setwd("~/Dropbox/Fernando 2018/archives/data")
library("lme4", lib.loc="/Library/Frameworks/R.framework/Versions/3.5/Resources/library")
## Loading required package: Matrix
enemy<- read.table("invas_fam_out_2.csv", sep = ",", header = T)
attach(enemy)
damage<-as.factor(damage)
fam<-as.factor(fam)
##Modelo sin interacciónes
fit1<-glmer(seeds.2~damage*origen+(1|pop), family = "poisson")
summary(fit1)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: poisson  ( log )
## Formula: seeds.2 ~ damage * origen + (1 | pop)
## 
##      AIC      BIC   logLik deviance df.resid 
##   5903.4   5923.0  -2946.7   5893.4      371 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.9370 -1.4710  0.1727  1.6322 15.7326 
## 
## Random effects:
##  Groups Name        Variance  Std.Dev. 
##  pop    (Intercept) 2.629e-18 1.621e-09
## Number of obs: 376, groups:  pop, 4
## 
## Fixed effects:
##                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)        3.78316    0.01857 203.764  < 2e-16 ***
## damage1           -0.15408    0.02819  -5.466  4.6e-08 ***
## origenMEX          0.27190    0.02206  12.324  < 2e-16 ***
## damage1:origenMEX  0.08254    0.03288   2.510   0.0121 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) damag1 orgMEX
## damage1     -0.659              
## origenMEX   -0.841  0.554       
## dmg1:rgnMEX  0.565 -0.857 -0.671
anova(fit1)
## Analysis of Variance Table
##               Df Sum Sq Mean Sq  F value
## damage         1   29.2    29.2  29.1971
## origen         1  357.0   357.0 356.9980
## damage:origen  1    6.3     6.3   6.3019
##Probando efectos aleatorios
modsinpop<-glm(seeds.2~damage*origen, family="poisson")
anova(fit1, modsinpop)
## Data: NULL
## Models:
## modsinpop: seeds.2 ~ damage * origen
## fit1: seeds.2 ~ damage * origen + (1 | pop)
##           Df    AIC    BIC  logLik deviance Chisq Chi Df Pr(>Chisq)
## modsinpop  4 5901.4 5917.1 -2946.7   5893.4                        
## fit1       5 5903.4 5923.0 -2946.7   5893.4     0      1          1
#Finalmente el diagnostico de residuales del modelo...
plot(residuals(fit1)~predict(fit1,type="link"), xlab=expression(hat(eta)), ylab="Deviance residuals")

#...y los intervalos de confianza para las familias y poblaciones
library(lattice)
ranef(fit1)
## $pop
##               (Intercept)
## morelos      4.763355e-17
## teotihuacan -4.763355e-17
## valdeflores -4.195194e-17
## zubia        4.195194e-17
dput(cl<-ranef(fit1,condVar=T))
## structure(list(pop = structure(list(`(Intercept)` = c(4.76335527703966e-17, 
## -4.76335529799826e-17, -4.19519437746935e-17, 4.19519410692534e-17
## )), class = "data.frame", row.names = c("morelos", "teotihuacan", 
## "valdeflores", "zubia"), postVar = structure(c(2.62921254120833e-18, 
## 2.62921254120832e-18, 2.62921254120835e-18, 2.62921254120836e-18
## ), .Dim = c(1L, 1L, 4L)))), class = "ranef.mer")
dotplot(cl)
## $pop