 | 0 | 0 | 0 | 39 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 39 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | ||||||||||||||||
15 | 197541 | 1943-08-15 | ETO | 11 | HOLLAND OR NETHERLANDS | FLUSHING | 14129 | 78 | AIR FIELDS AND AIRDROMES | 5124 | 332.00000 | 51 | 4 | B17 | B17 | 0 | 2 | SECONDARY TARGET | 0 | 245 | 0 | 0 | 0 | 39 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 39 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | ||||||||||||||||
16 | 197560 | 1943-08-15 | ETO | 11 | HOLLAND OR NETHERLANDS | FLUSHING | 14129 | 78 | AIR FIELDS AND AIRDROMES | 5124 | 332.00000 | 51 | 4 | B17 | B17 | 0 | 2 | SECONDARY TARGET | 0 | 245 | 0 | 0 | 0 | 39 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 39 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | ||||||||||||||||
17 | 95429 | 1943-08-15 | ETO | 7 | FRANCE | AMIENS | AIRDROME | 1063 | 78 | AIR FIELDS AND AIRDROMES | 4954 | 218.00000 | 50 | 2 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 240 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
18 | 197535 | 1943-08-15 | ETO | 7 | FRANCE | AMIENS | AIRDROME | 1063 | 78 | AIR FIELDS AND AIRDROMES | 4954 | 218.00000 | 50 | 2 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 240 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
19 | 197555 | 1943-08-15 | ETO | 7 | FRANCE | AMIENS | AIRDROME | 1063 | 78 | AIR FIELDS AND AIRDROMES | 4954 | 218.00000 | 50 | 2 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 240 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
20 | 95431 | 1943-08-15 | ETO | 7 | FRANCE | AMIENS | AIRDROME | 1063 | 78 | AIR FIELDS AND AIRDROMES | 4954 | 218.00000 | 50 | 2 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 234 | 0 | 0 | 0 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
21 | 197537 | 1943-08-15 | ETO | 7 | FRANCE | AMIENS | AIRDROME | 1063 | 78 | AIR FIELDS AND AIRDROMES | 4954 | 218.00000 | 50 | 2 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 234 | 0 | 0 | 0 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
22 | 197557 | 1943-08-15 | ETO | 7 | FRANCE | AMIENS | AIRDROME | 1063 | 78 | AIR FIELDS AND AIRDROMES | 4954 | 218.00000 | 50 | 2 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 234 | 0 | 0 | 0 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
23 | 95434 | 1943-08-15 | ETO | 11 | HOLLAND OR NETHERLANDS | FLUSHING | 14129 | 78 | AIR FIELDS AND AIRDROMES | 5124 | 332.00000 | 51 | 4 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 230 | 0 | 0 | 0 | 36 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 36 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | ||||||||||||||||
24 | 197540 | 1943-08-15 | ETO | 11 | HOLLAND OR NETHERLANDS | FLUSHING | 14129 | 78 | AIR FIELDS AND AIRDROMES | 5124 | 332.00000 | 51 | 4 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 230 | 0 | 0 | 0 | 36 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 36 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | ||||||||||||||||
25 | 197559 | 1943-08-15 | ETO | 11 | HOLLAND OR NETHERLANDS | FLUSHING | 14129 | 78 | AIR FIELDS AND AIRDROMES | 5124 | 332.00000 | 51 | 4 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 230 | 0 | 0 | 0 | 36 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 36 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | ||||||||||||||||
26 | 95430 | 1943-08-15 | ETO | 7 | FRANCE | AMIENS | AIRDROME | 1063 | 78 | AIR FIELDS AND AIRDROMES | 4954 | 218.00000 | 50 | 2 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 220 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
27 | 197536 | 1943-08-15 | ETO | 7 | FRANCE | AMIENS | AIRDROME | 1063 | 78 | AIR FIELDS AND AIRDROMES | 4954 | 218.00000 | 50 | 2 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 220 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
28 | 197556 | 1943-08-15 | ETO | 7 | FRANCE | AMIENS | AIRDROME | 1063 | 78 | AIR FIELDS AND AIRDROMES | 4954 | 218.00000 | 50 | 2 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 220 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
29 | 197526 | 1943-08-15 | ETO | 11 | HOLLAND OR NETHERLANDS | FLUSHING | 14129 | 71 | PORTS AND HARBORS | 5124 | 332.00000 | 51 | 4 | GB17 | B17 | 0 | 2 | SECONDARY TARGET | 0 | 220 | 0 | 0 | 0 | 32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 32 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | ||||||||||||||||
30 | 197528 | 1943-08-15 | ETO | 11 | HOLLAND OR NETHERLANDS | FLUSHING | 14129 | 71 | PORTS AND HARBORS | 5124 | 332.00000 | 51 | 4 | B17 | B17 | 0 | 2 | SECONDARY TARGET | 0 | 220 | 0 | 0 | 0 | 32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 32 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | ||||||||||||||||
31 | 95427 | 1943-08-15 | ETO | 7 | FRANCE | VITRY EN ARTOIS | AIRDROME | 45581 | 78 | AIR FIELDS AND AIRDROMES | 5020 | 300.00000 | 50 | 3 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 220 | 0 | 0 | 0 | 48 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 48 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
32 | 197534 | 1943-08-15 | ETO | 7 | FRANCE | VITRY EN ARTOIS | AIRDROME | 45581 | 78 | AIR FIELDS AND AIRDROMES | 5020 | 300.00000 | 50 | 3 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 220 | 0 | 0 | 0 | 48 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 48 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
33 | 197553 | 1943-08-15 | ETO | 7 | FRANCE | VITRY EN ARTOIS | AIRDROME | 45581 | 78 | AIR FIELDS AND AIRDROMES | 5020 | 300.00000 | 50 | 3 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 220 | 0 | 0 | 0 | 48 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 48 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
34 | 95432 | 1943-08-15 | ETO | 7 | FRANCE | VITRY EN ARTOIS | AIRDROME | 45581 | 78 | AIR FIELDS AND AIRDROMES | 5020 | 300.00000 | 50 | 3 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 213 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
35 | 197538 | 1943-08-15 | ETO | 7 | FRANCE | VITRY EN ARTOIS | AIRDROME | 45581 | 78 | AIR FIELDS AND AIRDROMES | 5020 | 300.00000 | 50 | 3 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 213 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
36 | 197554 | 1943-08-15 | ETO | 7 | FRANCE | VITRY EN ARTOIS | AIRDROME | 45581 | 78 | AIR FIELDS AND AIRDROMES | 5020 | 300.00000 | 50 | 3 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 213 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
37 | 95422 | 1943-08-15 | ETO | 7 | FRANCE | MERVILLE | AIRDROME | 27637 | 78 | AIR FIELDS AND AIRDROMES | 5038 | 238.00000 | 51 | 3 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 210 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
38 | 95424 | 1943-08-15 | ETO | 7 | FRANCE | MERVILLE | AIRDROME | 27637 | 78 | AIR FIELDS AND AIRDROMES | 5038 | 238.00000 | 51 | 3 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 210 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
39 | 197529 | 1943-08-15 | ETO | 7 | FRANCE | MERVILLE | AIRDROME | 27637 | 78 | AIR FIELDS AND AIRDROMES | 5038 | 238.00000 | 51 | 3 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 210 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
40 | 197531 | 1943-08-15 | ETO | 7 | FRANCE | MERVILLE | AIRDROME | 27637 | 78 | AIR FIELDS AND AIRDROMES | 5038 | 238.00000 | 51 | 3 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 210 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
41 | 197548 | 1943-08-15 | ETO | 7 | FRANCE | MERVILLE | AIRDROME | 27637 | 78 | AIR FIELDS AND AIRDROMES | 5038 | 238.00000 | 51 | 3 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 210 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
42 | 197550 | 1943-08-15 | ETO | 7 | FRANCE | MERVILLE | AIRDROME | 27637 | 78 | AIR FIELDS AND AIRDROMES | 5038 | 238.00000 | 51 | 3 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 210 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
43 | 95437 | 1943-08-15 | ETO | 7 | FRANCE | LILLE | AIRDROME | 25077 | 78 | AIR FIELDS AND AIRDROMES | 5038 | 304.00000 | 51 | 3 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 209 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
44 | 197543 | 1943-08-15 | ETO | 7 | FRANCE | LILLE | AIRDROME | 25077 | 78 | AIR FIELDS AND AIRDROMES | 5038 | 304.00000 | 51 | 3 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 209 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
45 | 197547 | 1943-08-15 | ETO | 7 | FRANCE | LILLE | AIRDROME | 25077 | 78 | AIR FIELDS AND AIRDROMES | 5038 | 304.00000 | 51 | 3 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 209 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
46 | 95423 | 1943-08-15 | ETO | 7 | FRANCE | MERVILLE | AIRDROME | 27637 | 78 | AIR FIELDS AND AIRDROMES | 5038 | 238.00000 | 51 | 3 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 200 | 0 | 0 | 0 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
47 | 197530 | 1943-08-15 | ETO | 7 | FRANCE | MERVILLE | AIRDROME | 27637 | 78 | AIR FIELDS AND AIRDROMES | 5038 | 238.00000 | 51 | 3 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 200 | 0 | 0 | 0 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
48 | 197549 | 1943-08-15 | ETO | 7 | FRANCE | MERVILLE | AIRDROME | 27637 | 78 | AIR FIELDS AND AIRDROMES | 5038 | 238.00000 | 51 | 3 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 200 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
49 | 95426 | 1943-08-15 | ETO | 7 | FRANCE | VITRY EN ARTOIS | AIRDROME | 45581 | 78 | AIR FIELDS AND AIRDROMES | 5020 | 300.00000 | 50 | 3 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 200 | 0 | 0 | 0 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
50 | 197533 | 1943-08-15 | ETO | 7 | FRANCE | VITRY EN ARTOIS | AIRDROME | 45581 | 78 | AIR FIELDS AND AIRDROMES | 5020 | 300.00000 | 50 | 3 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 200 | 0 | 0 | 0 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
51 | 197552 | 1943-08-15 | ETO | 7 | FRANCE | VITRY EN ARTOIS | AIRDROME | 45581 | 78 | AIR FIELDS AND AIRDROMES | 5020 | 300.00000 | 50 | 3 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 200 | 0 | 0 | 0 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
52 | 95433 | 1943-08-15 | ETO | 11 | HOLLAND OR NETHERLANDS | FLUSHING | 14129 | 78 | AIR FIELDS AND AIRDROMES | 5124 | 332.00000 | 51 | 4 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 198 | 0 | 0 | 0 | 37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 37 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | ||||||||||||||||
53 | 197539 | 1943-08-15 | ETO | 11 | HOLLAND OR NETHERLANDS | FLUSHING | 14129 | 78 | AIR FIELDS AND AIRDROMES | 5124 | 332.00000 | 51 | 4 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 198 | 0 | 0 | 0 | 37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 37 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | ||||||||||||||||
54 | 197558 | 1943-08-15 | ETO | 11 | HOLLAND OR NETHERLANDS | FLUSHING | 14129 | 78 | AIR FIELDS AND AIRDROMES | 5124 | 332.00000 | 51 | 4 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 198 | 0 | 0 | 0 | 37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 37 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | ||||||||||||||||
55 | 95436 | 1943-08-15 | ETO | 11 | HOLLAND OR NETHERLANDS | FLUSHING | 14129 | 78 | AIR FIELDS AND AIRDROMES | 5124 | 332.00000 | 51 | 4 | B17 | B17 | 0 | 2 | SECONDARY TARGET | 0 | 186 | 0 | 0 | 0 | 36 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 36 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | ||||||||||||||||
56 | 197542 | 1943-08-15 | ETO | 11 | HOLLAND OR NETHERLANDS | FLUSHING | 14129 | 78 | AIR FIELDS AND AIRDROMES | 5124 | 332.00000 | 51 | 4 | B17 | B17 | 0 | 2 | SECONDARY TARGET | 0 | 186 | 0 | 0 | 0 | 36 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 36 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | ||||||||||||||||
57 | 197561 | 1943-08-15 | ETO | 11 | HOLLAND OR NETHERLANDS | FLUSHING | 14129 | 78 | AIR FIELDS AND AIRDROMES | 5124 | 332.00000 | 51 | 4 | B17 | B17 | 0 | 2 | SECONDARY TARGET | 0 | 186 | 0 | 0 | 0 | 36 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 36 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | ||||||||||||||||
58 | 292819 | 1943-08-15 | ETO | RAF | GREAT BRITAIN | 8 | GERMANY | DUSSELDORF | CITY AREA | 11714 | 2 | CITIES TOWNS AND URBAN AREAS | 5113 | 647.00000 | 51 | 7 | HVY | LANCASTER | 0 | NA | 0 | 135 | 0 | 0 | 0 | 52 | 0 | 0 | 35 | 0 | 0 | 0 | 0 | 87 | 0 | 0 | 0 | 0 | 0 | 0 | NA | NA | 0 | 0 | 0 | 0 | 0 | ||||||||||||||
59 | 95413 | 1943-08-15 | ETO | 7 | FRANCE | ABBEVILLE | 38 | 63 | “RR INSTALLATIONS, TRACKS, MARSHALLING YARDS, AND STATIONS” | 5006 | 150.00000 | 50 | 2 | B26 | B26 | 0 | 1 | PRIMARY TARGET | 0 | 120 | 0 | 0 | 0 | 29 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 29 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | ||||||||||||||||
60 | 197519 | 1943-08-15 | ETO | 7 | FRANCE | ABBEVILLE | 38 | 63 | “RR INSTALLATIONS, TRACKS, MARSHALLING YARDS, AND STATIONS” | 5006 | 150.00000 | 50 | 2 | B26 | B26 | 0 | 1 | PRIMARY TARGET | 0 | 120 | 0 | 0 | 0 | 29 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 29 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | ||||||||||||||||
61 | 95421 | 1943-08-15 | ETO | 7 | FRANCE | ST OMER | AIRDROME | 41381 | 78 | AIR FIELDS AND AIRDROMES | 5045 | 215.00000 | 51 | 2 | B26 | B26 | 0 | 1 | PRIMARY TARGET | 0 | 100 | 0 | 0 | 0 | 33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 33 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
62 | 197544 | 1943-08-15 | ETO | 7 | FRANCE | ST OMER | AIRDROME | 41381 | 78 | AIR FIELDS AND AIRDROMES | 5045 | 215.00000 | 51 | 2 | B26 | B26 | 0 | 1 | PRIMARY TARGET | 0 | 100 | 0 | 0 | 0 | 33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 33 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
63 | 95425 | 1943-08-15 | ETO | 7 | FRANCE | VITRY EN ARTOIS | AIRDROME | 45581 | 78 | AIR FIELDS AND AIRDROMES | 5020 | 300.00000 | 50 | 3 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
64 | 197532 | 1943-08-15 | ETO | 7 | FRANCE | VITRY EN ARTOIS | AIRDROME | 45581 | 78 | AIR FIELDS AND AIRDROMES | 5020 | 300.00000 | 50 | 3 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
65 | 197551 | 1943-08-15 | ETO | 7 | FRANCE | VITRY EN ARTOIS | AIRDROME | 45581 | 78 | AIR FIELDS AND AIRDROMES | 5020 | 300.00000 | 50 | 3 | B17 | B17 | 0 | 1 | PRIMARY TARGET | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
66 | 95420 | 1943-08-15 | MTO | 12 AF | USA | 13 | ITALY | AGATA | SHIPPING | 210 | 73 | SHIPS | 3805 | 1438.00000 | 38 | 15 | B25 | B25 | 0 | 1 | PRIMARY TARGET | 0 | 95 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||
67 | 197527 | 1943-08-15 | MTO | 12 AF | USA | 13 | ITALY | AGATA | SHIPPING | 210 | 73 | SHIPS | 3805 | 1438.00000 | 38 | 15 | B25 | B25 | 0 | 1 | PRIMARY TARGET | 0 | 95 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||
68 | 95414 | 1943-08-15 | MTO | 12 AF | USA | 13 | ITALY | MESSINA | ROAD | 27689 | 65 | HIGHWAYS AND VEHICLES | 3811 | 1534.00000 | 38 | 16 | B25 | B25 | 0 | 1 | PRIMARY TARGET | 0 | 95 | 0 | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||
69 | 197520 | 1943-08-15 | MTO | 12 AF | USA | 13 | ITALY | MESSINA | ROAD | 27689 | 65 | HIGHWAYS AND VEHICLES | 3811 | 1534.00000 | 38 | 16 | B25 | B25 | 0 | 1 | PRIMARY TARGET | 0 | 95 | 0 | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||
70 | 95415 | 1943-08-15 | MTO | 12 AF | USA | 13 | ITALY | SAPRI | MARSHALL YARD | 38357 | 63 | “RR INSTALLATIONS, TRACKS, MARSHALLING YARDS, AND STATIONS” | 4004 | 1538.00000 | 40 | 16 | B26 | B26 | 0 | 1 | PRIMARY TARGET | 0 | 95 | 0 | 0 | 0 | 42 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 42 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||
71 | 197521 | 1943-08-15 | MTO | 12 AF | USA | 13 | ITALY | SAPRI | MARSHALL YARD | 38357 | 63 | “RR INSTALLATIONS, TRACKS, MARSHALLING YARDS, AND STATIONS” | 4004 | 1538.00000 | 40 | 16 | B26 | B26 | 0 | 1 | PRIMARY TARGET | 0 | 95 | 0 | 0 | 0 | 42 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 42 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||
72 | 95428 | 1943-08-15 | MTO | 12 AF | USA | 13 | ITALY | 37 20 N 014 00 E | SUPPLIES | 90064 | 83 | SUPPLY DUMPS AND WAREHOUSES | 3720 | 1400.00000 | 37 | 14 | A20 | A20 | 0 | 1 | PRIMARY TARGET | 0 | 95 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||
73 | 197545 | 1943-08-15 | MTO | 12 AF | USA | 13 | ITALY | 37 20 N 014 00 E | SUPPLIES | 90064 | 83 | SUPPLY DUMPS AND WAREHOUSES | 3720 | 1400.00000 | 37 | 14 | A20 | A20 | 0 | 1 | PRIMARY TARGET | 0 | 95 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||
74 | 197546 | 1943-08-15 | MTO | 12 AF | USA | 13 | ITALY | 37 20 N 014 00 E | SUPPLIES | 90064 | 83 | SUPPLY DUMPS AND WAREHOUSES | 3720 | 1400.00000 | 37 | 14 | A20 | A20 | 0 | 1 | PRIMARY TARGET | 0 | 95 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||
75 | 95416 | 1943-08-15 | MTO | 12 AF | USA | 13 | ITALY | SIBARI | MARSHALLING YARD | 40038 | 63 | “RR INSTALLATIONS, TRACKS, MARSHALLING YARDS, AND STATIONS” | 3947 | 1628.00000 | 40 | 16 | B25 | B25 | 0 | 1 | PRIMARY TARGET | 0 | 75 | 0 | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||
76 | 197522 | 1943-08-15 | MTO | 12 AF | USA | 13 | ITALY | SIBARI | MARSHALLING YARD | 40038 | 63 | “RR INSTALLATIONS, TRACKS, MARSHALLING YARDS, AND STATIONS” | 3947 | 1628.00000 | 40 | 16 | B25 | B25 | 0 | 1 | PRIMARY TARGET | 0 | 75 | 0 | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||
77 | 95417 | 1943-08-15 | MTO | 12 AF | USA | 13 | ITALY | SIBARI | MARSHALLING YARD | 40038 | 63 | “RR INSTALLATIONS, TRACKS, MARSHALLING YARDS, AND STATIONS” | 3947 | 1628.00000 | 40 | 16 | B25 | B25 | 0 | 1 | PRIMARY TARGET | 0 | 70 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||
78 | 95418 | 1943-08-15 | MTO | 12 AF | USA | 13 | ITALY | SIBARI | MARSHALLING YARD | 40038 | 63 | “RR INSTALLATIONS, TRACKS, MARSHALLING YARDS, AND STATIONS” | 3947 | 1628.00000 | 40 | 16 | B25 | B25 | 0 | 1 | PRIMARY TARGET | 0 | 70 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||
79 | 95419 | 1943-08-15 | MTO | 12 AF | USA | 13 | ITALY | SIBARI | MARSHALLING YARD | 40038 | 63 | “RR INSTALLATIONS, TRACKS, MARSHALLING YARDS, AND STATIONS” | 3947 | 1628.00000 | 40 | 16 | B25 | B25 | 0 | 1 | PRIMARY TARGET | 0 | 70 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||
80 | 197523 | 1943-08-15 | MTO | 12 AF | USA | 13 | ITALY | SIBARI | MARSHALLING YARD | 40038 | 63 | “RR INSTALLATIONS, TRACKS, MARSHALLING YARDS, AND STATIONS” | 3947 | 1628.00000 | 40 | 16 | B25 | B25 | 0 | 1 | PRIMARY TARGET | 0 | 70 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||
81 | 197524 | 1943-08-15 | MTO | 12 AF | USA | 13 | ITALY | SIBARI | MARSHALLING YARD | 40038 | 63 | “RR INSTALLATIONS, TRACKS, MARSHALLING YARDS, AND STATIONS” | 3947 | 1628.00000 | 40 | 16 | B25 | B25 | 0 | 1 | PRIMARY TARGET | 0 | 70 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||
82 | 197525 | 1943-08-15 | MTO | 12 AF | USA | 13 | ITALY | SIBARI | MARSHALLING YARD | 40038 | 63 | “RR INSTALLATIONS, TRACKS, MARSHALLING YARDS, AND STATIONS” | 3947 | 1628.00000 | 40 | 16 | B25 | B25 | 0 | 1 | PRIMARY TARGET | 0 | 70 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||
83 | 292820 | 1943-08-15 | MTO | 12 AF | USA | 13 | ITALY | MILAN | CITY AREA | 28049 | 2 | CITIES TOWNS AND URBAN AREAS | 4527 | 909.00000 | 45 | 9 | HVY | LANCASTER | 0 | NA | 0 | 0 | 0 | 0 | 0 | 82 | 0 | 0 | 35 | 0 | 0 | 0 | 0 | 117 | 0 | 0 | 0 | 0 | 0 | 0 | NA | NA | 0 | 0 | 0 | 0 | 0 | ||||||||||||||
84 | 292821 | 1943-08-15 | MTO | 12 AF | USA | 13 | ITALY | MILAN | CITY AREA | 28049 | 2 | CITIES TOWNS AND URBAN AREAS | 4527 | 909.00000 | 45 | 9 | HVY | LANCASTER | 0 | NA | 0 | 0 | 0 | 0 | 0 | 38 | 0 | 0 | 84 | 0 | 0 | 0 | 0 | 122 | 0 | 0 | 0 | 0 | 0 | 0 | NA | NA | 0 | 0 | 0 | 0 | 0 | ||||||||||||||
85 | 292822 | 1943-08-15 | MTO | 12 AF | USA | 13 | ITALY | MILAN | CITY AREA | 28049 | 2 | CITIES TOWNS AND URBAN AREAS | 4527 | 909.00000 | 45 | 9 | HVY | LANCASTER | 0 | 1 | PRIMARY TARGET | 93 | 0 | 0 | 0 | 0 | 302 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 302 | 0 | 0 | 0 | 0 | 93 | 93 | NA | NA | 0 | 0 | 0 | 0 | 0 | |||||||||||||
86 | 197564 | 1943-08-15 | 8 AF | USA | 99 | UNKNOWN OR NOT INDICATED | UNIDENTIFIED | UNIDENTIFIED | 44333 | 1 | UNIDENTIFIED TARGETS | NA | 0 | 0 | B25 | B25 | 0 | 1 | PRIMARY TARGET | 0 | 100 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
87 | 292825 | 1943-08-15 | 8 AF | USA | 99 | UNKNOWN OR NOT INDICATED | UNIDENTIFIED | UNIDENTIFIED | 44333 | 1 | UNIDENTIFIED TARGETS | NA | 0 | 0 | B25 | B25 | 0 | 1 | PRIMARY TARGET | 0 | 100 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
88 | 197565 | 1943-08-15 | 8 AF | USA | 99 | UNKNOWN OR NOT INDICATED | UNIDENTIFIED | UNIDENTIFIED | 44333 | 1 | UNIDENTIFIED TARGETS | NA | 0 | 0 | B25 | B25 | 0 | 1 | PRIMARY TARGET | 0 | 90 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
89 | 292826 | 1943-08-15 | 8 AF | USA | 99 | UNKNOWN OR NOT INDICATED | UNIDENTIFIED | UNIDENTIFIED | 44333 | 1 | UNIDENTIFIED TARGETS | NA | 0 | 0 | B25 | B25 | 0 | 1 | PRIMARY TARGET | 0 | 90 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
90 | 197562 | 1943-08-15 | 8 AF | USA | 99 | UNKNOWN OR NOT INDICATED | UNIDENTIFIED | UNIDENTIFIED | 44333 | 1 | UNIDENTIFIED TARGETS | NA | 0 | 0 | A20 | A20 | 0 | 1 | PRIMARY TARGET | 0 | 85 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
91 | 292823 | 1943-08-15 | 8 AF | USA | 99 | UNKNOWN OR NOT INDICATED | UNIDENTIFIED | UNIDENTIFIED | 44333 | 1 | UNIDENTIFIED TARGETS | NA | 0 | 0 | A20 | A20 | 0 | 1 | PRIMARY TARGET | 0 | 85 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
92 | 197563 | 1943-08-15 | 8 AF | USA | 99 | UNKNOWN OR NOT INDICATED | UNIDENTIFIED | UNIDENTIFIED | 44333 | 1 | UNIDENTIFIED TARGETS | NA | 0 | 0 | B25 | B25 | 0 | 1 | PRIMARY TARGET | 0 | 0 | 0 | 0 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
93 | 292824 | 1943-08-15 | 8 AF | USA | 99 | UNKNOWN OR NOT INDICATED | UNIDENTIFIED | UNIDENTIFIED | 44333 | 1 | UNIDENTIFIED TARGETS | NA | 0 | 0 | B25 | B25 | 0 | 1 | PRIMARY TARGET | 0 | 0 | 0 | 0 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | NA | 9 | 0 | 0 | 0 | 0 | 0 | |||||||||||||||
94 | 3647 | 1943-08-15 | PTO | 5 AF | USA | 0 | CORAL SEA AREA | ARAWE | UNIDENTIFIED TARGET | 0 | 0 | 610 | 14904.00000 | -6 | 149 | 63 BS | B17 | B17 | 1 | 1 | 1 | 8 | 0 | 0 | 0 | 0 | 0 | 4 LB INCENDIARY | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | NA | NA | 0 | 0 | 0 | 0 | 0 | |||||||||||||
95 | 45988 | 1943-08-15 | PTO | 13 AF | USA | 0 | SOLOMON ISLANDS | IGHITI | SUPPLY AREAS | 0 | 0 | 734 | 15843.00000 | -8 | 159 | 75 BS | B25 | B25 | 1 | 1 | 11 | 10 | 64 | 0 | 250 LB GP (GP-M57) | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | NA | NA | 0 | 0 | 0 | 0 | 0 | |||||||||||||
96 | 0 | 1943-08-16 | MTO | 12 AF | USA | 13 | ITALY | VILLA SAN GIOVANNI | 45319 | 830 | 3812N | 1539.00000 | 38 | 16 | 27 FBG/86 FBG | A36 | A36 | 0 | NA | 0 | 0 | 0 | 64 | 500 LB GP (GP-M43/M64) | 0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 | PONTE OLIVO AIRFIELD | SICILY | 37 | 14 | 0 | 0 | 32 | 32 | NA | NA | 0 | 0 | 0 | 0 | 0 | ||||||||||||
97 | 46767 | 1943-08-16 | PTO | 13 AF | USA | 0 | SOLOMON ISLANDS | REKATA BAY | UNIDENTIFIED TARGET | 0 | 0 | 734 | 15841.00000 | -8 | 159 | 424 BS | B24 | B24 | 1 | 2 | 3 | 130 | 13000 | 60 | 100 LB GP (GP-M30) | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | NA | NA | 0 | 0 | 0 | 0 | 0 | |||||||||||||
98 | 30980 | 1943-08-16 | CBI | 10 AF | USA | 0 | BURMA | KETKA | ROLLING STOCK | 0 | 0 | 2210 | 9555.00000 | 22 | 96 | 22 BS | B25 | B25 | 1 | 1 | 8 | 120 | 12000 | 40 | 500 LB GP (GP-M43/M64) | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | NA | NA | 0 | 0 | 0 | 0 | 0 | |||||||||||||
99 | 23877 | 1943-08-16 | PTO | 5 AF | USA | 0 | BORNEO | BALIK PAPAN | UNIDENTIFIED TARGET | 0 | 0 | 115 | 11650.00000 | -1 | 117 | 529 BS | B24 | B24 | 1 | 1 | 3 | 15 | 1500 | 20 | 500 LB GP (GP-M43/M64) | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | NA | NA | 0 | 0 | 0 | 0 | 0 | |||||||||||||
100 | 45789 | 1943-08-16 | PTO | 13 AF | USA | 0 | SOLOMON ISLANDS | BUKA | AIRDROME | 0 | 0 | 525 | 15442.00000 | -5 | 155 | 424 BS | B24 | B24 | 1 | 1 | 1 | 180 | 18000 | 20 | 100 LB GP (GP-M30) | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | NA | NA | 0 | 0 | 0 | 0 | 0 |
tableWW2 <- tableWW2[, -which(names(tableWW2) %in% c("tgt_country_code","tgt_id","tgt_industry_code","source_latitude","source_longitude","mds","takeoff_latitude","takeoff_longitude","target_comment","mission_comments","source","database_edit_comments", "bda", "callsign", "rounds_ammo", "spares_return_ac","wx_fail_ac", "mech_fail_ac", "misc_fail_ac", "time_over_target","sighting_method_code","sighting_explanation"))]
### Replace BLANK theater values with NA
tableWW2$theater <- ifelse(tableWW2$theater == "","NA",str_trim(tableWW2$theater))
### Lookup table for theater names
lut <- c("MTO" = "Mediterranean Theater","PTO" = "Pacific Theater", "ETO" = "European Theater","CBI" = "China Burma India","EAST AFRICA" = "East Africa","MADAGASCAR" = "Madagascar","NA" = "Unknown")
tableWW2$theater_name <- lut[tableWW2$theater]
### Extract Mission Year and Month
tableWW2$Mission_Month <- substr(tableWW2$msndate,1,7)
tableWW2$Mission_Year <- substr(tableWW2$msndate,1,4)
### Format Target Country and Location
tableWW2$tgt_country <- str_to_title(tableWW2$tgt_country)
tableWW2$tgt_location <- str_to_title(tableWW2$tgt_location)
Analysis: The main WW2 data frame extracted from the database contained a lot of information. Because of the limited scope of the project, it was decided that we excluded 22 columns from the data frame. Many of these columns were composed of blank data and some contained data that was not useful for this project. Upon cleaning the data we decided to add additional fields such as theater_name, Mission_Month, and Mission_Year as they would be important for further investigation of the data.
European (ETO), Pacific (PTO). and Mediterranean (MTO) Theaters are the major theaters where aerial bombing operations were conducted. We have decided to focus on two primary theaters of operations ETO and PTO for further analysis.
theaterSummary <- tableWW2 %>% filter(theater != '') %>% group_by(theater_name) %>% summarise(Missions = n())
ggplot(theaterSummary, aes(x = reorder(theater_name, Missions),y= Missions/sum(Missions))) +
geom_bar( stat = "identity", position = "dodge", fill = "blue") +
geom_text(aes(label=percent(Missions/sum(Missions))), hjust=-0.2, color="black", position = position_dodge(0.9), size=3.5) +
scale_y_continuous(labels=percent) +
theme(axis.text.x=element_text(angle = 0, vjust = 0.5)) +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("WWII Missions by Theater of Operations") +
labs(x = "Theater of Operations",y = "% of Aerial Missions") +
coord_flip()
Analysis: It was important to show a summary view of a percentage of total bombing missions by Theater of Operations by showing a horizontal Bar Chart. The graph shows that the European Theater encompasses the most bombing missions at 53.8% as compared to the rest of the theaters. Pacific and Mediterranean Theaters occupy a distant 2nd and 3rd respectively at 20.3% and 17.1%.
WorldData <- map_data('world')
WorldData %>% filter(region != "Antarctica") -> WorldData
WorldData <- fortify(WorldData)
sites <- tableWW2 %>% filter(theater != '') %>% group_by(tgt_country) %>% summarise(Missions = n(),Tons = sum(total_tons))
ggplot() +
geom_map(data=WorldData, map=WorldData,
aes(x=long, y=lat, group=group, map_id=region),
fill="white", colour="#7f7f7f", size=0.5) +
geom_map(data=sites, map=WorldData,
aes(fill=Missions, map_id=tgt_country),
colour="#7f7f7f", size=0.5) +
coord_map("rectangular", lat0=0, xlim=c(-180,180), ylim=c(-60, 90)) +
scale_fill_continuous(low="thistle2", high="darkred", guide="colorbar") +
scale_y_continuous(breaks=c()) +
scale_x_continuous(breaks=c()) +
labs(fill="Mission Count", title="Global View of the Aerial Bombing Missions", x="", y="") +
theme(plot.title = element_text(hjust = 0.5)) +
theme_bw() +
theme(panel.border = element_blank())
Analysis: From a different perspective, we wanted to show Total Aerial Bombing Missions by Target Countries using the ggplot’s map technology. The resulting map shows the entire world minus Antarctica and colors the individual countries with a shade of red depending on the severity of the bombing. Based on the map, you can see that Germany has the deepest shade of red indicating that it was the receiver of the most bombings. The map is very informative from this aspect.
topCountries <- sites %>% group_by(tgt_country) %>% summarise(Missions = sum(Missions)) %>% mutate(rank = rank(-Missions)) %>% filter(rank <= 10) %>% arrange(rank)
ggplot(topCountries, aes(x = reorder(tgt_country,-Missions), y = Missions)) +
geom_bar(stat = "identity", position = "dodge", fill = "orange") +
geom_text(aes(label=Missions), vjust=-0.5, color="black", position = position_dodge(0.9), size=3.5) +
scale_fill_brewer(palette="Paired") +
theme(axis.text.x=element_text(angle = 45, vjust = 0.5)) +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Top 10 Countries based on # of Aerial Bombing Missions") +
labs(x = "Countries")
Analysis: Using the data thus far, we used dplyr to summarize and rank the total number of missions by target country. To avoid clutteriness of the data, we only ranked the top 10 countries by total bombing missions executed against them. We displayed the results on a bar chart. As indicated in the previous map, Germany received more than 60,000 bombing missions and the next 2 countries Italy and France received approximately one-third of those bombing missions.
topCountries <- sites %>% group_by(tgt_country) %>% summarise(Tons = sum(Tons)) %>% mutate(rank = rank(-Tons)) %>% filter(rank <= 10) %>% arrange(rank)
ggplot(topCountries, aes(x = reorder(tgt_country,-Tons), y = Tons)) +
geom_bar(stat = "identity", position = "dodge", fill = "maroon") +
geom_text(aes(label=Tons), vjust=-0.5, color="black", position = position_dodge(0.9), size=3.5) +
scale_fill_brewer(palette="Paired") +
theme(axis.text.x=element_text(angle = 45, vjust = 0.5)) +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Top 10 Countries based on Total Tons of Explosives Dropped") +
labs(x = "Countries")
Analysis: We used dplyr to summarize and rank the total bombing tonnage by target country. To avoid clutteriness of the data, we only ranked the top 10 countries by total bombing tonnage executed against them. We displayed the results on a bar chart. Similar to the previous bar chart, Germany, France, and Italy received the most bombing tonnage. Unlike the previous bar chart, it appears that France received half the bombing tonnage than that of Germany. France may have less than one-third of bombing missions than that of Germany, but it still received half the bombing tonnage than that of Germany.
bomibngTimeline <- tableWW2 %>% group_by(Mission_Month) %>% summarise(Missions = n())
ggplot(bomibngTimeline, aes(x = Mission_Month, y = Missions)) +
geom_bar(stat = "identity", position = "dodge", fill = "orange") +
#geom_text(aes(label=Missions), vjust=-0.5, color="black", position = position_dodge(0.9), size=3.5) +
scale_fill_brewer(palette="Paired") +
theme(axis.text.x=element_text(angle = 90, vjust = 0.5)) +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Timeline of WW II Aerial Bombings") +
labs(x = "Year-Months")
Analysis: Using dplyr to group the mission months for all WW2 missions, we developed a Bar-based timeline chart that shows the total number of bombs by month from the beginning to the end of World War 2. A dramatic increase in bombing missions starts on October 1943 and reaches its first maximum point in June 1944 and reaches its highest maximum point in April 1945. June 1944 could be an obvious choice as Allied Bombings increased substantially prior to D-Day, June 6, 1944, the Allied invasion of France. Moreover, several bombing missions were executed after D-Day to support the Allied breakout of the Normandy invasion area. April 1945 could be associated with the Allied bombing of major infrastructures in Germany. By this time, the Allied armies are in Germany ready to finish off its opponent. What is interesting to note by observing this chart, that bombing missions still occurred after World War 2 ended in September 1945. Observe some Allied bombings occurring in December 1945.
We wanted to focus our analysis towards the two most important theaters of actions.
## wwii_id master_index_number msndate
## Min. : 12 Min. : 0 Min. :1939-09-03
## 1st Qu.: 44684 1st Qu.:162739 1st Qu.:1943-08-17
## Median : 83167 Median :189418 Median :1944-07-21
## Mean : 85840 Mean :198821 Mean :1943-12-27
## 3rd Qu.:126324 3rd Qu.:275061 3rd Qu.:1944-12-18
## Max. :178655 Max. :699610 Max. :1945-05-13
##
## theater naf country_flying_mission
## Length:95827 :44276 :44276
## Class :character RAF :27929 AUSTRALIA : 0
## Mode :character 8 AF : 9444 GREAT BRITAIN:27929
## 9 AF : 6057 NEW ZEALAND : 0
## 15 AF : 5761 SOUTH AFRICA : 0
## 12 AF : 1830 USA :23622
## (Other): 530
## tgt_country tgt_location tgt_type
## Length:95827 Length:95827 :23194
## Class :character Class :character CITY AREA :17230
## Mode :character Mode :character AIRDROME : 9172
## MARSHALLING YARD : 3783
## UNIENTIFIED TARGET : 2402
## UNIDENTIFIED TARGET: 2066
## (Other) :37980
## tgt_industry
## CITIES TOWNS AND URBAN AREAS :19664
## AIR FIELDS AND AIRDROMES :13540
## "RR INSTALLATIONS, TRACKS, MARSHALLING YARDS, AND STATIONS":12869
## UNIDENTIFIED TARGETS : 6540
## TACTICAL TARGETS: (UNIDENTIFIED OR NOT LISTED BELOW) : 3635
## SYNTHETIC OIL REFINERIES : 3490
## (Other) :36089
## latitude longitude unit_id aircraft_name
## Min. : 0.00 Min. : -5.000 :95651 B17 :37624
## 1st Qu.: 49.00 1st Qu.: 4.000 211 SQDN: 43 B24 :18105
## Median : 51.00 Median : 8.000 84 SQDN : 25 B26 : 8707
## Mean : 48.03 Mean : 8.502 205 GP : 20 LANCASTER : 6133
## 3rd Qu.: 52.00 3rd Qu.: 10.000 10 SQ : 19 WELLINGTON: 5640
## Max. :101.00 Max. :1001.000 30 SQDN : 18 LIGHT : 3673
## (Other) : 51 (Other) :15945
## msn_type tgt_priority tgt_priority_explanation
## Min. :0 Min. :0.00 :37837
## 1st Qu.:0 1st Qu.:1.00 PRIMARY TARGET :37332
## Median :0 Median :1.00 SECONDARY TARGET :10365
## Mean :0 Mean :1.56 TARGET OF LAST RESORT: 2114
## 3rd Qu.:0 3rd Qu.:2.00 TARGET OF OPPORTUNITY: 8179
## Max. :0 Max. :9.00
## NA's :37318
## ac_attacking altitude altitude_feet number_of_he
## Min. : 0.00 Min. : 0.0 Min. : 0 Min. :0.00e+00
## 1st Qu.: 0.00 1st Qu.: 0.0 1st Qu.: 0 1st Qu.:0.00e+00
## Median : 1.00 Median :120.0 Median : 0 Median :0.00e+00
## Mean : 7.56 Mean :118.2 Mean : 2759 Mean :2.09e-04
## 3rd Qu.: 12.00 3rd Qu.:230.0 3rd Qu.: 0 3rd Qu.:0.00e+00
## Max. :313.00 Max. :465.0 Max. :46500 Max. :1.20e+01
##
## type_of_he lbs_he tons_of_he
## :95824 Min. :0 Min. : 0.00
## 500 LB GP (GP-M43/M64) : 3 1st Qu.:0 1st Qu.: 1.00
## 0 : 0 Median :0 Median : 12.00
## 100 LB GP (GP-M30) : 0 Mean :0 Mean : 27.26
## 1000 LB AP (AP-MK 33) : 0 3rd Qu.:0 3rd Qu.: 33.00
## 1000 LB GP (GP-M44/M65): 0 Max. :0 Max. :999.00
## (Other) : 0
## number_of_ic type_of_ic lbs_ic
## Min. :0 :95827 Min. :0
## 1st Qu.:0 10 LB INCENDIARY : 0 1st Qu.:0
## Median :0 100 LB INCENDIARY : 0 Median :0
## Mean :0 100 LB WP (WHITE PHOSPHROUS) : 0 Mean :0
## 3rd Qu.:0 1000 LB AUX FUEL TANK INCENDIARY: 0 3rd Qu.:0
## Max. :0 110 LB INCENDIARY : 0 Max. :0
## (Other) : 0
## tons_of_ic number_of_frag type_of_frag
## Min. : 0.000 Min. :0 :95827
## 1st Qu.: 0.000 1st Qu.:0 0 : 0
## Median : 0.000 Median :0 120 LB FRAG (6X20 CLUSTERS): 0
## Mean : 4.455 Mean :0 15 KG CHINESE : 0
## 3rd Qu.: 0.000 3rd Qu.:0 17 KG CHINESE : 0
## Max. :999.000 Max. :0 20 LB FRAG : 0
## (Other) : 0
## lbs_frag tons_of_frag total_lbs total_tons
## Min. :0 Min. : 0.000 Min. :0 Min. : 0.00
## 1st Qu.:0 1st Qu.: 0.000 1st Qu.:0 1st Qu.: 2.00
## Median :0 Median : 0.000 Median :0 Median : 20.00
## Mean :0 Mean : 1.034 Mean :0 Mean : 32.73
## 3rd Qu.:0 3rd Qu.: 0.000 3rd Qu.:0 3rd Qu.: 38.00
## Max. :0 Max. :440.000 Max. :0 Max. :999.00
##
## takeoff_base takeoff_country ac_lost
## :95763 :95763 Min. :0.00e+00
## "TORTORELLA, FOGGIA": 20 ENGLAND : 41 1st Qu.:0.00e+00
## DISHFORTH : 19 ITALY : 22 Median :0.00e+00
## LINTON-ON-OUSE : 12 CORSICA : 1 Mean :5.74e-04
## RAF HONINGTON : 4 AUSTRALIA: 0 3rd Qu.:0.00e+00
## PORETTA AIRFIELD : 2 BORNEO : 0 Max. :1.20e+01
## (Other) : 7 (Other) : 0
## ac_damaged ac_airborne ac_dropping theater_name
## Min. :0.00e+00 Min. : 0.000 Min. : 0.00 Length:95827
## 1st Qu.:0.00e+00 1st Qu.: 0.000 1st Qu.: 0.00 Class :character
## Median :0.00e+00 Median : 1.000 Median : 1.00 Mode :character
## Mean :1.04e-05 Mean : 7.555 Mean : 7.56
## 3rd Qu.:0.00e+00 3rd Qu.: 12.000 3rd Qu.: 12.00
## Max. :1.00e+00 Max. :313.000 Max. :313.00
##
## Mission_Month Mission_Year
## Length:95827 Length:95827
## Class :character Class :character
## Mode :character Mode :character
##
##
##
##
## wwii_id master_index_number msndate
## Min. : 2 Min. : 0 Min. :1941-12-10
## 1st Qu.: 49975 1st Qu.: 6330 1st Qu.:1944-05-01
## Median :111279 Median : 17403 Median :1944-11-04
## Mean : 97625 Mean : 22006 Mean :1944-09-17
## 3rd Qu.:139170 3rd Qu.: 39590 3rd Qu.:1945-04-12
## Max. :178741 Max. :402344 Max. :1945-12-31
##
## theater naf country_flying_mission
## Length:36192 5 AF :18641 : 0
## Class :character 13 AF : 6645 AUSTRALIA : 312
## Mode :character 7 AF : 6481 GREAT BRITAIN: 0
## 20 AF : 2390 NEW ZEALAND : 633
## RNZAF : 633 SOUTH AFRICA : 0
## 14 AF : 609 USA :35247
## (Other): 793
## tgt_country tgt_location tgt_type
## Length:36192 Length:36192 UNIDENTIFIED TARGET: 9661
## Class :character Class :character AIRDROME : 5338
## Mode :character Mode :character TOWN : 1479
## AIRFIELD : 1247
## URBAN AREA : 1223
## AREA : 1148
## (Other) :16096
## tgt_industry
## :36192
## "IRON AND STEEL PRODUCTION FACILITIES, BLAST FURNACES, BOILER SHOPS, FORGES, FOUNDRIES, STEEL WORKS, ROLLING-MILLS ": 0
## "PUBLIC UTILITIES - ELECTRIC LIGHT AND POWER COMPANIES, GAS COMPANIES, TELEPHONE COMPANIES, WATER COMPANIES. " : 0
## "RR INSTALLATIONS, TRACKS, MARSHALLING YARDS, AND STATIONS" : 0
## "TUGS, BARGES, AND SAMPANS " : 0
## A/C COMPONENT PLANTS : 0
## (Other) : 0
## latitude longitude unit_id aircraft_name
## Min. :-37.000 Min. :-179.0 868 BS : 659 B24 :13375
## 1st Qu.: -4.000 1st Qu.: 122.0 42 BG : 644 B25 : 6335
## Median : 6.000 Median : 134.0 64 BS : 636 A20 : 3473
## Mean : 7.927 Mean : 134.8 65 BS : 611 P38 : 2644
## 3rd Qu.: 17.000 3rd Qu.: 146.0 321 BS : 602 B29 : 2390
## Max. : 53.000 Max. : 180.0 320 BS : 588 P47 : 2318
## (Other):32452 (Other): 5657
## msn_type tgt_priority tgt_priority_explanation
## Min. : 0.000 Min. :0.00 :36192
## 1st Qu.: 1.000 1st Qu.:1.00 PRIMARY TARGET : 0
## Median : 1.000 Median :1.00 SECONDARY TARGET : 0
## Mean : 5.232 Mean :1.61 TARGET OF LAST RESORT: 0
## 3rd Qu.:10.000 3rd Qu.:1.00 TARGET OF OPPORTUNITY: 0
## Max. :99.000 Max. :9.00
## NA's :1618
## ac_attacking altitude altitude_feet number_of_he
## Min. : 0.000 Min. : 0.00 Min. : 0 Min. : 0.00
## 1st Qu.: 2.000 1st Qu.: 1.00 1st Qu.: 40 1st Qu.: 0.00
## Median : 5.000 Median : 50.00 Median : 2000 Median : 8.00
## Mean : 6.227 Mean : 60.47 Mean : 5029 Mean : 26.01
## 3rd Qu.: 8.000 3rd Qu.: 100.00 3rd Qu.: 9000 3rd Qu.: 30.00
## Max. :152.000 Max. :40000.00 Max. :70000 Max. :2840.00
##
## type_of_he lbs_he tons_of_he
## 500 LB GP (GP-M43/M64) :12823 Min. : 0.0 Min. : 0.000
## 1000 LB GP (GP-M44/M65): 6064 1st Qu.: 0.0 1st Qu.: 1.000
## : 5850 Median : 0.0 Median : 3.000
## 250 LB GP (GP-M57) : 5323 Mean : 307.2 Mean : 8.151
## 100 LB GP (GP-M30) : 4517 3rd Qu.: 0.0 3rd Qu.: 8.000
## 2000 LB GP (GP-M34/M66): 595 Max. :112000.0 Max. :20000.000
## (Other) : 1020
## number_of_ic type_of_ic
## Min. : 0.0 :31986
## 1st Qu.: 0.0 1000 LB AUX FUEL TANK INCENDIARY: 849
## Median : 0.0 100 LB INCENDIARY : 838
## Mean : 10.3 500 LB INCENDIARY : 691
## 3rd Qu.: 0.0 400 LB INCENDIARY : 287
## Max. :4875.0 440 LB (110X4 CLUSTERS) I-M17 : 230
## (Other) : 1311
## lbs_ic tons_of_ic number_of_frag
## Min. : 0.0 Min. : 0.000 Min. : 0.00
## 1st Qu.: 0.0 1st Qu.: 0.000 1st Qu.: 0.00
## Median : 0.0 Median : 0.000 Median : 0.00
## Mean : 192.9 Mean : 3.125 Mean : 14.41
## 3rd Qu.: 0.0 3rd Qu.: 0.000 3rd Qu.: 0.00
## Max. :420000.0 Max. :999.000 Max. :1700.00
##
## type_of_frag lbs_frag
## :32099 Min. : 0.000
## 120 LB FRAG (6X20 CLUSTERS) : 1468 1st Qu.: 0.000
## 260 LB FRAG : 1085 Median : 0.000
## 23 LB FRAG : 440 Mean : 8.983
## 20 LB FRAG : 391 3rd Qu.: 0.000
## 400 LB FRAG (20X20 CLUSTERS): 333 Max. :20640.000
## (Other) : 376
## tons_of_frag total_lbs total_tons
## Min. : 0.000 Min. : 0.0 Min. : 0.00
## 1st Qu.: 0.000 1st Qu.: 0.0 1st Qu.: 2.00
## Median : 0.000 Median : 0.0 Median : 5.00
## Mean : 0.778 Mean : 325.1 Mean : 11.92
## 3rd Qu.: 0.000 3rd Qu.: 0.0 3rd Qu.: 10.00
## Max. :455.000 Max. :112000.0 Max. :20000.00
##
## takeoff_base takeoff_country ac_lost
## :35656 :35661 Min. :0
## CAIRNS : 96 AUSTRALIA : 249 1st Qu.:0
## BOUGAINVILLE ISLAND: 65 SOLOMON ISLANDS: 81 Median :0
## BATCHELOR FIELD : 52 USA : 71 Mean :0
## USS HORNET : 50 INDONESIA : 51 3rd Qu.:0
## HUGHES : 43 NEW GUINEA : 36 Max. :0
## (Other) : 230 (Other) : 43
## ac_damaged ac_airborne ac_dropping theater_name
## Min. :0 Min. : 0.00000 Min. : 0.00000 Length:36192
## 1st Qu.:0 1st Qu.: 0.00000 1st Qu.: 0.00000 Class :character
## Median :0 Median : 0.00000 Median : 0.00000 Mode :character
## Mean :0 Mean : 0.06794 Mean : 0.04026
## 3rd Qu.:0 3rd Qu.: 0.00000 3rd Qu.: 0.00000
## Max. :0 Max. :23.00000 Max. :22.00000
##
## Mission_Month Mission_Year
## Length:36192 Length:36192
## Class :character Class :character
## Mode :character Mode :character
##
##
##
##
European Theater:
ETOAircrafttype <- as.data.frame(table(tableWW2ETO$aircraft_name))
names(ETOAircrafttype) <- c("Aircraft", "Count")
ETOAircrafttype <- ETOAircrafttype[-which(ETOAircrafttype$Count == 0 ), ] # removing rows with 0 fields
ggplot(ETOAircrafttype, aes(x = reorder(Aircraft, -Count), y = Count)) +
geom_bar(stat = "identity", position = "dodge", fill = "green") +
geom_text(aes(label=Count), vjust= -0.5, color="black", position = position_dodge(0.9), size=3.5) +
scale_fill_brewer(palette="Paired") +
theme(axis.text.x=element_text(angle = 90, vjust = 0.5)) +
ggtitle("ETO Aircraft Types") +
theme(plot.title = element_text(hjust = 0.5)) +
labs(x = "Aircraft Type")
Analysis: Using the ETO data frame, we wanted to find out the Number of Allied of Missions by Bomber Type. This was useful because it showed what was the dominating aircraft used in the ETO missions. Based on the bar chart, we see that the United States of America had a majority share of the bombing missions if you just look at the aircraft type alone. The top 3 mission counts by Aircraft Type are B17, B24, and B26 respectively and these aircraft types are American.
Pacific Theater:
PTOAircrafttype <- as.data.frame(table(tableWW2PTO$aircraft_name))
names(PTOAircrafttype) <- c("Aircraft", "Count")
PTOAircrafttype <- PTOAircrafttype[-which(PTOAircrafttype$Count == 0 ), ] # removing rows with 0 fields
ggplot(PTOAircrafttype, aes(x = reorder(Aircraft, -Count), y = Count)) +
geom_bar(stat = "identity", position = "dodge", fill = "red") +
geom_text(aes(label=Count), vjust=-0.5, color="black", position = position_dodge(0.9), size=3.5) +
scale_fill_brewer(palette="Paired") +
theme(axis.text.x=element_text(angle = 90, vjust = 0.5)) +
ggtitle("PTO Aircraft Types") +
theme(plot.title = element_text(hjust = 0.5)) +
labs(x = "Aircraft Type")
Analysis: Using the PTO data frame, we wanted to find out the Number of Allied of Missions by Bomber Type. This was useful because it showed what was the dominating aircraft used in the ETO missions. Based on the bar chart, we see that the United States of America had a monopoly of missions in the PTO. The majority of aircraft types in the PTO is American-made.
European Theater:
#ETOExplosives <- tableWW2ETO[, which(names(tableWW2ETO) %in% c("tgt_country","total_tons"))]
#ETOExplosives <- ETOExplosives[!(is.na(ETOExplosives$total_tons) | ETOExplosives$total_tons==""), ]
#head(ETOExplosives, n=100)
tonsByCountriesETO <- tableWW2 %>% filter(theater == 'ETO') %>% group_by(tgt_country) %>% summarise(Tons = sum(total_tons)) %>% mutate(rank = rank(-Tons)) %>% filter(rank <= 10) %>% arrange(rank)
ggplot(tonsByCountriesETO, aes(x = reorder(tgt_country,-Tons), y = Tons)) +
geom_bar(stat = "identity", position = "dodge", fill = "orange") +
geom_text(aes(label=Tons), vjust=-0.5) +
scale_fill_brewer(palette="Paired") +
theme(axis.text.x=element_text(angle = 45, vjust = 0.5)) +
# facet_wrap(~theater) +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Top 10 Countries in ETO based on Total Tons of Explosives Dropped") +
labs(x = "Countries", y = "Tons of Explosives")
Analysis: We used dplyr to summarize and rank the total bombing tonnage by target country for ETO only. To avoid clutteriness of the data, we only ranked the top 10 countries by total bombing tonnage executed against them. We displayed the results on a bar chart. Now things get interesting here. In the previous chart showing all total bombing tonnage by target countries, Germany, France, and Italy occupy the top 3 slots. However, in this chart, Germany, France, and Austria occupy the top 3 slots. What happened to Italy? Italy is in Europe. It turns out that the authors of the WW2 bombing data put Italy in the Mediterranean Theater of Operations (MTO). This certainly skews the data somewhat.
Pacific Theater:
tonsByCountriesPTO <- tableWW2 %>% filter(theater == 'PTO') %>% group_by(tgt_country) %>% summarise(Tons = sum(total_tons)) %>% mutate(rank = rank(-Tons)) %>% filter(rank <= 10) %>% arrange(rank)
ggplot(tonsByCountriesPTO, aes(x = reorder(tgt_country,-Tons), y = Tons)) +
geom_bar(stat = "identity", position = "dodge", fill = "orange") +
geom_text(aes(label=Tons), vjust=-0.5) +
scale_fill_brewer(palette="Paired") +
theme(axis.text.x=element_text(angle = 45, vjust = 0.5)) +
# facet_wrap(~theater) +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Top 10 Countries in PTO based on Total Tons of Explosives Dropped") +
labs(x = "Countries", y = "Tons of Explosives")
Analysis: We used dplyr to summarize and rank the total bombing tonnage by target country for PTO only. To avoid clutteriness of the data, we only ranked the top 10 countries by total bombing tonnage executed against them. We displayed the results on a bar chart. As expected, Japan, an Axis country, is the recipient of the most bombing tonnage at 183,752. However, the Philippines, an Allied country occupied by Japan, is the recipient of the second most bombing tonnage at 62,679. Why is that? We will explain this later as we drill down to the Philippines.
European Theater:
ETOTCountry <- as.data.frame(table(tableWW2ETO$tgt_country))
names(ETOTCountry) <- c("Country", "Missions")
#ETOTCountry <- ETOTCountry[-which(ETOTCountry$Missions == 0 ), ] # removing rows with 0 fields
ggplot(ETOTCountry, aes(x = reorder(Country, -Missions), y = Missions)) +
geom_bar(stat = "identity", position = "dodge", fill = "blue") +
geom_text(aes(label=Missions), vjust=-0.5, color="black", position = position_dodge(0.9), size=3.5) +
scale_fill_brewer(palette="Paired") +
theme(axis.text.x=element_text(angle = 90, vjust = 0.5)) +
ggtitle("ETO Missions by Target Country") +
theme(plot.title = element_text(hjust = 0.5)) +
labs(x = "Target Countries")
Analysis: We used dplyr to summarize and rank the total bombing missions by target country for ETO only. We displayed the results on a bar chart. Now things get interesting here. In the previous chart showing all total bombing missions by target countries, Germany, France, and Italy occupy the top 3 slots. However, in this chart, Germany, France, and Austria occupy the top 3 slots. What happened to Italy? Italy is in Europe. It turns out that the authors of the WW2 bombing data put Italy in the Mediterranean Theater of Operations (MTO). This certainly skews the data somewhat.
Pacific Theater:
PTOTCountry <- as.data.frame(table(tableWW2PTO$tgt_country))
names(PTOTCountry) <- c("Country", "Missions")
PTOTCountry <- PTOTCountry[-which(PTOTCountry$Missions <= 10 ), ] # removing rows with 0 fields
ggplot(PTOTCountry, aes(x = reorder(Country, -Missions), y = Missions)) +
geom_bar(stat = "identity", position = "dodge", fill = "blue") +
geom_text(aes(label=Missions), vjust=-0.5, color="black", position = position_dodge(0.9), size=3.5) +
scale_fill_brewer(palette="Paired") +
theme(axis.text.x=element_text(angle = 90, vjust = 0.5)) +
ggtitle("PTO Missions by Target Country") +
theme(plot.title = element_text(hjust = 0.5)) +
labs(x = "Target Countries")
Analysis: We used dplyr to summarize and rank the total bombing missions by target country for PTO only. We displayed the results on a bar chart. We expected Japan, an Axis country, to be the recipient of the most bombing missions. However, Japan is ranked 5. The Philippines is ranked 1st with the most bombing missions at 8180. Interesting Observation: in terms of bombing tonnage, Japan ranks higher than the Philippines, but in terms of bombing missions, the Philippines ranks higher than Japan.
All Theaters:
tonsByTheaterTime <- tableWW2 %>% group_by(theater_name,Mission_Month) %>% summarise(Tons = sum(total_tons)) %>% mutate(TonsK = Tons/1000)
ggplot(data=tonsByTheaterTime, aes(x=Mission_Month,y=TonsK, color=theater_name)) +
geom_line(aes(group = theater_name))+
geom_point()+
theme(axis.text.x=element_text(angle = 90, vjust = 0.5)) +
scale_fill_brewer(palette="Paired") +
ggtitle("Distribution of Explosives by Theater over Time") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "bottom") +
labs(y = "Tons of Explosives (in Thousands)")
Analysis: We used dplyr to summarize and rank the total bombing tonnage by month for all theaters. We displayed the results on a line chart. Based on the observations, we see that ETO bombing tonnage starts to become higher than all other theaters in March 1943. However, from November 1943 to April 1945, ETO bombing tonnage grows from less than 50,000 tons to greater than 300,000 tons. This certainly correlates with a step-up in Allied intervention in the ETO during that time period. The PTO bombing tonnage only starts to increase in November 1944 to its peak in August 1945. The PTO bombing tonnage for that time period went from approximately 6,000 tons to 60,000 tons. The PTO tonnage is substantially smaller than the ETO tonnage. Only the MTO bombing tonnage can compete with that of the PTO bombing tonnage. The MTO bombing tonnage has two peaks, one in May 1944 and the other in April 1945. Both periods had approximately 50,000 tons.
PhilippinesDF <- tableWW2PTO[tableWW2PTO$tgt_country == "Philippine Islands",]
PbombingTimeline <- PhilippinesDF %>% group_by(Mission_Month) %>% summarise(Missions = n())
ggplot(PbombingTimeline, aes(x = Mission_Month, y = Missions)) +
geom_bar(stat = "identity", position = "dodge", fill = "red") +
#geom_text(aes(label=Missions), vjust=-0.5, color="black", position = position_dodge(0.9), size=3.5) +
scale_fill_brewer(palette="Paired") +
theme(axis.text.x=element_text(angle = 90, vjust = 0.5)) +
theme(plot.title = element_text(hjust = 0.5)) +
ggtitle("Timeline of WW II Aerial Bombings - Philippines") +
labs(x = "Year-Months")
Analysis: In this analysis, we wanted to focus exclusively in the Philippines. The Philippines has a greater number of bombing missions than that of Japan, an Axis country. We wanted to find out why. The best way to analyze this was to divide the total bombing missions by mission month. By using dplyr to sort the Philippine data by mission month, we could plot the results on a bar chart and see how and why the Philippines was the recipient of more bombing missions than Japan. We see in the timeline, the number of bombing missions starts to increase substantially starting on October 1944 and peaks for three consecutive months (March to May 1945). By looking at a list of battles in the Philippines during that time period, the uptick in bombing missions coincided with the preparations for the invasion of the Philippines by the United States. The Philippines was a territory of the United States and it was occupied by Japan at the beginning of the war. Wikipedia lists 15 battles in the Philippines from October 1944 and May 1945. During this time period, the United States successfully invaded and occupied the Philippines. Based on this observation, it could be concluded that Allied bombing precede or support a battle or raid. We will analyze this more when we show a map of bombings on specific dates.
ETOclean<-tableWW2ETO[(tableWW2ETO$msndate == "1944-12-24" | tableWW2ETO$msndate == "1945-03-24" | tableWW2ETO$msndate == "1945-03-22" | tableWW2ETO$msndate == "1944-06-06"),]
ETOclean<-ETOclean[complete.cases(ETOclean),]
wm<-map_data("world")
sites<-data.frame(lat=ETOclean$latitude,long=ETOclean$longitude, stringsAsFactors = FALSE)
EuropeM<-ggplot() + geom_polygon(data = wm, aes(x=long, y = lat, group = group), fill = NA, color = "black") + coord_fixed(1.3)
EuropeM<-EuropeM+xlim(-7,30)+ylim(40,55)
BombDate1224<-subset(ETOclean,str_detect(ETOclean$msndate,"1944-12-24"))
BombDate0324<-subset(ETOclean,str_detect(ETOclean$msndate,"1945-03-24"))
BombDate0322<-subset(ETOclean,str_detect(ETOclean$msndate,"1945-03-22"))
BombDate0606<-subset(ETOclean,str_detect(ETOclean$msndate,"1944-06-06"))
EuropeM+geom_point(data=BombDate1224,aes(longitude,latitude),color="red",size=4)+
geom_point(data=BombDate0324,aes(longitude,latitude),color="blue",size=4)+
geom_point(data=BombDate0322,aes(longitude,latitude),color="orange",size=4)+
geom_point(data=BombDate0606,aes(longitude,latitude),color="purple",size=4)
Analysis: On our initial summary of the WW2 bombing data, there were some interesting points in the data. It was found that during specific dates in the ETO: 6/6/1944, 12/24/1944, 3/22/1945, and 3/24/1945, there were greater than 500 bombing missions occurring on each of those dates. We wanted to find out why and where the bombings occuring during those dates. By subsetting the data to only include those dates, we wanted to include them in a map and find out their locations. We colored each date with a specific color and found some interesting results:
PTOclean<-tableWW2PTO[(tableWW2PTO$msndate == "1945-06-21" | tableWW2PTO$msndate == "1945-05-13" | tableWW2PTO$msndate == "1945-06-04" | tableWW2PTO$msndate == "1945-03-13" | tableWW2PTO$msndate == "1945-02-14" | tableWW2PTO$msndate == "1945-04-25"),]
PTOclean<-PTOclean[complete.cases(PTOclean),]
wm2<-map_data("world")
sites<-data.frame(lat=PTOclean$latitude,long=PTOclean$longitude, stringsAsFactors = FALSE)
PacificM<-ggplot() + geom_polygon(data = wm2, aes(x=long, y = lat, group = group), fill = NA, color = "black") + coord_fixed(1.3)
PacificM<-PacificM+xlim(105,150)+ylim(-10,40)
BombDate0621<-subset(PTOclean,str_detect(PTOclean$msndate,"1945-06-21"))
BombDate0513<-subset(PTOclean,str_detect(PTOclean$msndate,"1945-05-13"))
BombDate0604<-subset(PTOclean,str_detect(PTOclean$msndate,"1945-06-04"))
BombDate0313<-subset(PTOclean,str_detect(PTOclean$msndate,"1945-03-13"))
BombDate0214<-subset(PTOclean,str_detect(PTOclean$msndate,"1945-02-14"))
BombDate0425<-subset(PTOclean,str_detect(PTOclean$msndate,"1945-04-25"))
PacificM+geom_point(data=BombDate0621,aes(longitude,latitude),color="red",size=4)+
geom_point(data=BombDate0513,aes(longitude,latitude),color="blue",size=4)+
geom_point(data=BombDate0604,aes(longitude,latitude),color="orange",size=4)+
geom_point(data=BombDate0313,aes(longitude,latitude),color="purple",size=4)+
geom_point(data=BombDate0214,aes(longitude,latitude),color="yellow",size=4)+
geom_point(data=BombDate0425,aes(longitude,latitude),color="green",size=4)
Analysis: On our initial summary of the WW2 bombing data, there were some interesting points in the data. It was found that during specific dates in the PTO: 2/14/1945, 3/13/1945, 4/25/1945, 5/13/1945, 6/4/1945, and 6/21/1945, there were greater than 111 bombing missions occurring on each of those dates. We wanted to find out why and where the bombings occuring during those dates. By subsetting the data to only include those dates, we wanted to include them in a map and find out their locations. We colored each date with a specific color and found some interesting results.
Related questions to initial questions indicated above, some map-specific questions were found to be intriguing:
1.) What sorts of places were bombed in the European Theater?
2.) What was bombing like in the Pacific Theater?
3.) How can we look at the locations of the heaviest bombings in the Pacific?
4.) How can we see the progression of bombing advancement and targeting?
We have countries and coordinates, but no real way of seeing what was happening. If we map the locations, we can see the story of the bombings unfold.
First, what sorts of targets were bombed in Europe? The most numerous types of targets were airfields and related facilities, cities, oil production and storage, and railroad facilities. We can take a look at some of the most heavily bombed cities in the war and the targets around them.
EuropeCities<-data.frame("LONGITUDE"=c(2.4,4.9,10,13.7),"LATITUDE"=c(48.9,52.3,53.5,51),"CITY"=c("Paris","Amsterdam","Hamburg","Dresden"))
ETOsites<-tableWW2ETO[,9:12]
ETOclean<-ETOsites[complete.cases(ETOsites),]
Targets<-ETOsites$TGT_TYPE
wm<-map_data("world")
sites<-data.frame(lat=ETOclean$latitude,long=ETOclean$longitude, stringsAsFactors = FALSE)
EuropeM<-ggplot() + geom_polygon(data = wm, aes(x=long, y = lat, group = group), fill = NA, color = "black") + coord_fixed(1.3)
EuropeM<-EuropeM+xlim(-5,17)+ylim(42,57)
Airfield<-subset(ETOclean,str_detect(ETOclean$tgt_type,"AIR"))
Airfield$tgt_type <- "Airfields/Hangers"
City<-subset(ETOclean,str_detect(ETOclean$tgt_type,"CITY"))
City$tgt_type<-"Cities"
oil<-subset(ETOclean,str_detect(ETOclean$tgt_type,"OIL"))
oil$tgt_type<-"Oil Production and Storage"
Railyard<-subset(ETOclean,ETOclean$tgt_type=="MARSHALLING YARD")
Railyard$tgt_type<-"Railroad Facilities"
EuropeTargets<-rbind(rbind(rbind(City,Airfield),oil),Railyard)
EuropeM+geom_point(data=EuropeTargets,aes(x=longitude,y=latitude,color=tgt_type))+labs(color="Target Type")+theme_bw()+geom_label_repel(data = EuropeCities, aes(LONGITUDE, LATITUDE, label = CITY), size = 3,nudge_y = 4)
Analysis: By looking at this map, we can see the major cities occupied were bombed heavily, additionally, airbases that could hit Britain were targeted. Dresden and Hamburg were both hit heavily with firebombing, although strategically around them, the only targets were oil production facilities.
In the Pacific, as the other two showed, the most heavily bombed country was the Philippines, not Japan. What becomes interesting is not the types of targets, but when they occured and how many bombs were dropped.
First, we can get an overview of the bombing in the Pacific.As you can see, bombings occurred all over the Pacific theater.
PacificM<-ggplot() + geom_polygon(data = wm, aes(x=long, y = lat, group = group), fill = NA, color = "black") + coord_fixed(1.3)
PacificM<-PacificM+xlim(74,175)+ylim(-15,50)
PTOSites<-tableWW2PTO[,c(3,8,9,10,11,12,14,22:33,43)]
philtargets <- subset(tableWW2PTO, tgt_country == "Philippine Islands")
PacificM+geom_point(data=PTOSites,aes(longitude,latitude),color="red",size=.5)+theme_bw()
The outlines of the Philippines are essentially completely covered by the bombing locations. Zooming in on the Philippines, we can now check the most heavily bombed targets. The larger the circles, the bombings are more frequent. The smaller the circles, the bombings are less frequent. As you can observe, the city Manily received special attention during the bombing campaign.
library(lubridate)
library(plyr)
Philcity<-data.frame("longitude"=c(121),"latitude"=c(14.6),"city"=c("Manilla"))
philtargetsfreq<-ddply(philtargets,.(longitude,latitude),nrow)#this is creating a data.frame with three columns, longituded, latitude and v1, which is the number of times each set of values appeared. This is in plyr, but not dplyr, the command for it is different there.
philtargetsfinal<-merge(philtargets,philtargetsfreq) #attaching the number of occurences to the target list
PHnumdate<-as.numeric(mdy(philtargetsfinal[,5])) #turning the date into a number that can be used
PHnumdatepos<-PHnumdate+21184
PHYear<-floor(PHnumdatepos/365)
PHYearReal<-PHYear+1912
philtargetsfinal2<-cbind(philtargetsfinal,PHYearReal)
ggplot()+geom_point(data=philtargetsfinal2,aes(longitude,latitude),color="red",size=log(philtargetsfinal2$V1,4))+geom_polygon(data = wm, aes(x=long, y = lat, group = group), fill = NA, color = "black") +coord_fixed(1.3)+xlim(114,128)+ylim(2,21)+geom_label_repel(data = Philcity, aes(longitude, latitude, label = city), size = 3,nudge_x = -4)+theme_bw()
This shows us that the area around Manila was incredibly heavily bombed, but does not tell us when.
We can finally look at the progression of American bombing during the war. As you can see from the maps below, bombings start to proliferate in the years 1944 and 1945.
#PhilippinesMap+geom_point(data=philtargetsfinal2,aes(longitude,latitude),size=.5,color="red")+theme_bw()+facet_wrap(~PHYearReal)
PhilippinesMap+geom_point(data=philtargetsfinal2,aes(longitude,latitude),size=.5,color="red")+theme_bw()+facet_wrap(~Mission_Year)
[BOM] Bombing of Tokyo and Other Cities. Retrieved from website: https://ww2db.com/battle_spec.php?battle_id=217
[FRE] French Indochina in World War II. Retried from website: https://en.wikipedia.org/wiki/French_Indochina_in_World_War_II
[LIS] List of Air Operations during the Battle of Europe. Retrieved from website: https://en.wikipedia.org/wiki/List_of_air_operations_during_the_Battle_of_Europe
[MIL] Military History of the Philippines during World War II. Retrieved from website: https://en.wikipedia.org/wiki/Military_history_of_the_Philippines_during_World_War_II
[NET] Netherlands in World War II. Retrieved from website: https://en.wikipedia.org/wiki/Netherlands_in_World_War_II#Liberation