library(knitr)
opts_chunk$set(echo = T, message = F, warning = F,
error = F, cache = F, tidy = F)
library(tidyverse)
library(feather)
library(langcog)
library(modelr)
library(broom)
library(corrplot)
theme_set(theme_classic(base_size = 10))
MODEL: “perc_diff ~ know_word_at_t1 + age_t1 + age_diff +perc_t1”
word_coeffs_min5_t2 <- read_csv("data/word_coeffs_cdi_24_30.csv") %>%
filter(n_know > 2)
ggplot(word_coeffs_min5_t2, aes(t)) +
geom_histogram() +
ggtitle("t-distribution ") +
geom_vline(aes(xintercept = 2), color = "red") +
geom_vline(aes(xintercept = -2), color = "red") +
theme_classic()
word_coeffs_min5_t2 %>%
arrange(-t) %>%
DT::datatable()
freq <- read_csv("/Users/mollylewis/Documents/research/Projects/1_in_progress/VOCAB_SEEDS/analyses/3_kid_vocabs/data/childes_adult_word_freq.csv") %>%
select(-n)
density_norms <- read_csv("/Users/mollylewis/Documents/research/Projects/1_in_progress/VOCAB_SEEDS/analyses/3_kid_vocabs/data/bills_density_norms.csv")
aoa_norms <- read_csv("/Users/mollylewis/Documents/research/Projects/1_in_progress/next_kids/stimuli_selection/AoA_ratings_Kuperman_et_al_BRM.csv") %>%
select(Word, Rating.Mean) %>%
rename(word = Word,
adult_aoa_estimate = Rating.Mean)
embedding_dist <- read_csv("/Users/mollylewis/Documents/research/Projects/1_in_progress/VOCAB_SEEDS/analyses/6_by_word_analyses/data/wiki_embedding_dist_by_word.csv") %>%
rename(mean_dist = mean_dist_wiki)
concreteness <- read_csv("/Users/mollylewis/Documents/research/Projects/2_published/ref_complex/corpus/brysbaert_database/brysbaert_corpus.csv") %>%
rename(word = Word) %>%
select(word, Conc.M)
concepts <- read_tsv("/Users/mollylewis/Documents/research/Projects/1_in_progress/VOCAB_SEEDS/analyses/3_kid_vocabs/data/CONCS_brm.txt") %>%
select(Concept, Familiarity, Length_Syllables, Bigram, 14:33) %>%
mutate(Concept = tolower(Concept),
Concept = map_chr(Concept, ~ pluck(str_split(., "_"),1,1))) %>%
rename(word = Concept) %>%
select(word, Mean_Distinct_No_Tax)
pos <- read_tsv("/Users/mollylewis/Documents/research/Projects/1_in_progress/VOCAB_SEEDS/analyses/3_kid_vocabs/data/SUBTLEX-US\ frequency\ list\ with\ PoS\ information\ text\ version.txt") %>%
select(Word, Dom_PoS_SUBTLEX) %>%
rename(word = Word,
pos = Dom_PoS_SUBTLEX) %>%
mutate(pos = ifelse(pos == "Verb", "v", "o"))
glasgow <- read_csv("/Users/mollylewis/Documents/research/Projects/1_in_progress/IATLANG/data/study1a/raw/GlasgowNorms.csv") %>%
select(word, contains("_M")) %>%
select(-AOA_M, -CNC_M)
ar_va <- read_csv("/Users/mollylewis/Documents/research/Projects/1_in_progress/VOCAB_SEEDS/analyses/6_by_word_analyses/data/Ratings_Warriner_et_al.csv") %>%
select(Word, V.Mean.Sum, A.Mean.Sum, D.Mean.Sum) %>%
rename(word = Word)
complexity <- read_csv("/Users/mollylewis/Documents/research/Projects/2_published/ref_complex/corpus/MRC_database/complexity_norms.csv") %>%
select(word, complexity)
word_coeffs_min5_t2_with_vars <- word_coeffs_min5_t2 %>%
mutate(word = tolower(word)) %>%
left_join(density_norms) %>%
left_join(freq) %>%
left_join(embedding_dist) %>%
left_join(concepts) %>%
left_join(concreteness) %>%
left_join(aoa_norms) %>%
left_join(pos) %>%
left_join(ar_va) %>%
left_join(glasgow) %>%
left_join(complexity) %>%
mutate(word_length = nchar(word)) %>%
filter(n_know >= 5)
df_corrs <- word_coeffs_min5_t2_with_vars %>%
select(-word, -Estimate, -SE, -pos)
#filter_all(all_vars(!is.na(.)))
corr_mat <- cor(df_corrs,
use = "pairwise.complete.obs")
p.mat <- corrplot::cor.mtest(df_corrs,
conf.level = .95,
use = "pairwise.complete.obs")$p
cols <- rev(colorRampPalette(c("red", "white", "blue"))(100))
corrplot::corrplot(corr_mat, method = "color", col = cols,
type = "full", order = "hclust", number.cex = .7,
addCoef.col = "black", insig = "blank",
p.mat = p.mat, sig.level = .05,
tl.col = "black", tl.srt = 90,
diag = FALSE)
lm(t ~ adult_aoa_estimate + pos + V.Mean.Sum + log_freq, word_coeffs_min5_t2_with_vars) %>%
summary()
##
## Call:
## lm(formula = t ~ adult_aoa_estimate + pos + V.Mean.Sum + log_freq,
## data = word_coeffs_min5_t2_with_vars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.3232 -0.6643 -0.0082 0.6443 3.5011
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.22012 0.47769 0.461 0.6451
## adult_aoa_estimate -0.13154 0.05332 -2.467 0.0140 *
## posv -0.02658 0.11919 -0.223 0.8236
## V.Mean.Sum 0.09312 0.04150 2.244 0.0253 *
## log_freq 0.03772 0.03748 1.006 0.3148
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9598 on 465 degrees of freedom
## (209 observations deleted due to missingness)
## Multiple R-squared: 0.04044, Adjusted R-squared: 0.03219
## F-statistic: 4.9 on 4 and 465 DF, p-value: 0.0007056