Exercise on ANOVA Table Generation for Simple and Stratified Random Sampling

Tasks :

(Item 1)

Delete all observations with missing values for the variable ACRES92.

(Item 2)

Construct separate datasets according to the 4 REGIONS.

(Item 3)

Obtain 10 different SRS of size 300 from dataset 1 using
set.seed (last 5 digits of your std no)
set.seed (last 5 digits of your std no + 1)
set.seed (last 5 digits of your std no + 2)
set.seed (last 5 digits of your std no + 3)
set.seed (last 5 digits of your std no + 4)
set.seed (last 5 digits of your std no + 5)
set.seed (last 5 digits of your std no + 6)
set.seed (last 5 digits of your std no + 7)
set.seed (last 5 digits of your std no + 8)
set.seed (last 5 digits of your std no + 9)
and compute (and reflect in your paper) the sample variances.

(Item 4)

Construct the population ANOVA table from the stratification obtained in 2.

(Item 5)

Using
set.seed (last 5 digits of your std no + 10) obtain a sample of size 21 from the Northeast stratum.
set.seed (last 5 digits of your std no + 11) obtain a sample of size 103 from the NorthCentral stratum.
set.seed (last 5 digits of your std no + 12) obtain a sample of size 135 from the South stratum.
set.seed (last 5 digits of your std no + 13) obtain a sample of size 41 from the West stratum.

(Item 6A)

Construct the sample ANOVA table
using ybar_SRS for ybar_U (Use 3.a as reference : SRS sample using random seed = 89176).

(Item 6B)

Construct the sample ANOVA table
using ybar_STR for ybar_U.
##############################################
############  STAT 250 Exercise  #############
############   17-Oct-2018       #############
############ John Pauline Pineda #############
##############################################

# Set working directory
setwd("F:/SamplingDesign")

Item 1

##############################################
############       ITEM 1        #############
##############################################
# Delete all observations with missing values 
# for the variable ACRES92.
##############################################

# Load the working data
agpop <- read.csv("agpop.dat")

# Initial exploratory analysis

# Check the data dimensions
# 3078 rows and 15 columns
dim(agpop) 
## [1] 3078   15
# Generate the data summary
summary(agpop)
##                COUNTY         STATE         ACRES92       
##  WASHINGTON COUNTY:  30   TX     : 254   Min.   :    -99  
##  JEFFERSON COUNTY :  25   GA     : 159   1st Qu.:  80903  
##  FRANKLIN COUNTY  :  24   KY     : 120   Median : 191648  
##  JACKSON COUNTY   :  23   MO     : 114   Mean   : 306677  
##  LINCOLN COUNTY   :  23   KS     : 105   3rd Qu.: 366886  
##  MADISON COUNTY   :  19   IL     : 102   Max.   :7229585  
##  (Other)          :2934   (Other):2224                    
##     ACRES87           ACRES82           FARMS92          FARMS87      
##  Min.   :    -99   Min.   :    -99   Min.   :   0.0   Min.   :   0.0  
##  1st Qu.:  86236   1st Qu.:  96397   1st Qu.: 295.0   1st Qu.: 318.5  
##  Median : 199864   Median : 207292   Median : 521.0   Median : 572.0  
##  Mean   : 313016   Mean   : 320194   Mean   : 625.5   Mean   : 678.3  
##  3rd Qu.: 372224   3rd Qu.: 377065   3rd Qu.: 838.0   3rd Qu.: 921.0  
##  Max.   :7687460   Max.   :7313958   Max.   :7021.0   Max.   :7590.0  
##                                                                       
##     FARMS82          LARGEF92         LARGEF87         LARGEF82     
##  Min.   :   0.0   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.: 345.0   1st Qu.:  8.00   1st Qu.:  8.00   1st Qu.:  8.00  
##  Median : 616.0   Median : 30.00   Median : 27.00   Median : 25.00  
##  Mean   : 728.1   Mean   : 56.18   Mean   : 54.86   Mean   : 52.62  
##  3rd Qu.: 991.0   3rd Qu.: 75.00   3rd Qu.: 70.00   3rd Qu.: 65.00  
##  Max.   :7394.0   Max.   :579.00   Max.   :596.00   Max.   :546.00  
##                                                                     
##     SMALLF92          SMALLF87          SMALLF82       REGION   
##  Min.   :   0.00   Min.   :   0.00   Min.   :   0.00   NC:1054  
##  1st Qu.:  13.00   1st Qu.:  17.00   1st Qu.:  16.00   NE: 220  
##  Median :  29.00   Median :  35.00   Median :  34.00   S :1382  
##  Mean   :  54.09   Mean   :  59.54   Mean   :  60.97   W : 422  
##  3rd Qu.:  59.00   3rd Qu.:  67.00   3rd Qu.:  67.00            
##  Max.   :4298.00   Max.   :3654.00   Max.   :3522.00            
## 
# Count the number of rows with missing values for the ACRES92 column
# 19 rows with missing values
nrow(agpop[agpop$ACRES92==-99,])
## [1] 19
# Count the number of rows with missing values for the REGION column
# 0 row with missing values
nrow(agpop[agpop$REGION==-99,])
## [1] 0
# Remove missing values and only keep the needed columns
agpop_complete <- agpop[agpop$ACRES92!=-99,c("ACRES92","REGION")]

# Check the data dimensions
# 3059 rows and 2 columns
dim(agpop_complete) 
## [1] 3059    2
# Generate the data summary
summary(agpop_complete)
##     ACRES92        REGION   
##  Min.   :      0   NC:1052  
##  1st Qu.:  82446   NE: 213  
##  Median : 193688   S :1376  
##  Mean   : 308582   W : 418  
##  3rd Qu.: 368482            
##  Max.   :7229585
# Specify the population size
(N <- nrow(agpop_complete))
## [1] 3059
# Specify the population mean for reference
# Population mean = 308582.4
(agpop_mean <- mean(agpop_complete$ACRES92))
## [1] 308582.4
# Specify the population variance for reference
# Population variance = 1.80891e+11
(agpop_variance <- var(agpop_complete$ACRES92))
## [1] 1.80891e+11
# Specify the population standard deviation for reference
# Population standard deviation = 425312.8
(agpop_sd <- sd(agpop_complete$ACRES92))
## [1] 425312.8

Item 2

##############################################
############       ITEM 2        #############
##############################################
# Create four(4) additional dataframes  
# for each of the regions
##############################################

# Specify the number of strata
(H <- nlevels(agpop_complete$REGION))
## [1] 4
# Create data objects for the regions / strata
NCregion <- agpop_complete[agpop_complete$REGION=="NC",]
NEregion <- agpop_complete[agpop_complete$REGION=="NE",]
Sregion <- agpop_complete[agpop_complete$REGION=="S",]
Wregion <- agpop_complete[agpop_complete$REGION=="W",]

# Specify the population size per stratum
# North Central region stratum population size = 1052
(N.NCregion <- nrow(NCregion))
## [1] 1052
# North East region stratum population size = 213
(N.NEregion <- nrow(NEregion))
## [1] 213
# South region stratum population size = 1376
(N.Sregion <- nrow(Sregion))
## [1] 1376
# West region stratum population size = 418
(N.Wregion <- nrow(Wregion))
## [1] 418

Item 3

##############################################
############       ITEM 3        #############
##############################################
# Obtain 10 different SRS of size 300
# from dataset 1  
##############################################

# Set the seed numbers
(seedSRS0 <- 89176)
## [1] 89176
(seedSRS1 <- seedSRS0+1)
## [1] 89177
(seedSRS2 <- seedSRS0+2)
## [1] 89178
(seedSRS3 <- seedSRS0+3)
## [1] 89179
(seedSRS4 <- seedSRS0+4)
## [1] 89180
(seedSRS5 <- seedSRS0+5)
## [1] 89181
(seedSRS6 <- seedSRS0+6)
## [1] 89182
(seedSRS7 <- seedSRS0+7)
## [1] 89183
(seedSRS8 <- seedSRS0+8)
## [1] 89184
(seedSRS9 <- seedSRS0+9)
## [1] 89185
# Specify the sample size
(n <- 300)
## [1] 300
# Generate the sample indices for SRS0
set.seed(seedSRS0)
(sampleindices0 <- sample(N,n))
##   [1]  602  164 2038 1444  733 1545 2387  234 1927  524 2181 1232 2116  704
##  [15] 2867 2191 2641 2343  813  966  616 2089   79 1163 2496 1355 1491  332
##  [29] 2355 2878 2722 1586  621 2669 2281  781 3019   71 1652 2731  467 1379
##  [43]  162 2674 1542 2876  922 1696 1577  519  545 1767   97   99  881 2534
##  [57] 1911  723 3012  333  130 2160 2610  551  247 2499  300 1570  271 2551
##  [71] 1020 1899  349 2630 2656  397 1691 2941 2944 1568 2977 2035  122 1429
##  [85] 1936  959 1114 2486  639 2834    7  179  537 1450 1666  558 1920 1001
##  [99] 2391 1364  268 1057 2672 2718 1113 1251  903 1439 1747 1757 2426 1155
## [113]  823 2798 1019  955   20  336 2440  963 1779 1912 1727 2012 1123  987
## [127]   26  543 1555 2677   57 1842 1917 2190  740 1126  880 1050 2456 2058
## [141] 2872 2412  874 2637  207 1880  106  665   35 2015 2694 1380 1229 2255
## [155]  330 1235  400 2590 2483  576 2250  296 2479 1817  205 2598 1797 2760
## [169] 1306 1070 1520 2654 1075 1605 1308 1623 2799  982  844 2510 1826  789
## [183] 2589  972  780 2042 2787 2506 1081  933 1975  131 1601 2334 2472 1693
## [197]   17 1165 2434 1454 2045 1658   47 1323 2901 2248  315 2103 2724  456
## [211] 3003 2345 1396 1565  735  371 2532  399 1723  884 2962 1383 2608 2491
## [225] 1182 2233 1665 1844 1151 1871 1241  573 1749 1643 2143 2858 1525 1538
## [239] 1793 1583 1497  301 2331 1201 2697 2671 2926 1858  581  756 1869 2306
## [253] 1290  930   72 2619  859  842 2582 1282  775 2392 1141 2273  250   40
## [267] 3031 1857 1271 2080  896  226 2765 2475 1461 1524  598  405  692  892
## [281] 2454  915  701 1481 2554 2292 2948 2840  368 1970   74 1868 2327  999
## [295] 2435 2832 1125 2782 2658  925
# Generate the actual samples for SRS0
(agpop_sampled0 <- agpop_complete[sampleindices0,])
##      ACRES92 REGION
## 606   233217     NC
## 164     4768      W
## 2049  245049     NC
## 1450  250475     NC
## 737   184599     NC
## 1551   96540      S
## 2400   41899      S
## 234   156801      W
## 1933 1797466      W
## 528   238609     NC
## 2192 1457339      W
## 1238   47308     NC
## 2127  419760      S
## 708   217191     NC
## 2884   93364     NE
## 2202 1318447      W
## 2656  678590      S
## 2356  974811     NC
## 817   223328     NC
## 970   111913      S
## 620   357684     NC
## 2100  187175     NC
## 79     18818      S
## 1169  126981      S
## 2509  408710      S
## 1361  286337     NC
## 1497   42712      S
## 335   299699      S
## 2368 1361106     NC
## 2895   82967      W
## 2737  307783      S
## 1592  868064      W
## 625   221209      W
## 2684   98449      S
## 2294   44800      S
## 785   202429     NC
## 3038  115487      S
## 71    141260      S
## 1658  180400      S
## 2746  563183      S
## 471    18644      S
## 1385  255498     NC
## 162   229365      W
## 2689 1555905      S
## 1548  118651      S
## 2893  112085      W
## 926   427403     NC
## 1702   51916      S
## 1583 2232575      W
## 523   214452      W
## 549   312173     NC
## 1773  591185     NC
## 97    223889      S
## 99     37606      S
## 885   403375     NC
## 2547 2001152      S
## 1917 1881764      W
## 727   299709     NC
## 3031   54622      S
## 336   296242      S
## 130   156363      S
## 2171  421233      S
## 2624  354917      S
## 555   343870     NC
## 248   641755      W
## 2512  547829      S
## 302   227202      S
## 1576 1424228      W
## 272   546538      W
## 2564  426189      S
## 1024   23062      S
## 1905 3112271      W
## 352   151242      S
## 2645  346653      S
## 2671  536300      S
## 401   109923      S
## 1697   68736      S
## 2958   92761     NC
## 2961  356651     NC
## 1574  598694      W
## 2996  114184     NC
## 2046  275644     NC
## 122    69422      S
## 1435  111549     NC
## 1942  738041      W
## 963   443802     NC
## 1118   36059      S
## 2499  612718      S
## 643   353528      W
## 2851   71803      S
## 7     167832      S
## 179   164130      W
## 541   308497     NC
## 1456  188595     NC
## 1672   56693      S
## 562   317205     NC
## 1926  770155      W
## 1005   41352      S
## 2404   96181      S
## 1370  420778     NC
## 269    32072      W
## 1061   35712      S
## 2687  362642      S
## 2733  328367      S
## 1117   58730      S
## 1257  121153     NC
## 907   141386     NC
## 1445  368849     NC
## 1753 1128346     NC
## 1763  503575     NC
## 2439  191486      S
## 1159   31583     NE
## 827    32318     NC
## 2815  136320      S
## 1023   98545      S
## 959   484093     NC
## 20     47200      S
## 339    44962      S
## 2453  123557      S
## 967   177858      S
## 1785  649612     NC
## 1918      10      W
## 1733  877382     NC
## 2023  138297     NC
## 1127   97643      S
## 991   144904      S
## 26    111315      S
## 547   368114     NC
## 1561  108236      S
## 2692  391842      S
## 57    155914      S
## 1848  297326     NC
## 1923 1769177      W
## 2201  380464      W
## 744    82426     NC
## 1130    6166      S
## 884   222028     NC
## 1054  105068      S
## 2469   31368      S
## 2069  200405     NC
## 2889   89785     NE
## 2425  135469      S
## 878   486997     NC
## 2652   49579      S
## 207   388084      W
## 1886   11644     NE
## 106   367969      S
## 669    69354     NC
## 35    130063      S
## 2026  179280     NC
## 2709  536507      S
## 1386  232189     NC
## 1235  438914     NC
## 2268   90065     NE
## 333    11738      S
## 1241  210638     NC
## 404   168593      S
## 2604  490578      S
## 2496  962576      S
## 580   266083     NC
## 2262   41347     NE
## 298    36230      S
## 2492  123792      S
## 1823 1387740     NC
## 205   342653      W
## 2612  656961      S
## 1803  265048     NC
## 2775  167374      W
## 1312  269147     NC
## 1074   93887      S
## 1526   62833      S
## 2669  525885      S
## 1079  196701      S
## 1611 1197028      W
## 1314  272049     NC
## 1629   70697      S
## 2816   37044      S
## 986    78966      S
## 848   257351     NC
## 2523  208073      S
## 1832  612694     NC
## 793   148662     NC
## 2603  470096      S
## 976    27836      S
## 784    86236     NC
## 2053  219023     NC
## 2804   85954      S
## 2519  513533      S
## 1085   61145      S
## 937   432326     NC
## 1984  135494     NE
## 131   313232      S
## 1607 1629363      W
## 2347  392935     NC
## 2485   11292      S
## 1699  194015      S
## 17     67950      S
## 1171   80241      S
## 2447   91343      S
## 1460  228936     NC
## 2056  210601     NC
## 1664  156027      S
## 47    207226      S
## 1329  250507     NC
## 2918   92074      W
## 2260   20777     NE
## 318    69405      S
## 2114  300829      S
## 2739  260892      S
## 460    68729      S
## 3022   30015      S
## 2358  373787     NC
## 1402  252783     NC
## 1571 3002378      W
## 739   261482     NC
## 375   168861      S
## 2545  471498      S
## 403    19060      S
## 1729  818893     NC
## 888   442362     NC
## 2980  133197     NC
## 1389  252890     NC
## 2622  383573      S
## 2504  396508      S
## 1188   62242     NE
## 2245  125707     NE
## 1671   75496      S
## 1850  250086     NC
## 1155   25470     NE
## 1877   39844     NE
## 1247  193956     NC
## 577   321950     NC
## 1755 1233663     NC
## 1649  162634      S
## 2154  390957      S
## 2875   43332      S
## 1531  125713      S
## 1544   80342      S
## 1799 1425338     NC
## 1589  349938      W
## 1503   79962      S
## 303    70672      S
## 2344  688081     NC
## 1207   77493     NC
## 2712  926093      S
## 2686  617851      S
## 2943  130051     NC
## 1864  360203     NC
## 585   305685     NC
## 760   115517     NC
## 1875   46056     NE
## 2319   82634      S
## 1296  165961     NC
## 934   449151     NC
## 72     56680      S
## 2634  518028      S
## 863   378517     NC
## 846   181020     NC
## 2596  201952      S
## 1288   61832     NC
## 779   105658     NC
## 2405   91858      S
## 1145  116221      S
## 2286   12408     NE
## 251   878447      W
## 40    191810      S
## 3050   28622      S
## 1863  347598     NC
## 1277  181569     NC
## 2091   19088     NC
## 900   499112     NC
## 226   796892      W
## 2780   25810      S
## 2488  165309      S
## 1467  168586     NC
## 1530   98914      S
## 602   542855     NC
## 409     8151      S
## 696   431415     NC
## 896   517623     NC
## 2467   53026      S
## 919   588061     NC
## 705   662629     NC
## 1487  316617     NC
## 2568  412632      S
## 2305   62108      S
## 2965  529966     NC
## 2857  160973      S
## 372    17105      S
## 1979  195626     NE
## 74    151325      S
## 1874   33935     NE
## 2340  496799     NC
## 1003   86074      S
## 2448  182754      S
## 2849   48889      S
## 1129   57789      S
## 2798   17392      S
## 2673  593819      S
## 929   668420     NC
# Generate the sample indices for SRS1
set.seed(seedSRS1)
(sampleindices1 <- sample(N,n))
##   [1] 2315 2753  636 1670 1343 2730  162  719 1371 2306 1558 2627  593  152
##  [15] 1606 1001  948 2189 1891 1675 1956 1005 3028   60 2847 1344 1645 1395
##  [29] 2484 2471 1974 1817 2879 1407 2014 2518 1985 2715  452 2603 2786  389
##  [43]  742 2456 1945  557  251 1237 1994 1521 2013 1112 2105 2444  565  713
##  [57] 2257  464 1297 2181  457  718 1955  505 2988 1352  664 2701 3023 2217
##  [71] 2237  510 2610 2302 1776 2373 1057 1302 2462 1842 1853 1160 1892 2993
##  [85] 2741 2451 1794 2329 1369   83 1115  730  553 2164 2149 1052  145 2324
##  [99] 1211 2727  633 2298 1981 2071  371 1534  293  965 1659  392 2717  788
## [113]  602 1590  951 2961 1077 1348 3056 2258   48 1639 2433  933 2408 2686
## [127]  584 2748 1186 2726 1393  768  534  727 2137 1180 2668 1426  777 1029
## [141] 2106 2073  811  189 2117 1551 2782 2762  268 2058 2646  202 1397 2454
## [155] 2586 2523 1975  746 1845 1591  303  148 2141 1232  502 1666  759 1273
## [169] 2897 2309  815  257 2429 1142 2191 2514  239  577 2035  240 1392 1261
## [183] 1133 2076 2063 1082 1704  726  270 2067 2440  900 1102 2348 1954  943
## [197] 1710 1844 2725  529 2453  838  857  332 1840 2551 2621 1240 1484 1230
## [211] 1293 2609   80  983 2575  628 2535  117 2279  401  874  620 2213 1295
## [225]  256 2772 1310 2530 1231 1373 1453 1953  277 2892 2087 2254 1350 2251
## [239]  810 1672 1334    9  605  340 1626 1648 1630 2206   34 2387 1495 2745
## [253] 1345  298 1742 1677  494  920 1158  927  781 2386  487 1959 1125 2150
## [267] 2700 1265  497 1360  642 1284 1824 1644 1088  696 1570 1165 2130 2155
## [281] 2729 1908 2731 2669  629 1503 2318 2017 2127 3036   12 2816   27  439
## [295]  376 1880 2945 2795 2366 1512
# Generate the actual samples for SRS1
(agpop_sampled1 <- agpop_complete[sampleindices1,])
##      ACRES92 REGION
## 2328  110679      S
## 2768  447463      W
## 640   286711      W
## 1676  230402      S
## 1349  183208     NC
## 2745  344667      S
## 162   229365      W
## 723   249240     NC
## 1377  377059     NC
## 2319   82634      S
## 1564   72515      S
## 2642  588500      S
## 597   318778     NC
## 152  1846497      W
## 1612 1414415      W
## 1005   41352      S
## 952   620144     NC
## 2200   34292      W
## 1897    1838     NE
## 1681   21218      S
## 1964  138620     NE
## 1009  206090      S
## 3047   32093      S
## 60    179319      S
## 2864   52770      S
## 1350  491726     NC
## 1651   98531      S
## 1401  201670     NC
## 2497  103063      S
## 2484   55097      S
## 1983       0     NE
## 1823 1387740     NC
## 2896  304928      W
## 1413  226336     NC
## 2025  215796     NC
## 2531  269146      S
## 1996     831     NE
## 2730  213923      S
## 456     8003      S
## 2617  322324      S
## 2802   61669      S
## 393    13563      S
## 746   270598     NC
## 2469   31368      S
## 1953   57889     NE
## 561   366927     NC
## 252  1341738      W
## 1243   16076     NC
## 2005   56002     NE
## 1527   95736      S
## 2024  122480     NC
## 1116   27469      S
## 2116  157105      S
## 2457   50767      S
## 569   260781     NC
## 717   612112     NC
## 2270   87253     NE
## 468    45845      S
## 1303  374920     NC
## 2192 1457339      W
## 461   121588      S
## 722   344649     NC
## 1963  111974     NE
## 509    53895      S
## 3007   34919      S
## 1358  311849     NC
## 668   464834     NC
## 2716 1396275      S
## 3042  104194      S
## 2229  139918     NE
## 2249   85113     NE
## 514    48755      S
## 2624  354917      S
## 2315   52978      S
## 1782  407678     NC
## 2386  507101     NC
## 1061   35712      S
## 1308  414710     NC
## 2475   32714      S
## 1848  297326     NC
## 1859 1481503     NC
## 1166   43320      S
## 1898   98256     NE
## 3012  106325      S
## 2756  240535      W
## 2464   43202      S
## 1800  138022     NC
## 2342 1243168     NC
## 1375  227156     NC
## 83    313573      S
## 1119  246536      S
## 734   187039     NC
## 557   401625     NC
## 2175  216638      S
## 2160  207118      S
## 1056  191002      S
## 145   358904      S
## 2337  322432     NC
## 1217  186431     NC
## 2742  432887      S
## 637   391050      W
## 2311   70277      S
## 1990  112334     NE
## 2082  204079     NC
## 375   168861      S
## 1540   80761      S
## 295   191140      S
## 969    90033      S
## 1665  112291      S
## 396   198184      S
## 2732  455873      S
## 792   229097     NC
## 606   233217     NC
## 1596   50220      W
## 955   411785     NC
## 2979   94596     NC
## 1081  165391      S
## 1354  536299     NC
## 3075   62307      W
## 2271  219933     NE
## 48    199714      S
## 1645   23929      S
## 2446   94254      S
## 937   432326     NC
## 2421  144267      S
## 2701  764723      S
## 588   312858     NC
## 2763  234576      W
## 1192   50076     NE
## 2741  476493      S
## 1399  187239     NC
## 772   165091     NC
## 538   359755     NC
## 731    98838     NC
## 2148  236766      S
## 1186   91254      S
## 2683 1695484      S
## 1432  270576     NC
## 781   236073     NC
## 1033    3383      S
## 2117  264890      S
## 2084  160734     NC
## 815   267695     NC
## 189  1372778      W
## 2128  566152      S
## 1557  108314      S
## 2798   17392      S
## 2777  256522      W
## 269    32072      W
## 2069  200405     NC
## 2661  428243      S
## 202  1324403      W
## 1403  227783     NC
## 2467   53026      S
## 2600  545664      S
## 2536  680567      S
## 1984  135494     NE
## 750   141703     NC
## 1851  439475     NC
## 1597 1290134      W
## 305   301977      S
## 148  5785707      W
## 2152  230832      S
## 1238   47308     NC
## 506    32865      S
## 1672   56693      S
## 763   333238     NC
## 1279  444407     NC
## 2914   32637      W
## 2322  104862      S
## 819   219402     NC
## 258  1066453      W
## 2442  119419      S
## 1146   58790      S
## 2202 1318447      W
## 2527  622130      S
## 240  1105614      W
## 581   349252     NC
## 2046  275644     NC
## 241   857404      W
## 1398  207611     NC
## 1267  129083     NC
## 1137   81747      S
## 2087   95704     NC
## 2074  187718     NC
## 1086  123655      S
## 1710  104733      S
## 730   282222     NC
## 271   896994      W
## 2078   96060     NC
## 2453  123557      S
## 904   340035     NC
## 1106  176952      S
## 2361  276744     NC
## 1962  158392     NE
## 947   484415     NC
## 1716   67716      S
## 1850  250086     NC
## 2740  545670      S
## 533   236668     NC
## 2466  105519      S
## 842   217288     NC
## 861   162244     NC
## 335   299699      S
## 1846  532901     NC
## 2564  426189      S
## 2636  766037      S
## 1246   18047     NC
## 1490  112896      S
## 1236  193688     NC
## 1299  138594     NC
## 2623  386991      S
## 80    246184      S
## 987    60812      S
## 2589  560355      S
## 632   150021      W
## 2548  451584      S
## 117   142856      S
## 2292   87355      S
## 405     3046      S
## 878   486997     NC
## 624   232879      W
## 2224   76790     NE
## 1301  210897     NC
## 257  1660146      W
## 2788   81768      S
## 1316  131563     NC
## 2543  430377      S
## 1237  254793     NC
## 1379  311161     NC
## 1459  254493     NC
## 1961  188008     NE
## 279    38467      W
## 2909  689639      W
## 2098  139655     NC
## 2267    6197     NE
## 1356  131753     NC
## 2263   81479     NE
## 814   144305     NC
## 1678   37434      S
## 1340  457670     NC
## 9      48022      S
## 609   331211     NC
## 343   716542      S
## 1632  144529      S
## 1654   92192      S
## 1636   93584      S
## 2217   32526     NE
## 34     64755      S
## 2400   41899      S
## 1501  294547      S
## 2760  332686      W
## 1351  600114     NC
## 300    23735      S
## 1748  669049     NC
## 1683   93320      S
## 498   114487      S
## 924   323769     NC
## 1164  114805     NE
## 931   349293     NC
## 785   202429     NC
## 2399 1406379     NC
## 491    38313      S
## 1967  145679     NE
## 1129   57789      S
## 2161  282211      S
## 2715  509017      S
## 1271   14081     NC
## 501    32800      S
## 1366  171412     NC
## 646   197176      W
## 1290  224923     NC
## 1830  446007     NC
## 1650   88386      S
## 1092  136534      S
## 700   201567     NC
## 1576 1424228      W
## 1171   80241      S
## 2141  194253      S
## 2166  239971      S
## 2744  203667      S
## 1914 1289733      W
## 2746  563183      S
## 2684   98449      S
## 633   453647      W
## 1509   99726      S
## 2331   55992      S
## 2028  227382     NC
## 2138  477655      S
## 3055    5693      S
## 12     96427      S
## 2833  100602      S
## 27    196859      S
## 443    77532      S
## 380   113861      S
## 1886   11644     NE
## 2962  120383     NC
## 2812   73097      S
## 2379 2076199     NC
## 1518   89168      S
# Generate the sample indices for SRS2
set.seed(seedSRS2)
(sampleindices2 <- sample(N,n))
##   [1]  360  144 2951  378 2484 2362 1613  868   86 1330 2334  675 1143 1239
##  [15] 2006 2931 1817  180 2563 1542 2111  944  192  516  699 2432  160 1505
##  [29]  653 1396 1728 1651 1272 1098 1392  357  752 3014 2493 2634  817 2312
##  [43] 2877 2986 1639  541  951  526 2236 1811 2196 1115 2971  368 1990 2651
##  [57] 2515 2345 1852 2285 1661 1899 1298  127  972 2537 1280 2390 1222  297
##  [71] 1406 1108 2913 2959  442 1409  988 1453 2158  313 2831 2922 1876 2524
##  [85]  917 1681  320  183 2691  437  679  316  573  813 2379 2096 2110  473
##  [99] 1455  633  292  461 2137 1710  968 2837 1012 1375 2247 2130 2168 1436
## [113] 1309  128  122 1680  790  267 1714 1106 2808 1142 1399  864 2211  934
## [127] 1121 2564  155 1627 1585  204 1496 2133  939 1495  554  188 1741 3018
## [141] 2827 1834  816 1124 2257 1729 1510 2729  850  386  469 2769 2535 1318
## [155] 1847  710 1958 1849 1032 2789 1366 1532 1920 1865 1480 2612  676 1932
## [169] 2862 1099  941 2668 1398  980 1856  948 1322 2512 2791 2433  421 1670
## [183] 2471 2065 1386 2239 2185 1846 2890 1127 2626 2955 1772  588 2672    6
## [197] 1458 2732  409  953 2392 1610  749 2037 1624 2773 1164 2413  243  402
## [211]   14 3008 1556 1916 3044 1407  983  929 2017   50 1168 1395 1907 2290
## [225]  381  625  608 2378  138 2911 2693  424  592 1454 2080  439 2675 2488
## [239] 2990 2173 1191 2171 1946   76 3059  214 1182 1923  344 1441 2346 1320
## [253]  797 1196 2038 1220   93 1175 2818 1917 1473 2872 2106 2606 1295 1540
## [267] 2556 2024 1702 2847 1934  546 3053 2728 1439 2122  855 2501 1156  413
## [281] 2062 2271 1570 1896 2311  451  580 1757 1588 2966    2 1906 1727 2231
## [295] 1180 1468  645 2721  810 1858
# Generate the actual samples for SRS2
(agpop_sampled2 <- agpop_complete[sampleindices2,])
##      ACRES92 REGION
## 364    78739      S
## 144   352322      S
## 2969    8763     NC
## 382    57074      S
## 2497  103063      S
## 2375  846435     NC
## 1619 1178885      W
## 872   271015     NC
## 86     57253      S
## 1336  392615     NC
## 2347  392935     NC
## 679   259923     NC
## 1147   38566      S
## 1245     264     NC
## 2017  171129     NC
## 2948  351633     NC
## 1823 1387740     NC
## 180   487499      W
## 2577  686578      S
## 1548  118651      S
## 2122  633874      S
## 948   510319     NC
## 192    60740      W
## 520   200061      S
## 703   203974     NC
## 2445   54518      S
## 160   334284      W
## 1511   16665      S
## 657   208161      W
## 1402  252783     NC
## 1734 1070528     NC
## 1657   19676      S
## 1278  234823     NC
## 1102  147826      S
## 1398  207611     NC
## 361    45214      S
## 756   314886     NC
## 3033   21871      S
## 2506  357933      S
## 2649  472332      S
## 821   188843     NC
## 2325  262093      S
## 2894   24253      W
## 3005   12175      S
## 1645   23929      S
## 545   314812     NC
## 955   411785     NC
## 530   427215     NC
## 2248   79310     NE
## 1817  304180     NC
## 2207  487534      W
## 1119  246536      S
## 2989  231427     NC
## 372    17105      S
## 2001   65323     NE
## 2666   73948      S
## 2528  166939      S
## 2358  373787     NC
## 1858  314949     NC
## 2298   66165      S
## 1667  204443      S
## 1905 3112271      W
## 1304  130683     NC
## 127    70872      S
## 976    27836      S
## 2550  780925      S
## 1286   31427     NC
## 2403   93098      S
## 1228  137082     NC
## 299   199724      S
## 1412  285496     NC
## 1112    4127      S
## 2930   51208     NC
## 2977  282405     NC
## 446    39712      S
## 1415  321181     NC
## 992    68373      S
## 1459  254493     NC
## 2169  250958      S
## 316   369965      S
## 2848   68584      S
## 2939  327185     NC
## 1882   29606     NE
## 2537  275638      S
## 921   596103     NC
## 1687   36975      S
## 323   265443      S
## 183   168879      W
## 2706  247626      S
## 441    72626      S
## 683    40917     NC
## 319   327611      S
## 577   321950     NC
## 817   223328     NC
## 2392  615479     NC
## 2107  493631      S
## 2121  336285      S
## 477    80396      S
## 1461  221122     NC
## 637   391050      W
## 294   304680     NE
## 465    93061      S
## 2148  236766      S
## 1716   67716      S
## 972   132979      S
## 2854   24924      S
## 1016  200455      S
## 1381  239298     NC
## 2259   81426     NE
## 2141  194253      S
## 2179  687299      S
## 1442  306175     NC
## 1315  112412     NC
## 128   404585      S
## 122    69422      S
## 1686   23007      S
## 794   194312     NC
## 268   459659      W
## 1720   46726      S
## 1110   81401      S
## 2825   52508      S
## 1146   58790      S
## 1405  210829     NC
## 868   339138     NC
## 2222   76466     NE
## 938   641109     NC
## 1125  193137      S
## 2578  102229      S
## 155   729947      W
## 1633  170006      S
## 1591  367482      W
## 204   836989      W
## 1502  126613      S
## 2144  344280      S
## 943   578283     NC
## 1501  294547      S
## 558   287586     NC
## 188   103294      W
## 1747  723816     NC
## 3037   15650      S
## 2844   64856      S
## 1840  724458     NC
## 820    71596     NC
## 1128  247106      S
## 2270   87253     NE
## 1735  855458     NC
## 1516   76673      S
## 2744  203667      S
## 854   197947     NC
## 390    11559      S
## 473    18254      S
## 2785  287442      S
## 2548  451584      S
## 1324    5262     NC
## 1853  657906     NC
## 714   178222     NC
## 1966  109692     NE
## 1855  105085     NC
## 1036  119218      S
## 2806   15714      S
## 1372  272540     NC
## 1538   96474      S
## 1926  770155      W
## 1871  345509     NC
## 1486  134028     NC
## 2626  595420      S
## 680   223764     NC
## 1938   79635      W
## 2879   82849     NE
## 1103   79150      S
## 945   463690     NC
## 2683 1695484      S
## 1404  278841     NC
## 984   137337      S
## 1862  217228     NC
## 952   620144     NC
## 1328  395023     NC
## 2525  329288      S
## 2808  116509      S
## 2446   94254      S
## 425    73869      S
## 1676  230402      S
## 2484   55097      S
## 2076  106573     NC
## 1392  325796     NC
## 2251  388368     NE
## 2196   31249      W
## 1852  301513     NC
## 2907   10302      W
## 1131   23185      S
## 2641  428068      S
## 2973  263514     NC
## 1778 1182658     NC
## 592   223638     NC
## 2687  362642      S
## 6     107259      S
## 1464  152529     NC
## 2747  484907      S
## 413    54233      S
## 957   687593     NC
## 2405   91858      S
## 1616   99746      W
## 753   128867     NC
## 2048  113329     NC
## 1630  104426      S
## 2789   96833      S
## 1170  157505      S
## 2426  272121      S
## 244    13296      W
## 406    97215      S
## 14    109555      S
## 3027  117168      S
## 1562  114083      S
## 1922 1166009      W
## 3063 1234542      W
## 1413  226336     NC
## 987    60812      S
## 933   380403     NC
## 2028  227382     NC
## 50    224370      S
## 1174  222768      S
## 1401  201670     NC
## 1913 1532887      W
## 2303  156853      S
## 385    21697      S
## 629  1371605      W
## 612   236265     NC
## 2391  903980     NC
## 138   115019      S
## 2928 1639965      W
## 2708  632622      S
## 428    24239      S
## 596   260780     NC
## 1460  228936     NC
## 2091   19088     NC
## 443    77532      S
## 2690  667177      S
## 2501  765139      S
## 3009   59184      S
## 2184   71839      W
## 1197  118152     NE
## 2182  148848      W
## 1954  161643     NE
## 76    293745      S
## 3078 1484583      W
## 214  1016851      W
## 1188   62242     NE
## 1929  517952      W
## 347   611336      S
## 1447  507875     NC
## 2359  601034     NC
## 1326  205031     NC
## 801   187079     NC
## 1202   94755     NE
## 2049  245049     NC
## 1226  233921     NC
## 93    262021      S
## 1181  165349      S
## 2835  167858      S
## 1923 1769177      W
## 1479  160576     NC
## 2889   89785     NE
## 2117  264890      S
## 2620  330173      S
## 1301  210897     NC
## 1546   86096      S
## 2570  545666      S
## 2035  169017     NC
## 1708   53690      S
## 2864   52770      S
## 1940 1949420      W
## 550   275319     NC
## 3072 1208776      W
## 2743  461127      S
## 1445  368849     NC
## 2133  268038      S
## 859   198680     NC
## 2514  563993      S
## 1161    9882     NE
## 417    22212      S
## 2073  164607     NC
## 2284    5636     NE
## 1576 1424228      W
## 1902   87638     NE
## 2324   69897      S
## 455    33785      S
## 584   347599     NC
## 1763  503575     NC
## 1594  883479      W
## 2984  308460     NC
## 2      47146      W
## 1912 1209335      W
## 1733  877382     NC
## 2243  234391     NE
## 1186   91254      S
## 1474  120036     NC
## 649   311296      W
## 2736  501692      S
## 814   144305     NC
## 1864  360203     NC
# Generate the sample indices for SRS3
set.seed(seedSRS3)
(sampleindices3 <- sample(N,n))
##   [1] 2799 3017  639 2426 2504 3045 1450 1796  211 1587 2000 2444  172  381
##  [15] 1349 1521  750 1983  467 1786 2105 2003  110 2774 2601  186  194 1977
##  [29] 1869 2723 1295  628 2907 1541 1014 1694 2883  471  768  270 2614 2338
##  [43] 1043 1042  964 2127 2656 1366 1317 1854  503  633  746   62   23  803
##  [57]  362  951 2381 2048 3031 1630 2990 1388 1303 1722 1310 1525  280  649
##  [71] 3021  523 2475 1309 2751 1678 2832 2543  933 1536  370 3055 1766 1024
##  [85] 1671 2005 2496 1940 1755 2585  198 2437 2319 2156 2508  978 2749  574
##  [99] 1320  812 1652  348 1616 1765  934 2564 2809 2342 2014  425 1238 1069
## [113] 2741 2474 2291  531 2344  608 1053 1566 1098 2238 2416 1524   97  401
## [127]  897  624 2044  356  590 2992 1895 2073 1144  970 2239  756 2193  212
## [141]  948 1235  355  759 2126  865 2371 1194 2880 2934  542 1193 1044 2791
## [155] 3016  368 2086 1478  680  823  754 2784 1262 1588 1419 2457 2522  679
## [169] 1152  918 1639 2383  144 1227  758 1127 1908 1584 1586 2207 2365 2793
## [183]  269 2822 1457 1601  939 2434 1330   15 1622  730 2387 1714 1833 2220
## [197] 1105  166 1960 3044 2684  968  185  493 2835  990 1497  217 1490  267
## [211] 3035 2469 2200 2712 1033 2353  845 2727 1170 1374 2113  410 1501  851
## [225] 2307 2024  616 1118 2655 2363 1293  678 2385  278 2789 1916 1465 2611
## [239]  498 1200  699 1582 3050 2616 1411 2517  833  505 2644 1890 2838 2152
## [253] 1297 2427  694 2899 2772   65 1826 1213  128 2885  569  516   37 1119
## [267] 2278    8  461 2351  857 2988  609  813 3037  235 3036  906 2118 2873
## [281] 2651 1721 1260   28 1481 1229 2395 2379  245  781  148 1835  874  847
## [295]   48 2865 1270 1163 1868 1937
# Generate the actual samples for SRS3
(agpop_sampled3 <- agpop_complete[sampleindices3,])
##      ACRES92 REGION
## 2816   37044      S
## 3036  178160      S
## 643   353528      W
## 2439  191486      S
## 2517  408824      S
## 3064  908320      W
## 1456  188595     NC
## 1802  658572     NC
## 211   517114      W
## 1593  631377      W
## 2011  174627     NE
## 2457   50767      S
## 172  1774664      W
## 385    21697      S
## 1355  153188     NC
## 1527   95736      S
## 754   402212     NC
## 1992    3803     NE
## 471    18644      S
## 1792  428769     NC
## 2116  157105      S
## 2014  102024     NE
## 110   281895      S
## 2790   84677      S
## 2615   70165      S
## 186   978831      W
## 194   119514      W
## 1986  145329     NE
## 1875   46056     NE
## 2738  863384      S
## 1301  210897     NC
## 632   150021      W
## 2924   12611      W
## 1547  186297      S
## 1018  159966      S
## 1700   23140      S
## 2900  670149      W
## 475    45450      S
## 772   165091     NC
## 271   896994      W
## 2628  774804      S
## 2351  561312     NC
## 1047  144254      S
## 1046    5256      S
## 968   156590      S
## 2138  477655      S
## 2671  536300      S
## 1372  272540     NC
## 1323  405029     NC
## 1860  298115     NC
## 507    88829      S
## 637   391050      W
## 750   141703     NC
## 62    112620      S
## 23     82466      S
## 807   182836     NC
## 366    32976      S
## 955   411785     NC
## 2394 1006831     NC
## 2059  227327     NC
## 3050   28622      S
## 1636   93584      S
## 3009   59184      S
## 1394  403597     NC
## 1309  443496     NC
## 1728  777675     NC
## 1316  131563     NC
## 1531  125713      S
## 282  2086292      W
## 653   193908      W
## 3040   55827      S
## 527   321728     NC
## 2488  165309      S
## 1315  112412     NC
## 2766  107663      W
## 1684  131767      S
## 2849   48889      S
## 2556  569212      S
## 937   432326     NC
## 1542   93180      S
## 374    27561      S
## 3074 1720737      W
## 1772 1269572     NC
## 1028  120959      S
## 1677   68577      S
## 2016  194022     NC
## 2509  408710      S
## 1947  140380      W
## 1761  639709     NC
## 2599  463450      S
## 198  1287057      W
## 2450   36978      S
## 2332  173188      S
## 2167  660214      S
## 2521  548351      S
## 982   140810      S
## 2764   58522      W
## 578   322401     NC
## 1326  205031     NC
## 816   158788     NC
## 1658  180400      S
## 351    79270      S
## 1622 1688070      W
## 1771  439846     NC
## 938   641109     NC
## 2578  102229      S
## 2826   37777      S
## 2355  641911     NC
## 2025  215796     NC
## 429    36074      S
## 1244  190706     NC
## 1073  117768      S
## 2756  240535      W
## 2487   32892      S
## 2304  108848      S
## 535   341923     NC
## 2357  560057     NC
## 612   236265     NC
## 1057  112409      S
## 1572 2338866      W
## 1102  147826      S
## 2250   36963     NE
## 2429  236912      S
## 1530   98914      S
## 97    223889      S
## 405     3046      S
## 901   319686     NC
## 628   111510      W
## 2055   68344     NC
## 360    96730      S
## 594   219832     NC
## 3011   52748      S
## 1901     325     NE
## 2084  160734     NC
## 1148  126839      S
## 974    80864      S
## 2251  388368     NE
## 760   115517     NC
## 2204 1119004      W
## 212   759649      W
## 952   620144     NC
## 1241  210638     NC
## 359     8679      S
## 763   333238     NC
## 2137  323534      S
## 869   765688     NC
## 2384 1066060     NC
## 1200  106971     NE
## 2897   35678      W
## 2951  293134     NC
## 546   456954     NC
## 1199   18793     NE
## 1048  119533      S
## 2808  116509      S
## 3035   21164      S
## 372    17105      S
## 2097  129416     NC
## 1484   93053     NC
## 684   223561     NC
## 827    32318     NC
## 758   119370     NC
## 2800   45451      S
## 1268   75345     NC
## 1594  883479      W
## 1425  268447     NC
## 2470  116696      S
## 2535  523049      S
## 683    40917     NC
## 1156   74484     NE
## 922   286989     NC
## 1645   23929      S
## 2396  259517     NC
## 144   352322      S
## 1233  231557     NC
## 762   297003     NC
## 1131   23185      S
## 1914 1289733      W
## 1590 1644001      W
## 1592  868064      W
## 2218  119566     NE
## 2378  485748     NC
## 2810  166477      S
## 270  1004360      W
## 2839   18367      S
## 1463   89683     NC
## 1607 1629363      W
## 943   578283     NC
## 2447   91343      S
## 1336  392615     NC
## 15    121504      S
## 1628   72621      S
## 734   187039     NC
## 2400   41899      S
## 1720   46726      S
## 1839  290608     NC
## 2232   55023     NE
## 1109  110173      S
## 166   452347      W
## 1968   54986     NE
## 3063 1234542      W
## 2699  358211      S
## 972   132979      S
## 185   725118      W
## 497   174020      S
## 2852   78977      S
## 994   125133      S
## 1503   79962      S
## 217   137530      W
## 1496  149027      S
## 268   459659      W
## 3054   59846      S
## 2482  177522      S
## 2211  694304      W
## 2727 1806639      S
## 1037  278675      S
## 2366  502469     NC
## 849   160930     NC
## 2742  432887      S
## 1176   97312      S
## 1380  430451     NC
## 2124  583098      S
## 414   123702      S
## 1507   43498      S
## 855   201739     NC
## 2320   19486      S
## 2035  169017     NC
## 620   357684     NC
## 1122     100      S
## 2670   30268      S
## 2376  325998     NC
## 1299  138594     NC
## 682   263425     NC
## 2398  271200     NC
## 280   104010      W
## 2806   15714      S
## 1922 1166009      W
## 1471  165225     NC
## 2625  553226      S
## 502    40783      S
## 1206  246403     NC
## 703   203974     NC
## 1588  636514      W
## 3069 1344561      W
## 2630  698832      S
## 1417  232592     NC
## 2530  251249      S
## 837   236436     NC
## 509    53895      S
## 2659  724706      S
## 1896   10365     NE
## 2855  141766      S
## 2163  481244      S
## 1303  374920     NC
## 2440  130167      S
## 698   303715     NC
## 2916   58750      W
## 2788   81768      S
## 65    167923      S
## 1832  612694     NC
## 1219   40871     NC
## 128   404585      S
## 2902 1086045      W
## 573   346569     NC
## 520   200061      S
## 37    128357      S
## 1123   74678      S
## 2291  160659      S
## 8     177189      S
## 465    93061      S
## 2364 1657305     NC
## 861   162244     NC
## 3007   34919      S
## 613   241422     NC
## 817   223328     NC
## 3056 1868333      W
## 235   260728      W
## 3055    5693      S
## 910   399835     NC
## 2129  599536      S
## 2890  996742      W
## 2666   73948      S
## 1727  858267     NC
## 1266   48236     NC
## 28    134555      S
## 1487  316617     NC
## 1235  438914     NC
## 2408  165547      S
## 2392  615479     NC
## 246   177333      W
## 785   202429     NC
## 148  5785707      W
## 1841  236950     NC
## 878   486997     NC
## 851    80958     NC
## 48    199714      S
## 2882   24848     NE
## 1276  318125     NC
## 1169  126981      S
## 1874   33935     NE
## 1943  494304      W
# Generate the sample indices for SRS4
set.seed(seedSRS4)
(sampleindices4 <- sample(N,n))
##   [1]  753  965 3037  675   95 2929 1932  432  274 2110 1644 1459  858 2072
##  [15] 1434  969 1787 1329  491 2293 1014 2030 1400  852 1845 2695  851  766
##  [29] 2983 2222 1262 1662 1045 2443 1703 1645 2618  840 1059 2561 1788 1347
##  [43] 2245 2900 3031 2447 2230 1257  980  513 3040 2387 1511 2327 2619 2003
##  [57] 1467 1156  998  588 1883  344 2800 2773  799 2882 2461 1027 2415 1369
##  [71] 2404 2760 1702 1277 2302  244 2351  954 2099  684  413  544  671 1362
##  [85] 1171 1667  975 1061 1802 1407 1647 2736 2975 2852 1719  359 1901 1364
##  [99] 2474  953 2949  845 1261 1134  415 1922   50 1212  323  234  843  298
## [113] 1224 1174 2041 2176 1919 2394   61  150 2503 2195  857 1917  289 1405
## [127] 2846  667 1648 2505 1463  307  436 2129 2470 1957  959  547 2741 1384
## [141] 1197  910  451  186 1747 1367 2699  686  906 1949 2751  270  135 1515
## [155]  426 2108 1313 2652 2284 2868 2861 2913 1934  181  990 2819 2858 2001
## [169] 1231  311 1124 2674 1388 2743 1609 2654  103 1426  506  381  141   31
## [183]    3 2615 2553 1536 1480 1038  871 1104 1527  550  812 1715 2546 1830
## [197]   20 1397 1296 2501  199 1718 2076 2497  113 2596 1054 1067  788 2454
## [211]  467 1479 2104  692  340 2661  414 1938 2917  410 1892  995 2973  838
## [225] 2395 2259  545 2873  889 1250  492  634 2445 2097  897  566  793 1183
## [239] 1554 1051 1339  949 1749 1592 2050 1557 3013  130  162  440 1595  916
## [253] 1094 1481 1275 3044 2520 2247 2305  720 2349 1222  823 1433  981   44
## [267] 1676 1956  213 1007 1085 1472 2605 1178 2604  792 1126 1254   34  773
## [281] 2549 1738 1196  187  994 2491 2571 2267 2509 2870  587   21 2728   80
## [295] 2786  810 2495 2565 2823 2753
# Generate the actual samples for SRS4
(agpop_sampled4 <- agpop_complete[sampleindices4,])
##      ACRES92 REGION
## 757   336450     NC
## 969    90033      S
## 3056 1868333      W
## 679   259923     NC
## 95    210692      S
## 2946  189905     NC
## 1938   79635      W
## 436    45624      S
## 275   462086      W
## 2121  336285      S
## 1650   88386      S
## 1465  204171     NC
## 862   282862     NC
## 2083  286698     NC
## 1440  265245     NC
## 973     5419      S
## 1793  521389     NC
## 1335  422916     NC
## 495    71097      S
## 2306   68858      S
## 1018  159966      S
## 2041  109820     NC
## 1406  219440     NC
## 856    96219     NC
## 1851  439475     NC
## 2710  835337      S
## 855   201739     NC
## 770   197724     NC
## 3002   73430      S
## 2234  101816     NE
## 1268   75345     NC
## 1668  127663      S
## 1049   42642      S
## 2456  141357      S
## 1709   89063      S
## 1651   98531      S
## 2633  424701      S
## 844   134960     NC
## 1063    4469      S
## 2575  370140      S
## 1794 3887635     NC
## 1353  270332     NC
## 2257   39561     NE
## 2917   20529      W
## 3050   28622      S
## 2460   56253      S
## 2242    4702     NE
## 1263   22056     NC
## 984   137337      S
## 517   115516      S
## 3059 2720903      W
## 2400   41899      S
## 1517   24845      S
## 2340  496799     NC
## 2634  518028      S
## 2014  102024     NE
## 1473  219042     NC
## 1161    9882     NE
## 1002   10919      S
## 592   223638     NC
## 1889   61748     NE
## 347   611336      S
## 2817   51374      S
## 2789   96833      S
## 803   148609     NC
## 2899  748088      W
## 2474  200097      S
## 1031   20803      S
## 2428  104457      S
## 1375  227156     NC
## 2417   96874      S
## 2775  167374      W
## 1708   53690      S
## 1283  206781     NC
## 2315   52978      S
## 245   299142      W
## 2364 1657305     NC
## 958   702549     NC
## 2110  726481      S
## 688   259498     NC
## 417    22212      S
## 548   415104     NC
## 675   238906     NC
## 1368  100774     NC
## 1177   44623      S
## 1673   93728      S
## 979    42602      S
## 1065   33155      S
## 1808  340471     NC
## 1413  226336     NC
## 1653    7046      S
## 2751  267924      W
## 2994   86091     NC
## 2869   56289      S
## 1725   38394      S
## 363    77659      S
## 1907 2085387      W
## 1370  420778     NC
## 2487   32892      S
## 957   687593     NC
## 2966  145980     NC
## 849   160930     NC
## 1267  129083     NC
## 1138   40181      S
## 419    36260      S
## 1928 2579730      W
## 50    224370      S
## 1218   41037     NC
## 326   244185      S
## 234   156801      W
## 847    79235     NC
## 300    23735      S
## 1230    5965     NC
## 1180   54459      S
## 2052  177194     NC
## 2187   74375      W
## 1925 1646707      W
## 2407   96550      S
## 61     96435      S
## 150  5989961      W
## 2516 2405018      S
## 2206  167880      W
## 861   162244     NC
## 1923 1769177      W
## 291    55263     NE
## 1411  245827     NC
## 2863   20107      S
## 671   135163     NC
## 1654   92192      S
## 2518  566400      S
## 1469   54082     NC
## 309    31693      S
## 440    60811      S
## 2140  558313      S
## 2483  183178      S
## 1965  192116     NE
## 963   443802     NC
## 551   261494     NC
## 2756  240535      W
## 1390  377000     NC
## 1203   61797     NE
## 914   482434     NC
## 455    33785      S
## 186   978831      W
## 1753 1128346     NC
## 1373  407953     NC
## 2714  167569      S
## 690   354480     NC
## 910   399835     NC
## 1957  203704     NE
## 2766  107663      W
## 271   896994      W
## 135    45609      S
## 1521   96919      S
## 430    53944      S
## 2119  358446      S
## 1319  145545     NC
## 2667  479889      S
## 2297   32392      S
## 2885  149503     NE
## 2878   96704     NE
## 2930   51208     NC
## 1940 1949420      W
## 181   183569      W
## 994   125133      S
## 2836   21507      S
## 2875   43332      S
## 2012    5709     NE
## 1237  254793     NC
## 314    57853      S
## 1128  247106      S
## 2689 1555905      S
## 1394  403597     NC
## 2758   63116      W
## 1615  962450      W
## 2669  525885      S
## 103   105721      S
## 1432  270576     NC
## 510    47000      S
## 385    21697      S
## 141   136309      S
## 31    104364      S
## 3     141338      W
## 2629  436040      S
## 2567  378003      S
## 1542   93180      S
## 1486  134028     NC
## 1042  247266      S
## 875   380969     NC
## 1108   44490      S
## 1533   89816      S
## 554   202249     NC
## 816   158788     NC
## 1721  179554      S
## 2559  599637      S
## 1836  330369     NC
## 20     47200      S
## 1403  227783     NC
## 1302    1249     NC
## 2514  563993      S
## 199   517860      W
## 1724  103773      S
## 2087   95704     NC
## 2510  371257      S
## 113   143104      S
## 2610  345138      S
## 1058  159794      S
## 1071  154082      S
## 792   229097     NC
## 2467   53026      S
## 471    18644      S
## 1485  289729     NC
## 2115 1034980      S
## 696   431415     NC
## 343   716542      S
## 2676  517272      S
## 418    73659      S
## 1944   48968      W
## 2934  323482     NC
## 414   123702      S
## 1898   98256     NE
## 999    69310      S
## 2991  365511     NC
## 842   217288     NC
## 2408  165547      S
## 2272   30613     NE
## 549   312173     NC
## 2890  996742      W
## 893   671506     NC
## 1256   73437     NC
## 496   142824      S
## 638   587693      W
## 2458  161902      S
## 2108  513789      S
## 901   319686     NC
## 570   280797     NC
## 797   207766     NC
## 1189  334040     NE
## 1560  100433      S
## 1055  117868      S
## 1345  252658     NC
## 953   537457     NC
## 1755 1233663     NC
## 1598 1271160      W
## 2061  142624     NC
## 1563  342237      S
## 3032  148842      S
## 130   156363      S
## 162   229365      W
## 444    71379      S
## 1601  248215      W
## 920   572989     NC
## 1098  258035      S
## 1487  316617     NC
## 1281  236799     NC
## 3063 1234542      W
## 2533  670459      S
## 2259   81426     NE
## 2318  136151      S
## 724   709106     NC
## 2362  861129     NC
## 1228  137082     NC
## 827    32318     NC
## 1439  242018     NC
## 985    43447      S
## 44    201892      S
## 1682   22089      S
## 1964  138620     NE
## 213   318156      W
## 1011  100468      S
## 1089   63446      S
## 1478  329999     NC
## 2619  517671      S
## 1184  109108      S
## 2618  736407      S
## 796   196537     NC
## 1130    6166      S
## 1260   88322     NC
## 34     64755      S
## 777   220057     NC
## 2562  518788      S
## 1744 1019300     NC
## 1202   94755     NE
## 187   686876      W
## 998    60294      S
## 2504  396508      S
## 2585  409501      S
## 2280  153897     NE
## 2522  263925      S
## 2887   58891     NE
## 591   392835     NC
## 21    175209      S
## 2743  461127      S
## 80    246184      S
## 2802   61669      S
## 814   144305     NC
## 2508  416631      S
## 2579  573827      S
## 2840   52469      S
## 2768  447463      W
# Generate the sample indices for SRS5
set.seed(seedSRS5)
(sampleindices5 <- sample(N,n))
##   [1]  998 1667  455  472  749 1571  150 1915    2  935 1976 2075 2166  352
##  [15] 2791 2902  702  303 2069   93 1250 2677 2431 2262 1008 2763   66  331
##  [29]  202  321 2877 1991    6  325 1295 2061  374 1316 1465 3039 1195 2109
##  [43]  868 2491  634  211   40 1903 1938 2832 3035 1505  106  983 1240 1621
##  [57] 2888 1019 1096   10 1685 1749    9 1779  261 2953   90  619 1259 1762
##  [71] 1601 2205  251 2955 1324 2405 1071  270  960 1201 2101 1029  945 2998
##  [85] 2340  328  379 1720 1879 1602 1893 1973 2539 2745 2522 2493  327 2747
##  [99] 1874 1661  638  117   16  234 1575 2046  506 2247  676 2718 3016 1370
## [113] 2803 1643 2731  354  855 2755 1395 1488 1442 1289 1600 1538 2768  570
## [127] 1155  487   92  751 2917 2286 2009  707 2578  923 2199 2612 1345  693
## [141] 2468   42  704 2778 1553 2011 1228 1030 2415 2169 2705 1273 2813  767
## [155] 2996 3019 2535 1688 1812  629  255   77  986 2386 1537 2781 2906 2503
## [169] 1337 2190 2957 1788 2092 1026 1535  228  808 2275  665 2414 2189  569
## [183] 2647 2337 2560  872 1895 2932 2106 2384 1480  203 2469  866 1074 2501
## [197] 1928 2155  990 2726  528  759 1522 1711 1924 1603 2042  578 2576 1317
## [211] 1310  830 1441 1843 2367 1751 2936 2774   27 1890  969  966 2589 1266
## [225] 1885  583  477  440 2934 1666 1900  840 2925  289 1475 2993  140 1278
## [239] 2375 1630 1692   80 1967  857 2135 1560 1366  764 1196 2939  644  365
## [253]  679 1580 1033 1916 1546  215 1599 2302 1408 2396  343  166 2031  453
## [267] 2700  123  428 3022 2005 2138 1151 2465 1224  551  233 2359  690 2859
## [281] 1539 2972  656 2570 2399  914 2683 2102 1313 2443 2697  631 2256 2143
## [295] 1897  750  351 2559  860  856
# Generate the actual samples for SRS5
(agpop_sampled5 <- agpop_complete[sampleindices5,])
##      ACRES92 REGION
## 1002   10919      S
## 1673   93728      S
## 459    45448      S
## 476    46014      S
## 753   128867     NC
## 1577 2277936      W
## 150  5989961      W
## 1921  905235      W
## 2      47146      W
## 939   700869     NC
## 1985  242637     NE
## 2086  202324     NC
## 2177  577693      S
## 355   161936      S
## 2808  116509      S
## 2919    4043      W
## 706   186425     NC
## 305   301977      S
## 2080   87954     NC
## 93    262021      S
## 1256   73437     NC
## 2692  391842      S
## 2444   98669      S
## 2275   63159     NE
## 1012   69711      S
## 2778   91568      S
## 66    104199      S
## 334   132208      S
## 202  1324403      W
## 324    86706      S
## 2894   24253      W
## 2002  115071     NE
## 6     107259      S
## 328    95833      S
## 1301  210897     NC
## 2072  113892     NC
## 378   166511      S
## 1322   68778     NC
## 1471  165225     NC
## 3058 2704163      W
## 1201   71890     NE
## 2120  447212      S
## 872   271015     NC
## 2504  396508      S
## 638   587693      W
## 211   517114      W
## 40    191810      S
## 1909 1343237      W
## 1944   48968      W
## 2849   48889      S
## 3054   59846      S
## 1511   16665      S
## 106   367969      S
## 987    60812      S
## 1246   18047     NC
## 1627   52974      S
## 2905    9603      W
## 1023   98545      S
## 1100   63674      S
## 10    137426      S
## 1691  155213      S
## 1755 1233663     NC
## 9      48022      S
## 1785  649612     NC
## 262   834018      W
## 2971  208888     NC
## 90    326808      S
## 623   353683     NC
## 1265  115338     NC
## 1768  745815     NC
## 1607 1629363      W
## 2216  172366     NE
## 252  1341738      W
## 2973  263514     NC
## 1330  186573     NC
## 2418   47319      S
## 1075  128719      S
## 271   896994      W
## 964   312717     NC
## 1207   77493     NC
## 2112  372901      S
## 1033    3383      S
## 949   328094     NC
## 3017   88571      S
## 2353 1859161     NC
## 331   100764      S
## 383    82549      S
## 1726  594587     NC
## 1885    7799     NE
## 1608  675569      W
## 1899   43989     NE
## 1982    1890     NE
## 2552  553047      S
## 2760  332686      W
## 2535  523049      S
## 2506  357933      S
## 330   106721      S
## 2762  484156      W
## 1880   24716     NE
## 1667  204443      S
## 642   140701      W
## 117   142856      S
## 16     99466      S
## 234   156801      W
## 1581  135126      W
## 2057   17138     NC
## 510    47000      S
## 2259   81426     NE
## 680   223764     NC
## 2733  328367      S
## 3035   21164      S
## 1376  304032     NC
## 2820   24201      S
## 1649  162634      S
## 2746  563183      S
## 358   138208      S
## 859   198680     NC
## 2770  373582      W
## 1401  201670     NC
## 1494  127351      S
## 1448  252074     NC
## 1295  113422     NC
## 1606  893872      W
## 1544   80342      S
## 2783   78691      S
## 574   431185     NC
## 1159   31583     NE
## 491    38313      S
## 92     20589      S
## 755   169622     NC
## 2934  323482     NC
## 2299   94193      S
## 2020  205105     NC
## 711    94681     NC
## 2592  576468      S
## 927   441417     NC
## 2210  473316      W
## 2626  595420      S
## 1351  600114     NC
## 697   171938     NC
## 2481   92773      S
## 42     35748      S
## 708   217191     NC
## 2794   51604      S
## 1559  230524      S
## 2022  202188     NC
## 1234   29161     NC
## 1034  159710      S
## 2428  104457      S
## 2180  818736      W
## 2720 1020756      S
## 1279  444407     NC
## 2830  195476      S
## 771   285730     NC
## 3015    7710      S
## 3038  115487      S
## 2548  451584      S
## 1694   44000      S
## 1818  316551     NC
## 633   453647      W
## 256  2286947      W
## 77    250819      S
## 990   299321      S
## 2399 1406379     NC
## 1543   31587      S
## 2797  112944      S
## 2923   59890      W
## 2516 2405018      S
## 1343  280089     NC
## 2201  380464      W
## 2975  113548     NC
## 1794 3887635     NC
## 2103  207333      S
## 1030   48509      S
## 1541  218154      S
## 228    84172      W
## 812   251603     NC
## 2288   89935      S
## 669    69354     NC
## 2427  256272      S
## 2200   34292      W
## 573   346569     NC
## 2662  587316      S
## 2350  270665     NC
## 2574  128533      S
## 876   407464     NC
## 1901     325     NE
## 2949   26456     NC
## 2117  264890      S
## 2397  448834     NC
## 1486  134028     NC
## 203    57418      W
## 2482  177522      S
## 870   351941     NC
## 1078   71324      S
## 2514  563993      S
## 1934 2364443      W
## 2166  239971      S
## 994   125133      S
## 2741  476493      S
## 532   330080     NC
## 763   333238     NC
## 1528  140209      S
## 1717  119855      S
## 1930 1233794      W
## 1609  683088      W
## 2053  219023     NC
## 582   191291     NC
## 2590  443027      S
## 1323  405029     NC
## 1316  131563     NC
## 834   220959     NC
## 1447  507875     NC
## 1849  409715     NC
## 2380  701352     NC
## 1757  552707     NC
## 2953  361918     NC
## 2790   84677      S
## 27    196859      S
## 1896   10365     NE
## 973     5419      S
## 970   111913      S
## 2603  470096      S
## 1272   36272     NC
## 1891  106324     NE
## 587   268520     NC
## 481    95876      S
## 444    71379      S
## 2951  293134     NC
## 1672   56693      S
## 1906 2080760      W
## 844   134960     NC
## 2942  414240     NC
## 291    55263     NE
## 1481  402202     NC
## 3012  106325      S
## 140   159013      S
## 1284  188958     NC
## 2388  322784     NC
## 1636   93584      S
## 1698  115854      S
## 80    246184      S
## 1976       4     NE
## 861   162244     NC
## 2146  253652      S
## 1566   89807      S
## 1372  272540     NC
## 768   203428     NC
## 1202   94755     NE
## 2956  232591     NC
## 648   744295      W
## 369    85075      S
## 683    40917     NC
## 1586 2000266      W
## 1037  278675      S
## 1922 1166009      W
## 1552   95121      S
## 215   116083      W
## 1605 1968857      W
## 2315   52978      S
## 1414  399193     NC
## 2409   36633      S
## 346     4123      S
## 166   452347      W
## 2042   65266     NC
## 457   120839      S
## 2715  509017      S
## 123   102560      S
## 432    31529      S
## 3041   32633      S
## 2016  194022     NC
## 2149  494277      S
## 1155   25470     NE
## 2478  144953      S
## 1230    5965     NC
## 555   343870     NC
## 233   423785      W
## 2372  297819     NC
## 694   300127     NC
## 2876  209677     NE
## 1545  124202      S
## 2990  348602     NC
## 660   752032      W
## 2584  576013      S
## 2412  142729      S
## 918   537914     NC
## 2698   82721      S
## 2113  218803      S
## 1319  145545     NC
## 2456  141357      S
## 2712  926093      S
## 635   159358      W
## 2269   89045     NE
## 2154  390957      S
## 1903  415263      W
## 754   402212     NC
## 354   253330      S
## 2573  422464      S
## 864   245099     NC
## 860   285169     NC
# Generate the sample indices for SRS6
set.seed(seedSRS6)
(sampleindices6 <- sample(N,n))
##   [1] 2060 2679 2198 2416  758 2629 2346 1245 2295 2993  347  135 2179 2521
##  [15]  645  109  480 1288  235 1887 2680 1881  466 2870 2191  952  925 2567
##  [29] 1528 2073 1344 2959 2238  754 1951 1660  301 1241  605 1622   81  461
##  [43] 1511 2898  902  612  280 1441 2133 2092 3058 2701 1138  293  920 1956
##  [57]  839 2786 1986 2366 1026 2049 2675  150 1250 1690 3011 1404 2978 2298
##  [71]  130 2705 3010  697  513  278 1353 1474 2612   14  129 1318  239 2013
##  [85]  410  654 2102 2822  308 2798 2640  834 1539 1248 1402 1113  820  753
##  [99] 2670 1506  960  395 3052 3000 1559 1171 2688  604 2658  360 2447  516
## [113]  394 1975 2857   45  956  759  884  455 1294 2971 2917  118 1260 1445
## [127] 1662  789 1532 1854  787  562 2364 3043  927   56  896  936 1906 1236
## [141] 2177  733 1127  975  803  923  421 1836 1940 1216  148 1583 1542 2472
## [155]  327 2454  964 3021 1645 1168 1861 1358 2676 1813  485  712 1867  593
## [169] 1276  863 2635 2753  433 2770 1840 1919  962  127 1194  566  658  682
## [183] 1926  564  197  833 1280  953 2501 2044 2478 1120    7 1269 1635 2606
## [197] 1281 2229  725  390 1178  879 2274 1111  802 1185 2154 1009 2887  898
## [211] 1567 1273 2342  553 2248 2748 3025 1761  870  904 2967 2797  310  622
## [225] 1074 1366   41 2765 2734  832 1489  126 1706  482 2357  788 2172 1204
## [239]  514 2808  298  481 1114 2421 1589  517 1319 1190 1781  184 2212   20
## [253]  709 2931 1225 1468 2935  816 2297  387 2369 2036 2482 2926 1794  508
## [267]  111 1574  422  386 2257  836 2326 2646 2084 1852  271 1442 2158 2504
## [281]  935 2837 1187  555 1530 2096 1860 2825 1730  336 1109  840 2809 2325
## [295]  727 1173 1242  946 2979 2010
# Generate the actual samples for SRS6
(agpop_sampled6 <- agpop_complete[sampleindices6,])
##      ACRES92 REGION
## 2071  107157     NC
## 2694  572607      S
## 2209 1466580      W
## 2429  236912      S
## 762   297003     NC
## 2644  507135      S
## 2359  601034     NC
## 1251    9391     NC
## 2308  194822      S
## 3012  106325      S
## 350   300622      S
## 135    45609      S
## 2190  766373      W
## 2534  370572      S
## 649   311296      W
## 109   107841      S
## 484    37923      S
## 1294  347420     NC
## 235   260728      W
## 1893   25011     NE
## 2695  268058      S
## 1887   68627     NE
## 470    55310      S
## 2887   58891     NE
## 2202 1318447      W
## 956   450829     NC
## 929   668420     NC
## 2581  477515      S
## 1534  182009      S
## 2084  160734     NC
## 1350  491726     NC
## 2977  282405     NC
## 2250   36963     NE
## 758   119370     NC
## 1959  259540     NE
## 1666  113654      S
## 303    70672      S
## 1247  193956     NC
## 609   331211     NC
## 1628   72621      S
## 81    269122      S
## 465    93061      S
## 1517   24845      S
## 2915   55360      W
## 906   484823     NC
## 616   309508     NC
## 282  2086292      W
## 1447  507875     NC
## 2144  344280      S
## 2103  207333      S
## 3077  397883      W
## 2716 1396275      S
## 1142   61883      S
## 295   191140      S
## 924   323769     NC
## 1964  138620     NE
## 843   175124     NC
## 2802   61669      S
## 1997  396721     NE
## 2379 2076199     NC
## 1030   48509      S
## 2060  202927     NC
## 2690  667177      S
## 150  5989961      W
## 1256   73437     NC
## 1696   65136      S
## 3030     258      S
## 1410  196959     NC
## 2997  241778     NC
## 2311   70277      S
## 130   156363      S
## 2720 1020756      S
## 3029   74760      S
## 701   433246     NC
## 517   115516      S
## 280   104010      W
## 1359  643762     NC
## 1480  459671     NC
## 2626  595420      S
## 14    109555      S
## 129   122871      S
## 1324    5262     NC
## 240  1105614      W
## 2024  122480     NC
## 414   123702      S
## 658   477839      W
## 2113  218803      S
## 2839   18367      S
## 310    40039      S
## 2815  136320      S
## 2655  562612      S
## 838   164025     NC
## 1545  124202      S
## 1254   48029     NC
## 1408  288810     NC
## 1117   58730      S
## 824   139523     NC
## 757   336450     NC
## 2685  497106      S
## 1512  230838      S
## 964   312717     NC
## 399    41972      S
## 3071 1364948      W
## 3019   74268      S
## 1565   75551      S
## 1177   44623      S
## 2703  564382      S
## 608   495769     NC
## 2673  593819      S
## 364    78739      S
## 2460   56253      S
## 520   200061      S
## 398    72636      S
## 1984  135494     NE
## 2874   83047      S
## 45    173468      S
## 960   423064     NC
## 763   333238     NC
## 888   442362     NC
## 459    45448      S
## 1300  566981     NC
## 2989  231427     NC
## 2934  323482     NC
## 118   173861      S
## 1266   48236     NC
## 1451  291846     NC
## 1668  127663      S
## 793   148662     NC
## 1538   96474      S
## 1860  298115     NC
## 791    29837     NC
## 566   332358     NC
## 2377  661474     NC
## 3062 2415873      W
## 931   349293     NC
## 56    231243      S
## 900   499112     NC
## 940   443290     NC
## 1912 1209335      W
## 1242  154482     NC
## 2188  139483      W
## 737   184599     NC
## 1131   23185      S
## 979    42602      S
## 807   182836     NC
## 927   441417     NC
## 425    73869      S
## 1842  226042     NC
## 1947  140380      W
## 1222  256236     NC
## 148  5785707      W
## 1589  349938      W
## 1548  118651      S
## 2485   11292      S
## 330   106721      S
## 2467   53026      S
## 968   156590      S
## 3040   55827      S
## 1651   98531      S
## 1174  222768      S
## 1867  228167     NC
## 1364  310184     NC
## 2691  510079      S
## 1819  321080     NC
## 489    49043      S
## 716    73142     NC
## 1873   25439     NE
## 597   318778     NC
## 1282  324111     NC
## 867   337300     NC
## 2650  515960      S
## 2768  447463      W
## 437    73417      S
## 2786   47010      S
## 1846  532901     NC
## 1925 1646707      W
## 966    22553     NC
## 127    70872      S
## 1200  106971     NE
## 570   280797     NC
## 662   435069      W
## 686   377512     NC
## 1932  324476      W
## 568   225835     NC
## 197   600073      W
## 837   236436     NC
## 1286   31427     NC
## 957   687593     NC
## 2514  563993      S
## 2055   68344     NC
## 2491  204146      S
## 1124   46110      S
## 7     167832      S
## 1275    3786     NC
## 1641   64031      S
## 2620  330173      S
## 1287  168073     NC
## 2241  106390     NE
## 729   203749     NC
## 394    10192      S
## 1184  109108      S
## 883   201798     NC
## 2287   20458     NE
## 1115  132678      S
## 806   301962     NC
## 1191   38853     NE
## 2165  299263      S
## 1013  226206      S
## 2904   19526      W
## 902   366764     NC
## 1573  449970      W
## 1279  444407     NC
## 2355  641911     NC
## 557   401625     NC
## 2260   20777     NE
## 2763  234576      W
## 3044   82154      S
## 1767  521343     NC
## 874   565274     NC
## 908   517376     NC
## 2985  335517     NC
## 2814   51442      S
## 312    52259      S
## 626   325338      W
## 1078   71324      S
## 1372  272540     NC
## 41    204487      S
## 2780   25810      S
## 2749  192288      W
## 836   204165     NC
## 1495  151743      S
## 126   357416      S
## 1712    5897      S
## 486   108967      S
## 2370  584231     NC
## 792   229097     NC
## 2183   24740      W
## 1210   14104     NC
## 518    93078      S
## 2825   52508      S
## 300    23735      S
## 485   138803      S
## 1118   36059      S
## 2434  159927      S
## 1595  951780      W
## 521   926607      W
## 1325  103665     NC
## 1196   63473     NE
## 1787  649634     NC
## 184   206138      W
## 2223  310672     NE
## 20     47200      S
## 713   358920     NC
## 2948  351633     NC
## 1231   66789     NC
## 1474  120036     NC
## 2952  163145     NC
## 820    71596     NC
## 2310   66809      S
## 391    42678      S
## 2382  425288     NC
## 2047  248400     NC
## 2495  352488      S
## 2943  130051     NC
## 1800  138022     NC
## 512    54445      S
## 111   298547      S
## 1580 1334041      W
## 426   137637      S
## 390    11559      S
## 2270   87253     NE
## 840   172348     NC
## 2339 1026353     NC
## 2661  428243      S
## 2095  241787     NC
## 1858  314949     NC
## 272   546538      W
## 1448  252074     NC
## 2169  250958      S
## 2517  408824      S
## 939   700869     NC
## 2854   24924      S
## 1193   95402     NE
## 559   343367     NC
## 1536   80272      S
## 2107  493631      S
## 1866  339358     NC
## 2842   63991      S
## 1736  627774     NC
## 339    44962      S
## 1113  291526      S
## 844   134960     NC
## 2826   37777      S
## 2338  444440     NC
## 731    98838     NC
## 1179   82470      S
## 1248   64973     NC
## 950   227349     NC
## 2998  167191     NC
## 2021  126195     NC
# Generate the sample indices for SRS7
set.seed(seedSRS7)
(sampleindices7 <- sample(N,n))
##   [1]  874 2480 2280 2085 3007  250 2379  513 3053 1839 2138 1968 2060   50
##  [15] 1296 1283  261  627 2089 1593 2065 1440 1904 1348  309 1550  114 2739
##  [29] 1668 1093 2623 2603  587  779 1832 1155 2268  552 1003 1041  789 2362
##  [43] 1851 1941 1741  655 1145  236 3054  121  829 1005 1431 3001 1877 1451
##  [57] 1170 1660 1397  149  737 1816 1700 2666 2436 2111 1583  316 2020 2744
##  [71]   84 2670 2932 2376  637 2691  802 2179 1536 1304  617  611 1210 2510
##  [85] 1386 2858 2046 1872 1307 2361 2724  668 2056  970  530 1827  505 1426
##  [99]  717 2637 1878   79 2659 2357 2274 1647 1223 1044  938 1378 1760 1169
## [113] 2719  482 2585 1376 1618 1066 1142 1244   39 2901  108 2217 1205 2180
## [127] 1384 2214  673 2731   59 1315 2460 1966 1559  302 1350 1475 1801  131
## [141] 2711 2751 2253  619 2240 1752 2981 1562 1085 2676 1701 1634 1869 1774
## [155] 2516 1218 3009 2347  432  285 1032 2868 2701 2437 1117 2944 2587 2108
## [169] 2880 2663 1859 1335 1068  808 2908 2318  764 2336 1217  487 1799 1545
## [183] 1354 1215  539 2943 1720 2021  217  932 2504   47  672 1894 1977 2928
## [197] 1038 1421  136 2247 1608 1311 1762  187 1531 2665  601 1871 2142 2416
## [211] 1411  629  887 2061 1740 2862  284  169 2146 1351 2389  592  869 2533
## [225] 2783   31 2446  272  145  796 2354  760 2715  667  467 2789 1931 2165
## [239] 2378 1214  905  559 1679  752  264  883 2160 2410   65  512 2485 1108
## [253]  410 2311 1577  911  765   82 2917 2534 2418 1098 2199 2495 1084 1528
## [267] 2529 1645 2735  846 2900  231 2388 1632  839 1705 1897 2136  720 2649
## [281]  184 1778 2387 1078  139 2695  621 1123  411   25  476  735 2635 2583
## [295]  278 2301 1227 1830 2712 1549
# Generate the actual samples for SRS7
(agpop_sampled7 <- agpop_complete[sampleindices7,])
##      ACRES92 REGION
## 878   486997     NC
## 2493  204391      S
## 2293   74733      S
## 2096   41666     NC
## 3026   64332      S
## 251   878447      W
## 2392  615479     NC
## 517   115516      S
## 3072 1208776      W
## 1845  223949     NC
## 2149  494277      S
## 1977  169313     NE
## 2071  107157     NC
## 50    224370      S
## 1302    1249     NC
## 1289  377693     NC
## 262   834018      W
## 631    80333      W
## 2100  187175     NC
## 1599  912154      W
## 2076  106573     NC
## 1446  256023     NC
## 1910  526407      W
## 1354  536299     NC
## 311    57179      S
## 1556  141245      S
## 114   186829      S
## 2754   50357      W
## 1674  148135      S
## 1097   66380      S
## 2638  318658      S
## 2617  322324      S
## 591   392835     NC
## 783   222435     NC
## 1838  322120     NC
## 1159   31583     NE
## 2281   62740     NE
## 556   224811     NC
## 1007  127161      S
## 1045   76141      S
## 793   148662     NC
## 2375  846435     NC
## 1857  417698     NC
## 1948  624606      W
## 1747  723816     NC
## 659   271143      W
## 1149   86856      S
## 237   167106      W
## 3073  592754      W
## 121    79803      S
## 833   142482     NC
## 1009  206090      S
## 1437  219894     NC
## 3020   19956      S
## 1883    2636     NE
## 1457  345673     NC
## 1176   97312      S
## 1666  113654      S
## 1403  227783     NC
## 149  1891644      W
## 741   251277     NC
## 1822  403584     NC
## 1706   55309      S
## 2681  141215      S
## 2449  196733      S
## 2122  633874      S
## 1589  349938      W
## 319   327611      S
## 2031  223216     NC
## 2759  434183      W
## 84    108046      S
## 2685  497106      S
## 2949   26456     NC
## 2389 1417516     NC
## 641   103246      W
## 2706  247626      S
## 806   301962     NC
## 2190  766373      W
## 1542   93180      S
## 1310  366534     NC
## 621   442247     NC
## 615   302487     NC
## 1216  244927     NC
## 2523  208073      S
## 1392  325796     NC
## 2875   43332      S
## 2057   17138     NC
## 1878   46610     NE
## 1313   79183     NC
## 2374  322802     NC
## 2739  260892      S
## 672   144435     NC
## 2067   87036     NC
## 974    80864      S
## 534   333115     NC
## 1833  414763     NC
## 509    53895      S
## 1432  270576     NC
## 721   369952     NC
## 2652   49579      S
## 1884   97186     NE
## 79     18818      S
## 2674  847608      S
## 2370  584231     NC
## 2287   20458     NE
## 1653    7046      S
## 1229   61535     NC
## 1048  119533      S
## 942   228178     NC
## 1384  181292     NC
## 1766  495509     NC
## 1175  110699      S
## 2734 1712044      S
## 486   108967      S
## 2599  463450      S
## 1382  197530     NC
## 1624  490988      W
## 1070   91365      S
## 1146   58790      S
## 1250  118764     NC
## 39    166949      S
## 2918   92074      W
## 108   108913      S
## 2229  139918     NE
## 1211  165371     NC
## 2191 1154399      W
## 1390  377000     NC
## 2225  129323     NE
## 677   571807     NC
## 2746  563183      S
## 59    106206      S
## 1321  482991     NC
## 2473  233312      S
## 1975  300559     NE
## 1565   75551      S
## 304    86026      S
## 1356  131753     NC
## 1481  402202     NC
## 1807  528731     NC
## 131   313232      S
## 2726  917186      S
## 2766  107663      W
## 2265  104292     NE
## 623   353683     NC
## 2252   86402     NE
## 1758  384213     NC
## 3000  221357     NC
## 1568   78230      S
## 1089   63446      S
## 2691  510079      S
## 1707  266067      S
## 1640   43056      S
## 1875   46056     NE
## 1780  489384     NC
## 2529  518316      S
## 1224   72777     NC
## 3028   56555      S
## 2360 1204465     NC
## 436    45624      S
## 287    19830     NE
## 1036  119218      S
## 2885  149503     NE
## 2716 1396275      S
## 2450   36978      S
## 1121  182605      S
## 2961  356651     NC
## 2601  356170      S
## 2119  358446      S
## 2897   35678      W
## 2678  415694      S
## 1865  193556     NC
## 1341  305831     NC
## 1072  229838      S
## 812   251603     NC
## 2925  710546      W
## 2331   55992      S
## 768   203428     NC
## 2349  462238     NC
## 1223    1402     NC
## 491    38313      S
## 1805  298854     NC
## 1551   96540      S
## 1360  231610     NC
## 1221   64084     NC
## 543   274905     NC
## 2960  182339     NC
## 1726  594587     NC
## 2032    4060     NC
## 217   137530      W
## 936   451362     NC
## 2517  408824      S
## 47    207226      S
## 676   209437     NC
## 1900   75531     NE
## 1986  145329     NE
## 2945  366593     NC
## 1042  247266      S
## 1427  356164     NC
## 136   114762      S
## 2259   81426     NE
## 1614  381104      W
## 1317  107810     NC
## 1768  745815     NC
## 187   686876      W
## 1537  137267      S
## 2680 2891640      S
## 605   364172     NC
## 1877   39844     NE
## 2153  347480      S
## 2429  236912      S
## 1417  232592     NC
## 633   453647      W
## 891   316317     NC
## 2072  113892     NC
## 1746  688468     NC
## 2879   82849     NE
## 286    86581     NE
## 169   163036      W
## 2157  156748      S
## 1357  117701     NC
## 2402   62989      S
## 596   260780     NC
## 873   592207     NC
## 2546  394805      S
## 2799   68326      S
## 31    104364      S
## 2459  245681      S
## 273   219612      W
## 145   358904      S
## 800   161745     NC
## 2367  545064     NC
## 764   234973     NC
## 2730  213923      S
## 671   135163     NC
## 471    18644      S
## 2806   15714      S
## 1937   82100      W
## 2176  216268      S
## 2391  903980     NC
## 1220   92809     NC
## 909   544071     NC
## 563   328885     NC
## 1685   27901      S
## 756   314886     NC
## 265   633279      W
## 887   547483     NC
## 2171  421233      S
## 2423  258265      S
## 65    167923      S
## 516    38691      S
## 2498   19131      S
## 1112    4127      S
## 414   123702      S
## 2324   69897      S
## 1583 2232575      W
## 915   273841     NC
## 769   295844     NC
## 82     98919      S
## 2934  323482     NC
## 2547 2001152      S
## 2431   57216      S
## 1102  147826      S
## 2210  473316      W
## 2508  416631      S
## 1088  117599      S
## 1534  182009      S
## 2542  571684      S
## 1651   98531      S
## 2750 1449976      W
## 850    80069     NC
## 2917   20529      W
## 231   304592      W
## 2401  213603      S
## 1638   63067      S
## 843   175124     NC
## 1711  121404      S
## 1903  415263      W
## 2147  314987      S
## 724   709106     NC
## 2664  193885      S
## 184   206138      W
## 1784  437826     NC
## 2400   41899      S
## 1082  135850      S
## 139   131353      S
## 2710  835337      S
## 625   221209      W
## 1127   97643      S
## 415    40608      S
## 25    166490      S
## 480    12733      S
## 739   261482     NC
## 2650  515960      S
## 2597  686578      S
## 280   104010      W
## 2314   72500      S
## 1233  231557     NC
## 1836  330369     NC
## 2727 1806639      S
## 1555  273117      S
# Generate the sample indices for SRS8
set.seed(seedSRS8)
(sampleindices8 <- sample(N,n))
##   [1] 1447 1300 1772 2697 2272  711 2832  441 1523 1285 2080 1774 1751 1645
##  [15]  385 2085  170  957 1489  726  397 2523  627 2633 2471  111 1575 1948
##  [29]  388 1717  859  805 2210 2829 2343 1999 2592 2084  548  387 2564  509
##  [43] 2623  376  287 1094 2381  686 1899 2729  491  816 1365 1190  192 2111
##  [57] 2256 1216 2515 1373 1741 1969 1857 2022 1665 2208 2215  836 1024 1090
##  [71] 1292 1142 2101 1491  154  489  282  458 1711  261 1071 1016 2091 2605
##  [85] 1367  653 1038 2263  920 1658 2452 1260 1427 1444  156  968 1055 2879
##  [99]  753 1357 1423  661  898 2191 1460 2269  216 2234 1062 2510 2087 2669
## [113] 1971 2137 2200  222 1046  345 2174   46 1982 1424  223 2015 1532 2325
## [127] 1746 1529 2124 2149 1110   48  925 1238  327 1217  299  200 1975 1226
## [141] 2079 2854 2330 1004 1674   85  533 2143  105  295 2690 2894  204 2300
## [155] 2202 1614  391 1069  714 1622 1947  131  179 2944  481  267  161 1888
## [169] 2024  382 3057 2252  487 2947 2052  369 2283 1443 1623 1207 1773 2399
## [183] 1001  398 1932 2110 1045  874 1695 2747 3050 2653 2132  374 3055 2642
## [197] 2025 2230  132  829   77 2370  652  189 1458  913 2021 2848 1805 2918
## [211] 2721 1640  109 1788 2001 2260 3017 2270 2744  277 2956 1661  538 1733
## [225] 2809 2514 2135 2153 2954 2599 1853 2170 2728  473 1675 2209 2520  938
## [239] 1461 2422 2649 2484 2425 2684 1303 1163  592 2504 1167 1441 2485 2168
## [253]  735 2429 2571 2940  738  575  459 1687  465 1959 1471   52 2144 1293
## [267] 2497  888  151 3042 2013 2490 2584 1053 2613  904 1525 2098 2955 2333
## [281]  728 1155  781  868 2102 2395 1124  742  921 1235 2069 2041 2791  501
## [295] 2784 2687 1179 1476 1333 1822
# Generate the actual samples for SRS8
(agpop_sampled8 <- agpop_complete[sampleindices8,])
##      ACRES92 REGION
## 1453  359434     NC
## 1306  241148     NC
## 1778 1182658     NC
## 2712  926093      S
## 2285    9631     NE
## 715   385560     NC
## 2849   48889      S
## 445    31394      S
## 1529  262371      S
## 1291  183760     NC
## 2091   19088     NC
## 1780  489384     NC
## 1757  552707     NC
## 1651   98531      S
## 389    33641      S
## 2096   41666     NC
## 170    12594      W
## 961   471658     NC
## 1495  151743      S
## 730   282222     NC
## 401   109923      S
## 2536  680567      S
## 631    80333      W
## 2648  675927      S
## 2484   55097      S
## 111   298547      S
## 1581  135126      W
## 1956   97869     NE
## 392     4519      S
## 1723  142312      S
## 863   378517     NC
## 809   124694     NC
## 2221  221981     NE
## 2846  297064      S
## 2356  974811     NC
## 2010  205954     NE
## 2606  386546      S
## 2095  241787     NC
## 552   336131     NC
## 391    42678      S
## 2578  102229      S
## 513    53291      S
## 2638  318658      S
## 380   113861      S
## 289    65987     NE
## 1098  258035      S
## 2394 1006831     NC
## 690   354480     NC
## 1905 3112271      W
## 2744  203667      S
## 495    71097      S
## 820    71596     NC
## 1371  290627     NC
## 1196   63473     NE
## 192    60740      W
## 2122  633874      S
## 2269   89045     NE
## 1222  256236     NC
## 2528  166939      S
## 1379  311161     NC
## 1747  723816     NC
## 1978  205105     NE
## 1863  347598     NC
## 2033  335575     NC
## 1671   75496      S
## 2219   57960     NE
## 2226   76997     NE
## 840   172348     NC
## 1028  120959      S
## 1094  110637      S
## 1298  326804     NC
## 1146   58790      S
## 2112  372901      S
## 1497   42712      S
## 154   246038      W
## 493   119873      S
## 284     9975     NE
## 462   205573      S
## 1717  119855      S
## 262   834018      W
## 1075  128719      S
## 1020  144828      S
## 2102  216318     NC
## 2619  517671      S
## 1373  407953     NC
## 657   208161      W
## 1042  247266      S
## 2276   52760     NE
## 924   323769     NC
## 1664  156027      S
## 2465  257000      S
## 1266   48236     NC
## 1433  199292     NC
## 1450  250475     NC
## 156  1981938      W
## 972   132979      S
## 1059   84434      S
## 2896  304928      W
## 757   336450     NC
## 1363  395071     NC
## 1429  249046     NC
## 665   489993      W
## 902   366764     NC
## 2202 1318447      W
## 1466  257217     NC
## 2282  252052     NE
## 216  1354262      W
## 2246  129503     NE
## 1066  218145      S
## 2523  208073      S
## 2098  139655     NC
## 2684   98449      S
## 1980  110150     NE
## 2148  236766      S
## 2211  694304      W
## 222   207448      W
## 1050  133173      S
## 348   105621      S
## 2185  174872      W
## 46     67962      S
## 1991  218306     NE
## 1430  253281     NC
## 223   322823      W
## 2026  179280     NC
## 1538   96474      S
## 2338  444440     NC
## 1752 1165695     NC
## 1535  175231      S
## 2135  469883      S
## 2160  207118      S
## 1114   87574      S
## 48    199714      S
## 929   668420     NC
## 1244  190706     NC
## 330   106721      S
## 1223    1402     NC
## 301    43314      S
## 200        7      W
## 1984  135494     NE
## 1232  277400     NC
## 2090  136612     NC
## 2871  131366      S
## 2343  417697     NC
## 1008  210275      S
## 1680   58384      S
## 85     34115      S
## 537   345567     NC
## 2154  390957      S
## 105   183895      S
## 297     9135      S
## 2705  507449      S
## 2911 1465788      W
## 204   836989      W
## 2313  195697      S
## 2213  139820      W
## 1620 1063086      W
## 395   178861      S
## 1073  117768      S
## 718   169292     NC
## 1628   72621      S
## 1955       0     NE
## 131   313232      S
## 179   164130      W
## 2961  356651     NC
## 485   138803      S
## 268   459659      W
## 161  2108834      W
## 1894   58758     NE
## 2035  169017     NC
## 386     8518      S
## 3076  879694      W
## 2264  109438     NE
## 491    38313      S
## 2964  248862     NC
## 2063  261320     NC
## 373    62983      S
## 2296   90995      S
## 1449  316809     NC
## 1629   70697      S
## 1213   19844     NC
## 1779  335465     NC
## 2412  142729      S
## 1005   41352      S
## 402    25802      S
## 1938   79635      W
## 2121  336285      S
## 1049   42642      S
## 878   486997     NC
## 1701  144858      S
## 2762  484156      W
## 3069 1344561      W
## 2668  220355      S
## 2143  397909      S
## 378   166511      S
## 3074 1720737      W
## 2657  658204      S
## 2036   88899     NC
## 2242    4702     NE
## 132   111895      S
## 833   142482     NC
## 77    250819      S
## 2383  284888     NC
## 656   224369      W
## 189  1372778      W
## 1464  152529     NC
## 917   485656     NC
## 2032    4060     NC
## 2865   82736      S
## 1811  430972     NC
## 2935   84091     NC
## 2736  501692      S
## 1646   53902      S
## 109   107841      S
## 1794 3887635     NC
## 2012    5709     NE
## 2273  177215     NE
## 3036  178160      S
## 2283    1468     NE
## 2759  434183      W
## 279    38467      W
## 2974   78772     NC
## 1667  204443      S
## 542   336254     NC
## 1739  369140     NC
## 2826   37777      S
## 2527  622130      S
## 2146  253652      S
## 2164  353045      S
## 2972   31777     NC
## 2613  519043      S
## 1859 1481503     NC
## 2181  118818      W
## 2743  461127      S
## 477    80396      S
## 1681   21218      S
## 2220  199056     NE
## 2533  670459      S
## 942   228178     NC
## 1467  168586     NC
## 2435  110215      S
## 2664  193885      S
## 2497  103063      S
## 2438  146868      S
## 2699  358211      S
## 1309  443496     NC
## 1169  126981      S
## 596   260780     NC
## 2517  408824      S
## 1173  123762      S
## 1447  507875     NC
## 2498   19131      S
## 2179  687299      S
## 739   261482     NC
## 2442  119419      S
## 2585  409501      S
## 2957  195287     NC
## 742   443475     NC
## 579   615034     NC
## 463    44599      S
## 1693   67491      S
## 469    51836      S
## 1967  145679     NE
## 1477  137747     NC
## 52     89228      S
## 2155  282659      S
## 1299  138594     NC
## 2510  371257      S
## 892   164081     NC
## 151  1151284      W
## 3061 1542262      W
## 2024  122480     NC
## 2503  432939      S
## 2598  494177      S
## 1057  112409      S
## 2627  531206      S
## 908   517376     NC
## 1531  125713      S
## 2109  412673      S
## 2973  263514     NC
## 2346  236608     NC
## 732   164158     NC
## 1159   31583     NE
## 785   202429     NC
## 872   271015     NC
## 2113  218803      S
## 2408  165547      S
## 1128  247106      S
## 746   270598     NC
## 925   409839     NC
## 1241  210638     NC
## 2080   87954     NC
## 2052  177194     NC
## 2808  116509      S
## 505    21973      S
## 2800   45451      S
## 2702  518371      S
## 1185  123932      S
## 1482  126474     NC
## 1339  416570     NC
## 1828  310042     NC
# Generate the sample indices for SRS9
set.seed(seedSRS9)
(sampleindices9 <- sample(N,n))
##   [1]  383 2338 1022 1243 1445   33  812 2921  841   49 2850  679  926  671
##  [15] 2917 1358  455 2603 2722  897  883    2 2967 1769 2521 1925 1506 2634
##  [29] 1834 2702 2586  658  357 2494 1071 1234  386 1814 2743   68  988  943
##  [43] 2008    7 2060 1859 1921 2272  654 1853 2147  231 2454 1970 1354  621
##  [57]  275  445 1504  241 1286 2064  247 2473 1062 1846 1292 2178 1177 2236
##  [71]  646 1640  297  449 2347  650 2555 2233  403   84 2510 1947 1952 1569
##  [85] 3002  590 2891 1905  220  678 1523  348  823 1784 2177 1593 1096 1152
##  [99] 3009 1120 1295 1548 1464  990 1496   88  174  855 1610 2669 2372 2248
## [113] 1851 2605 1399 1894 1188 2693 2214 1681  853 1038   71 2268 1979 1611
## [127]  123  378  432  913 2647 1517  444 2112 2254 1410  601 2190 2964 1899
## [141] 2322 3032 3050 2251 1892 1370 2345   40  187  138  966 2537  330  899
## [155]  662 1935 2197  831 2990 1369 2103 2922 1417 2747  869   20 1467 2033
## [169] 1492 2453  309 3028  914 2962 2642  546 1981 2317  118  638  600 1494
## [183]  337   97  553 2195 2331 3006  396  197 2466  363 1279 2364  113 1032
## [197] 1698 2051 2386 1082 1883 1080 1470  401 2577  522  894 2471 2264  722
## [211] 2888 2310  212  982  703 1739 1957 1556  448  292 1543 2781 2000 2057
## [225]  705  871 2580  965 1669 2479 1217 2255 2262 1014 1753 1386 2416 1602
## [239] 1984  711  249 2985   78 1406 1289  185  582  459  957 1595  567 1256
## [253]  327  340 2595 1081 1253 1786 1155 2221 1740 1314 2382 2161  857 2632
## [267]  198 1368  935 1790 2137  562 2048 2956 1764  300  664  816 2622 2328
## [281] 1668 2871 2899 2144 2184  258  166  952 2040  577 2501 2587 2840  456
## [295] 1047 2428  128  880 2460 2340
# Generate the actual samples for SRS9
(agpop_sampled9 <- agpop_complete[sampleindices9,])
##      ACRES92 REGION
## 387     5901      S
## 2351  561312     NC
## 1026    3224      S
## 1249  336273     NC
## 1451  291846     NC
## 33     85821      S
## 816   158788     NC
## 2938  426884     NC
## 845   121710     NC
## 49    138437      S
## 2867   38967      S
## 683    40917     NC
## 930   465527     NC
## 675   238906     NC
## 2934  323482     NC
## 1364  310184     NC
## 459    45448      S
## 2617  322324      S
## 2737  307783      S
## 901   319686     NC
## 887   547483     NC
## 2      47146      W
## 2985  335517     NC
## 1775  737273     NC
## 2534  370572      S
## 1931 1868074      W
## 1512  230838      S
## 2649  472332      S
## 1840  724458     NC
## 2717  459120      S
## 2600  545664      S
## 662   435069      W
## 361    45214      S
## 2507  442173      S
## 1075  128719      S
## 1240  199733     NC
## 390    11559      S
## 1820  305724     NC
## 2758   63116      W
## 68     96194      S
## 992    68373      S
## 947   484415     NC
## 2019   80507     NC
## 7     167832      S
## 2071  107157     NC
## 1865  193556     NC
## 1927 1896131      W
## 2285    9631     NE
## 658   477839      W
## 1859 1481503     NC
## 2158  280533      S
## 231   304592      W
## 2467   53026      S
## 1979  195626     NE
## 1360  231610     NC
## 625   221209      W
## 277   200674      W
## 449   104768      S
## 1510   30050      S
## 242   331639      W
## 1292  262207     NC
## 2075  104197     NC
## 248   641755      W
## 2486   49452      S
## 1066  218145      S
## 1852  301513     NC
## 1298  326804     NC
## 2189  402023      W
## 1183   55657      S
## 2248   79310     NE
## 650   207552      W
## 1646   53902      S
## 299   199724      S
## 453    73023      S
## 2360 1204465     NC
## 654   211039      W
## 2569  496742      S
## 2245  125707     NE
## 407   156805      S
## 84    108046      S
## 2523  208073      S
## 1955       0     NE
## 1960   58963     NE
## 1575 1619482      W
## 3021   81096      S
## 594   219832     NC
## 2908  355360      W
## 1911 1138681      W
## 220   234781      W
## 682   263425     NC
## 1529  262371      S
## 351    79270      S
## 827    32318     NC
## 1790  335849     NC
## 2188  139483      W
## 1599  912154      W
## 1100   63674      S
## 1156   74484     NE
## 3028   56555      S
## 1124   46110      S
## 1301  210897     NC
## 1554  361003      S
## 1470  414394     NC
## 994   125133      S
## 1502  126613      S
## 88    350402      S
## 174   597766      W
## 859   198680     NC
## 1616   99746      W
## 2684   98449      S
## 2385 1726299     NC
## 2260   20777     NE
## 1857  417698     NC
## 2619  517671      S
## 1405  210829     NC
## 1900   75531     NE
## 1194   27622     NE
## 2708  632622      S
## 2225  129323     NE
## 1687   36975      S
## 857   189136     NC
## 1042  247266      S
## 71    141260      S
## 2281   62740     NE
## 1988  102733     NE
## 1617  889294      W
## 123   102560      S
## 382    57074      S
## 436    45624      S
## 917   485656     NC
## 2662  587316      S
## 1523   98816      S
## 448   168051      S
## 2123  242097      S
## 2267    6197     NE
## 1416  174314     NC
## 605   364172     NC
## 2201  380464      W
## 2982  343115     NC
## 1905 3112271      W
## 2335  724776     NC
## 3051    9335      S
## 3069 1344561      W
## 2263   81479     NE
## 1898   98256     NE
## 1376  304032     NC
## 2358  373787     NC
## 40    191810      S
## 187   686876      W
## 138   115019      S
## 970   111913      S
## 2550  780925      S
## 333    11738      S
## 903   479903     NC
## 666    78813      W
## 1941  235826      W
## 2208   39559      W
## 835   242777     NC
## 3009   59184      S
## 1375  227156     NC
## 2114  300829      S
## 2939  327185     NC
## 1423  119595     NC
## 2762  484156      W
## 873   592207     NC
## 20     47200      S
## 1473  219042     NC
## 2044  127867     NC
## 1498   88522      S
## 2466  105519      S
## 311    57179      S
## 3047   32093      S
## 918   537914     NC
## 2980  133197     NC
## 2657  658204      S
## 550   275319     NC
## 1990  112334     NE
## 2330  138573      S
## 118   173861      S
## 642   140701      W
## 604   293266     NC
## 1500  126352      S
## 340    56704      S
## 97    223889      S
## 557   401625     NC
## 2206  167880      W
## 2344  688081     NC
## 3025   40837      S
## 400    37973      S
## 197   600073      W
## 2479  150309      S
## 367    49397      S
## 1285   22488     NC
## 2377  661474     NC
## 113   143104      S
## 1036  119218      S
## 1704  130879      S
## 2062   74037     NC
## 2399 1406379     NC
## 1086  123655      S
## 1889   61748     NE
## 1084   44548      S
## 1476  438142     NC
## 405     3046      S
## 2591  461249      S
## 526   239800     NC
## 898   603755     NC
## 2484   55097      S
## 2277   67388     NE
## 726   402310     NC
## 2905    9603      W
## 2323   93970      S
## 212   759649      W
## 986    78966      S
## 707   258014     NC
## 1745  396154     NC
## 1965  192116     NE
## 1562  114083      S
## 452    11969      S
## 294   304680     NE
## 1549  110124      S
## 2797  112944      S
## 2011  174627     NE
## 2068  269163     NC
## 709   180675     NC
## 875   380969     NC
## 2594   32436      S
## 969    90033      S
## 1675   13310      S
## 2492  123792      S
## 1223    1402     NC
## 2268   90065     NE
## 2275   63159     NE
## 1018  159966      S
## 1759  600845     NC
## 1392  325796     NC
## 2429  236912      S
## 1608  675569      W
## 1994   92683     NE
## 715   385560     NC
## 250   103470      W
## 3004   73407      S
## 78     30196      S
## 1412  285496     NC
## 1295  113422     NC
## 185   725118      W
## 586   314887     NC
## 463    44599      S
## 961   471658     NC
## 1601  248215      W
## 571   272831     NC
## 1262  224030     NC
## 330   106721      S
## 343   716542      S
## 2609 2234262      S
## 1085   61145      S
## 1259   89173     NC
## 1792  428769     NC
## 1159   31583     NE
## 2233   39412     NE
## 1746  688468     NC
## 1320  360500     NC
## 2395  367239     NC
## 2172 1051384      S
## 861   162244     NC
## 2647  491015      S
## 198  1287057      W
## 1374  267066     NC
## 939   700869     NC
## 1796  357067     NC
## 2148  236766      S
## 566   332358     NC
## 2059  227327     NC
## 2974   78772     NC
## 1770  841736     NC
## 302   227202      S
## 668   464834     NC
## 820    71596     NC
## 2637  527837      S
## 2341  279202     NC
## 1674  148135      S
## 2888   43987     NE
## 2916   58750      W
## 2155  282659      S
## 2195  530960      W
## 259   420233      W
## 166   452347      W
## 956   450829     NC
## 2051   48050     NC
## 581   349252     NC
## 2514  563993      S
## 2601  356170      S
## 2857  160973      S
## 460    68729      S
## 1051  136869      S
## 2441   44415      S
## 128   404585      S
## 884   222028     NC
## 2473  233312      S
## 2353 1859161     NC
# Specify the overall sample size
(nSRS <-  nrow(agpop_sampled0) +
          nrow(agpop_sampled1) +
          nrow(agpop_sampled2) +
          nrow(agpop_sampled3) +
          nrow(agpop_sampled4) +
          nrow(agpop_sampled5) +
          nrow(agpop_sampled6) +
          nrow(agpop_sampled7) +
          nrow(agpop_sampled8) +
          nrow(agpop_sampled9) )
## [1] 3000
# Compute the variances for the 10 SRS samples
# SRS0 variance = 182430448622
(agpop_SRS0variance <- var(agpop_sampled0$ACRES92))
## [1] 182430448622
# SRS1 variance = 224952698097
(agpop_SRS1variance <- var(agpop_sampled1$ACRES92))
## [1] 224952698097
# SRS2 variance = 139476147012
(agpop_SRS2variance <- var(agpop_sampled2$ACRES92))
## [1] 139476147012
# SRS3 variance = 253766693746
(agpop_SRS3variance <- var(agpop_sampled3$ACRES92))
## [1] 253766693746
# SRS4 variance = 314396869049
(agpop_SRS4variance <- var(agpop_sampled4$ACRES92))
## [1] 314396869049
# SRS5 variance = 333860409002
(agpop_SRS5variance <- var(agpop_sampled5$ACRES92))
## [1] 333860409002
# SRS6 variance = 317005336115
(agpop_SRS6variance <- var(agpop_sampled6$ACRES92))
## [1] 317005336115
# SRS7 variance = 130788548393
(agpop_SRS7variance <- var(agpop_sampled7$ACRES92))
## [1] 130788548393
# SRS8 variance = 174062836146
(agpop_SRS8variance <- var(agpop_sampled8$ACRES92))
## [1] 174062836146
# SRS9 variance = 140718991424
(agpop_SRS9variance <- var(agpop_sampled9$ACRES92))
## [1] 1.40719e+11
# Summarize the variances for the 10 SRS samples
SRSname <- c("SRS0","SRS1","SRS2","SRS3","SRS4","SRS5","SRS6","SRS7","SRS8","SRS9")
SRSvariances <- c(format(round(agpop_SRS0variance,2),nsmall=2,scientific=FALSE),
                  format(round(agpop_SRS1variance,2),nsmall=2,scientific=FALSE),
                  format(round(agpop_SRS2variance,2),nsmall=2,scientific=FALSE),
                  format(round(agpop_SRS3variance,2),nsmall=2,scientific=FALSE),
                  format(round(agpop_SRS4variance,2),nsmall=2,scientific=FALSE),
                  format(round(agpop_SRS5variance,2),nsmall=2,scientific=FALSE),
                  format(round(agpop_SRS6variance,2),nsmall=2,scientific=FALSE),
                  format(round(agpop_SRS7variance,2),nsmall=2,scientific=FALSE),
                  format(round(agpop_SRS8variance,2),nsmall=2,scientific=FALSE),
                  format(round(agpop_SRS9variance,2),nsmall=2,scientific=FALSE))
(SRSVarianceSummary <- as.data.frame(cbind(SRSname,SRSvariances)))
##    SRSname    SRSvariances
## 1     SRS0 182430448622.45
## 2     SRS1 224952698096.95
## 3     SRS2 139476147012.26
## 4     SRS3 253766693746.11
## 5     SRS4 314396869049.06
## 6     SRS5 333860409001.66
## 7     SRS6 317005336115.26
## 8     SRS7 130788548392.68
## 9     SRS8 174062836145.60
## 10    SRS9 140718991424.04

Item 4

##############################################
############       ITEM 4        #############
##############################################
# Construct the population ANOVA table 
# from the stratification obtained in 3
##############################################

# Specify the population size
(N <- nrow(agpop_complete))
## [1] 3059
# Specify the population mean for reference
# Population mean = 308582.4
(agpop_mean <- mean(agpop_complete$ACRES92))
## [1] 308582.4
# Specify the population variance for reference
# Population variance = 1.80891e+11
(agpop_variance <- var(agpop_complete$ACRES92))
## [1] 1.80891e+11
# Gather the stratified population information

# Specify the population size per stratum
# North Central region stratum population size = 1052
(N.NCregion <- nrow(NCregion))
## [1] 1052
# North East region stratum population size = 213
(N.NEregion <- nrow(NEregion))
## [1] 213
# South region stratum population size = 1376
(N.Sregion <- nrow(Sregion))
## [1] 1376
# West region stratum population size = 418
(N.Wregion <- nrow(Wregion))
## [1] 418
# Specify the population mean per stratum for reference
# North Central region stratum population mean = 326570.8
(NCregion_mean <- mean(NCregion$ACRES92))
## [1] 326570.8
# North East region stratum population mean = 93600.31
(NEregion_mean <- mean(NEregion$ACRES92))
## [1] 93600.31
# South region stratum population mean = 200009.2
(Sregion_mean <- mean(Sregion$ACRES92))
## [1] 200009.2
# West region stratum population mean = 730266.9
(Wregion_mean <- mean(Wregion$ACRES92))
## [1] 730266.9
# Specify the population variance per stratum for reference
# North Central region stratum population variance = 7.35429e+10
(NCregion_variance <- var(NCregion$ACRES92))
## [1] 73542921422
# North East region stratum population variance = 6.22619e+09
(NEregion_variance <- var(NEregion$ACRES92))
## [1] 6226188633
# South region stratum population variance = 5.96004e+10
(Sregion_variance <- var(Sregion$ACRES92))
## [1] 59600425689
# West region stratum population variance = 6.99922e+11
(Wregion_variance <- var(Wregion$ACRES92))
## [1] 699922245636
# Compute for STR Population SSB
# SSB for the stratified population = 1.00733e+14
(STRPop_SSB <-  (N.NCregion * (NCregion_mean-agpop_mean)^2) +
                (N.NEregion * (NEregion_mean-agpop_mean)^2) +
                (N.Sregion  * (Sregion_mean-agpop_mean)^2)  +
                (N.Wregion  * (Wregion_mean-agpop_mean)^2))
## [1] 1.00733e+14
# Compute for STR Population SSW
# SSW for the stratified population = 4.524317e+14
(STRPop_SSW <-  ((N.NCregion-1) * NCregion_variance) +
                ((N.NEregion-1) * NEregion_variance) +
                ((N.Sregion-1)  * Sregion_variance)  +
                ((N.Wregion-1)  * Wregion_variance))
## [1] 4.524317e+14
# Compute for STR Population SST
# SST for the stratified population = 5.531647e+14
(STRPop_SST <- (N-1) * agpop_variance)
## [1] 5.531647e+14
# Double check SST using the computed values for SSB and SSW
# SST for the stratified population = 5.531647e+14
(STRPop_SST_Check <- STRPop_SSB + STRPop_SSW)
## [1] 5.531647e+14
# Generate the ANOVA for the Stratified Population
(STRSourceOfVariation <- c("SSB","SSW","SST"))
## [1] "SSB" "SSW" "SST"
(STRDF <- c(H-1,N-H,N-1))
## [1]    3 3055 3058
(STRSumOfSquares <- c(format(round(STRPop_SSB,2),nsmall=2,scientific=FALSE),
                      format(round(STRPop_SSW,2),nsmall=2,scientific=FALSE),
                      format(round(STRPop_SST,2),nsmall=2,scientific=FALSE)))
## [1] "100733006012057.16" "452431724156330.06" "553164730168387.19"
(STRAnovaSummary <- as.data.frame(cbind(STRSourceOfVariation,STRDF,STRSumOfSquares)))
##   STRSourceOfVariation STRDF    STRSumOfSquares
## 1                  SSB     3 100733006012057.16
## 2                  SSW  3055 452431724156330.06
## 3                  SST  3058 553164730168387.19

Item 5

##############################################
############       ITEM 5        #############
##############################################
# set.seed(last 5 digits of your std no + 10) 
# obtain a sample of size 21 from the Northeast stratum.
# set.seed(last 5 digits of your std no + 11) 
# obtain a sample of size 103 from the NorthCentral stratum.
# set.seed(last 5 digits of your std no + 12) 
# obtain a sample of size 135 from the South stratum.
# set.seed(last 5 digits of your std no + 13) 
# obtain a sample of size 41 from the West stratum.
##############################################

(seedSTR1 <- seedSRS0+10)
## [1] 89186
(seedSTR2 <- seedSRS0+11)
## [1] 89187
(seedSTR3 <- seedSRS0+12)
## [1] 89188
(seedSTR4 <- seedSRS0+13)
## [1] 89189
# Specify the sample size for each stratum
(n.NEregion <- 21)
## [1] 21
(n.NCregion <- 103)
## [1] 103
(n.Sregion <- 135)
## [1] 135
(n.Wregion <- 41)
## [1] 41
# Specify the overall sample size
(nSTR <- n.NCregion + n.NEregion + n.Sregion + n.Wregion)
## [1] 300
# Generate the sample indices for each stratum
set.seed(seedSTR1)
(sampleindices10.NEregion <- sample(N.NEregion,n.NEregion))
##  [1] 125 190 170  23  89 154  50 100 137 194  79  70 110  66  95   3  83
## [18]  81  90 116  52
set.seed(seedSTR2)
(sampleindices11.NCregion <- sample(N.NCregion,n.NCregion))
##   [1]  850  309   77  582  887  326    1  623  508  859  522  927  427  770
##  [15]  704   81  521  505  899  784   11  246  746  655   85   22   71  502
##  [29]  183  118  563  650  862   12  500  734  406  929  553  449  107  281
##  [43]  845  999  284  781  203  182   89  793  686  889 1041  906  525  815
##  [57]  628  986  257  357  592  204  886  144  660  743   99   83  922  325
##  [71]  666  399  907  991  891  739  748  962  703  285  269  175  926   26
##  [85] 1047  384  368  109  683    3  430  848  243  323  259  752  167  293
##  [99]   20  863  707  332  882
set.seed(seedSTR3)
(sampleindices12.Sregion <- sample(N.Sregion,n.Sregion))
##   [1]  679   13  355   73  822  181 1072  241 1040  540  587  606  116  240
##  [15] 1357  473   88 1211  155  456  767  813  402   58 1281   43  968  427
##  [29]  268 1077 1145 1070  814  463 1233 1030 1058  886 1261  669  615 1027
##  [43]  309  981  160 1222   77 1323  327 1279  975  545  200 1156  464  881
##  [57]   17  531  734 1374  746  877    4  137  947  782  199 1137  666  303
##  [71]  630  730  695   39  163 1361  723 1300 1069 1174 1224 1041  969   44
##  [85]  988  223  232  976 1112 1109    9 1324 1132  457 1039  561 1330 1097
##  [99]  983 1282  853  618  842  604  790  367 1054 1235  302  702 1159 1215
## [113]  275 1104   70  101  157  224 1352   22  774  502  548   75  786  845
## [127]  659   96  297 1276  234  780 1020 1135  258
set.seed(seedSTR4)
(sampleindices13.Wregion <- sample(N.Wregion,n.Wregion))
##  [1] 201 351 243 288 418 203 183 398 248  20  36 402 318 180  49 301 364
## [18] 312 415 267   6 131 123 338  67 395 380 397 140 382 174  26 214 285
## [35]  90 170 136 256 103 146 230
# Generate the actual samples
(NEregion_sampled10 <- NEregion[sampleindices10.NEregion,])
##      ACRES92 REGION
## 2010  205954     NE
## 2278  203026     NE
## 2257   39561     NE
## 1164  114805     NE
## 1971  171722     NE
## 2241  106390     NE
## 1882   29606     NE
## 1983       0     NE
## 2223  310672     NE
## 2282  252052     NE
## 1961  188008     NE
## 1902   87638     NE
## 1994   92683     NE
## 1898   98256     NE
## 1978  205105     NE
## 286    86581     NE
## 1965  192116     NE
## 1963  111974     NE
## 1972   45820     NE
## 2001   65323     NE
## 1884   97186     NE
(NCregion_sampled11 <- NCregion[sampleindices11.NCregion,])
##      ACRES92 REGION
## 2036   88899     NC
## 877   353371     NC
## 601   229818     NC
## 1387  339372     NC
## 2073  164607     NC
## 894   512728     NC
## 525   328970     NC
## 1428  332910     NC
## 1313   79183     NC
## 2045   28983     NC
## 1327  255453     NC
## 2344  688081     NC
## 1232  277400     NC
## 1813 1069778     NC
## 1747  723816     NC
## 605   364172     NC
## 1326  205031     NC
## 1310  366534     NC
## 2085  253383     NC
## 1827  186806     NC
## 535   341923     NC
## 814   144305     NC
## 1789  270005     NC
## 1460  228936     NC
## 609   331211     NC
## 546   456954     NC
## 595   362109     NC
## 1307  260125     NC
## 751   446750     NC
## 686   377512     NC
## 1368  100774     NC
## 1455  323465     NC
## 2048  113329     NC
## 536   315448     NC
## 1305  221193     NC
## 1777  750913     NC
## 1211  165371     NC
## 2346  236608     NC
## 1358  311849     NC
## 1254   48029     NC
## 675   238906     NC
## 849   160930     NC
## 2031  223216     NC
## 2945  366593     NC
## 852   119318     NC
## 1824  375188     NC
## 771   285730     NC
## 750   141703     NC
## 613   241422     NC
## 1836  330369     NC
## 1729  818893     NC
## 2075  104197     NC
## 2988  207128     NC
## 2092  120519     NC
## 1330  186573     NC
## 1858  314949     NC
## 1433  199292     NC
## 2932   97521     NC
## 825   206885     NC
## 925   409839     NC
## 1397  130358     NC
## 772   165091     NC
## 2072  113892     NC
## 712   203590     NC
## 1465  204171     NC
## 1786  296164     NC
## 623   353683     NC
## 607   353570     NC
## 2339 1026353     NC
## 893   671506     NC
## 1471  165225     NC
## 1204   42572     NC
## 2093  148479     NC
## 2937  386857     NC
## 2077  219037     NC
## 1782  407678     NC
## 1791  296016     NC
## 2379 2076199     NC
## 1746  688468     NC
## 853   144722     NC
## 837   236436     NC
## 743    67998     NC
## 2343  417697     NC
## 550   275319     NC
## 2995  147207     NC
## 952   620144     NC
## 936   451362     NC
## 677   571807     NC
## 1726  594587     NC
## 527   321728     NC
## 1235  438914     NC
## 2034  196759     NC
## 811   305634     NC
## 891   316317     NC
## 827    32318     NC
## 1795  772453     NC
## 735   371936     NC
## 861   162244     NC
## 544   236409     NC
## 2049  245049     NC
## 1750 1048701     NC
## 900   499112     NC
## 2068  269163     NC
(Sregion_sampled12 <-  Sregion[sampleindices12.Sregion,])
##      ACRES92 REGION
## 1649  162634      S
## 18     61426      S
## 509    53895      S
## 78     30196      S
## 2169  250958      S
## 334   132208      S
## 2594   32436      S
## 395   178861      S
## 2561  493227      S
## 1140  245986      S
## 1501  294547      S
## 1520   80902      S
## 121    79803      S
## 394    10192      S
## 3036  178160      S
## 1073  117768      S
## 93    262021      S
## 2734 1712044      S
## 307    83681      S
## 1056  191002      S
## 2114  300829      S
## 2160  207118      S
## 1002   10919      S
## 63     78176      S
## 2835  167858      S
## 48    199714      S
## 2489  117608      S
## 1027   46321      S
## 422    25376      S
## 2599  463450      S
## 2668  220355      S
## 2592  576468      S
## 2161  282211      S
## 1063    4469      S
## 2786   47010      S
## 2551  123756      S
## 2580  688330      S
## 2407   96550      S
## 2815  136320      S
## 1639   31184      S
## 1529  262371      S
## 2548  451584      S
## 463    44599      S
## 2502  337351      S
## 312    52259      S
## 2745  344667      S
## 82     98919      S
## 3002   73430      S
## 481    95876      S
## 2833  100602      S
## 2496  962576      S
## 1145  116221      S
## 353    59642      S
## 2679  526276      S
## 1064    6158      S
## 2402   62989      S
## 22    138135      S
## 1131   23185      S
## 1704  130879      S
## 3053   35836      S
## 1716   67716      S
## 2332  173188      S
## 9      48022      S
## 142    31190      S
## 2468   37550      S
## 2129  599536      S
## 352   151242      S
## 2660  551148      S
## 1636   93584      S
## 457   120839      S
## 1544   80342      S
## 1700   23140      S
## 1665  112291      S
## 44    201892      S
## 316   369965      S
## 3040   55827      S
## 1693   67491      S
## 2854   24924      S
## 2591  461249      S
## 2697   54580      S
## 2747  484907      S
## 2562  518788      S
## 2490  125092      S
## 49    138437      S
## 2509  408710      S
## 377   213943      S
## 386     8518      S
## 2497  103063      S
## 2635  432379      S
## 2632  576893      S
## 14    109555      S
## 3003    2531      S
## 2655  562612      S
## 1057  112409      S
## 2560  801159      S
## 1175  110699      S
## 3009   59184      S
## 2619  517671      S
## 2504  396508      S
## 2836   21507      S
## 2308  194822      S
## 1532  198955      S
## 2297   32392      S
## 1518   89168      S
## 2137  323534      S
## 967   177858      S
## 2576  749504      S
## 2788   81768      S
## 456     8003      S
## 1672   56693      S
## 2682  402011      S
## 2738  863384      S
## 429    36074      S
## 2626  595420      S
## 75     92708      S
## 106   367969      S
## 309    31693      S
## 378   166511      S
## 3031   54622      S
## 27    196859      S
## 2121  336285      S
## 1102  147826      S
## 1148  126839      S
## 80    246184      S
## 2133  268038      S
## 2300  109652      S
## 1629   70697      S
## 101   168848      S
## 451    32657      S
## 2830  195476      S
## 388    52651      S
## 2127  419760      S
## 2541  543750      S
## 2658  487573      S
## 412    43775      S
(Wregion_sampled13 <-  Wregion[sampleindices13.Wregion,])
##      ACRES92 REGION
## 1583 2232575      W
## 2772 1294703      W
## 1625 1454669      W
## 1948  624606      W
## 3078 1484583      W
## 1585  699409      W
## 663     4428      W
## 3058 2704163      W
## 1907 2085387      W
## 162   229365      W
## 178   775829      W
## 3062 2415873      W
## 2206  167880      W
## 660   752032      W
## 191    72471      W
## 2189  402023      W
## 2897   35678      W
## 2200   34292      W
## 3075   62307      W
## 1926  770155      W
## 148  5785707      W
## 274   576397      W
## 266   119287      W
## 2759  434183      W
## 209   647446      W
## 2928 1639965      W
## 2913 1291118      W
## 3057  441321      W
## 521   926607      W
## 2915   55360      W
## 654   211039      W
## 168   450236      W
## 1596   50220      W
## 1944   48968      W
## 232   330826      W
## 650   207552      W
## 280   104010      W
## 1915  843401      W
## 246   177333      W
## 626   325338      W
## 1612 1414415      W

Item 6.A

##############################################
############      ITEM 6.A      ##############
##############################################
# Construct the sample ANOVA table 
# using ybar_SRS for ybar_mu 
# NOTE : use 3.a as reference 
# ( SRS sample using random seed = 89176 )
##############################################

# Specify the sample mean per SRS sample for reference
# SRS0 sample mean = 331645.1
(agpop_sampled0_samplemean <- mean((agpop_sampled0$ACRES92)))
## [1] 331645.1
# SRS1 sample mean = 315117.4
(agpop_sampled1_samplemean <- mean((agpop_sampled1$ACRES92)))
## [1] 315117.4
# SRS2 sample mean = 312988.4
(agpop_sampled2_samplemean <- mean((agpop_sampled2$ACRES92)))
## [1] 312988.4
# SRS3 sample mean = 349607.7
(agpop_sampled3_samplemean <- mean((agpop_sampled3$ACRES92)))
## [1] 349607.7
# SRS4 sample mean = 334447.2
(agpop_sampled4_samplemean <- mean((agpop_sampled4$ACRES92)))
## [1] 334447.2
# SRS5 sample mean = 353240.2
(agpop_sampled5_samplemean <- mean((agpop_sampled5$ACRES92)))
## [1] 353240.2
# SRS6 sample mean = 324067.9
(agpop_sampled6_samplemean <- mean((agpop_sampled6$ACRES92)))
## [1] 324067.9
# SRS7 sample mean = 308757.7
(agpop_sampled7_samplemean <- mean((agpop_sampled7$ACRES92)))
## [1] 308757.7
# SRS8 sample mean = 311701.3
(agpop_sampled8_samplemean <- mean((agpop_sampled8$ACRES92)))
## [1] 311701.3
# SRS9 sample mean = 309142.5
(agpop_sampled9_samplemean <- mean((agpop_sampled9$ACRES92)))
## [1] 309142.5
# Specify the sample variance per SRS for reference
# SRS0 sample variance = 182430448622
(agpop_sampled0_samplevariance <- var((agpop_sampled0$ACRES92)))
## [1] 182430448622
# SRS1 sample variance = 224952698097
(agpop_sampled1_samplevariance <- var((agpop_sampled1$ACRES92)))
## [1] 224952698097
# SRS2 sample variance = 139476147012
(agpop_sampled2_samplevariance <- var((agpop_sampled2$ACRES92)))
## [1] 139476147012
# SRS3 sample variance = 253766693746
(agpop_sampled3_samplevariance <- var((agpop_sampled3$ACRES92)))
## [1] 253766693746
# SRS4 sample variance = 314396869049
(agpop_sampled4_samplevariance <- var((agpop_sampled4$ACRES92)))
## [1] 314396869049
# SRS5 sample variance = 333860409002
(agpop_sampled5_samplevariance <- var((agpop_sampled5$ACRES92)))
## [1] 333860409002
# SRS6 sample variance = 317005336115
(agpop_sampled6_samplevariance <- var((agpop_sampled6$ACRES92)))
## [1] 317005336115
# SRS7 sample variance = 130788548393
(agpop_sampled7_samplevariance <- var((agpop_sampled7$ACRES92)))
## [1] 130788548393
# SRS8 sample variance = 174062836146
(agpop_sampled8_samplevariance <- var((agpop_sampled8$ACRES92)))
## [1] 174062836146
# SRS9 sample variance = 1.40719e+11
(agpop_sampled9_samplevariance <- var((agpop_sampled9$ACRES92)))
## [1] 1.40719e+11
# Create Sum of Squares function
SSFunction <- function(rowdata,target){
  rowdata_count <- 1
  rowdata_sqddiff <- 0
  rowdata_length <- nrow(rowdata)
  while (rowdata_count < rowdata_length + 1 ) {
    rowdata_unit <- rowdata[rowdata_count,]
    rowdata_sqddiff <- rowdata_sqddiff + (rowdata_unit-target)^2
    rowdata_count = rowdata_count + 1
  }
  return(rowdata_sqddiff)
}

# Compute for SRS Sample SSB
(SRSSample_SSB <- (n * (agpop_sampled0_samplemean-agpop_sampled0_samplemean)^2) +
                  (n * (agpop_sampled1_samplemean-agpop_sampled0_samplemean)^2) +
                  (n * (agpop_sampled2_samplemean-agpop_sampled0_samplemean)^2) +
                  (n * (agpop_sampled3_samplemean-agpop_sampled0_samplemean)^2) +
                  (n * (agpop_sampled4_samplemean-agpop_sampled0_samplemean)^2) +
                  (n * (agpop_sampled5_samplemean-agpop_sampled0_samplemean)^2) +
                  (n * (agpop_sampled6_samplemean-agpop_sampled0_samplemean)^2) +
                  (n * (agpop_sampled7_samplemean-agpop_sampled0_samplemean)^2) +
                  (n * (agpop_sampled8_samplemean-agpop_sampled0_samplemean)^2) +
                  (n * (agpop_sampled9_samplemean-agpop_sampled0_samplemean)^2) )
## [1] 871039831387
# Compute for STR Sample SSW
(SRSSample_SSW_0 <- SSFunction(as.data.frame(agpop_sampled0$ACRES92),agpop_sampled0_samplemean))
## [1] 5.45467e+13
(SRSSample_SSW_1 <- SSFunction(as.data.frame(agpop_sampled1$ACRES92),agpop_sampled1_samplemean))
## [1] 6.726086e+13
(SRSSample_SSW_2 <- SSFunction(as.data.frame(agpop_sampled2$ACRES92),agpop_sampled2_samplemean))
## [1] 4.170337e+13
(SRSSample_SSW_3 <- SSFunction(as.data.frame(agpop_sampled3$ACRES92),agpop_sampled3_samplemean))
## [1] 7.587624e+13
(SRSSample_SSW_4 <- SSFunction(as.data.frame(agpop_sampled4$ACRES92),agpop_sampled4_samplemean))
## [1] 9.400466e+13
(SRSSample_SSW_5 <- SSFunction(as.data.frame(agpop_sampled5$ACRES92),agpop_sampled5_samplemean))
## [1] 9.982426e+13
(SRSSample_SSW_6 <- SSFunction(as.data.frame(agpop_sampled6$ACRES92),agpop_sampled6_samplemean))
## [1] 9.47846e+13
(SRSSample_SSW_7 <- SSFunction(as.data.frame(agpop_sampled7$ACRES92),agpop_sampled7_samplemean))
## [1] 3.910578e+13
(SRSSample_SSW_8 <- SSFunction(as.data.frame(agpop_sampled8$ACRES92),agpop_sampled8_samplemean))
## [1] 5.204479e+13
(SRSSample_SSW_9 <- SSFunction(as.data.frame(agpop_sampled9$ACRES92),agpop_sampled9_samplemean))
## [1] 4.207498e+13
(SRSSample_SSW <- SRSSample_SSW_0 + 
                  SRSSample_SSW_1 + 
                  SRSSample_SSW_2 + 
                  SRSSample_SSW_3 + 
                  SRSSample_SSW_4 + 
                  SRSSample_SSW_5 + 
                  SRSSample_SSW_6 + 
                  SRSSample_SSW_7 + 
                  SRSSample_SSW_8 + 
                  SRSSample_SSW_9 )
## [1] 6.612262e+14
# Compute for STR Sample SST
(SRSSample_SST_0 <- SSFunction(as.data.frame(agpop_sampled0$ACRES92),agpop_sampled0_samplemean))
## [1] 5.45467e+13
(SRSSample_SST_1 <- SSFunction(as.data.frame(agpop_sampled1$ACRES92),agpop_sampled0_samplemean))
## [1] 6.734281e+13
(SRSSample_SST_2 <- SSFunction(as.data.frame(agpop_sampled2$ACRES92),agpop_sampled0_samplemean))
## [1] 4.180779e+13
(SRSSample_SST_3 <- SSFunction(as.data.frame(agpop_sampled3$ACRES92),agpop_sampled0_samplemean))
## [1] 7.597304e+13
(SRSSample_SST_4 <- SSFunction(as.data.frame(agpop_sampled4$ACRES92),agpop_sampled0_samplemean))
## [1] 9.400702e+13
(SRSSample_SST_5 <- SSFunction(as.data.frame(agpop_sampled5$ACRES92),agpop_sampled0_samplemean))
## [1] 9.996417e+13
(SRSSample_SST_6 <- SSFunction(as.data.frame(agpop_sampled6$ACRES92),agpop_sampled0_samplemean))
## [1] 9.480182e+13
(SRSSample_SST_7 <- SSFunction(as.data.frame(agpop_sampled7$ACRES92),agpop_sampled0_samplemean))
## [1] 3.926293e+13
(SRSSample_SST_8 <- SSFunction(as.data.frame(agpop_sampled8$ACRES92),agpop_sampled0_samplemean))
## [1] 5.216412e+13
(SRSSample_SST_9 <- SSFunction(as.data.frame(agpop_sampled9$ACRES92),agpop_sampled0_samplemean))
## [1] 4.222689e+13
(SRSSample_SST <- SRSSample_SST_0 + 
                  SRSSample_SST_1 + 
                  SRSSample_SST_2 + 
                  SRSSample_SST_3 + 
                  SRSSample_SST_4 + 
                  SRSSample_SST_5 + 
                  SRSSample_SST_6 + 
                  SRSSample_SST_7 + 
                  SRSSample_SST_8 + 
                  SRSSample_SST_9 )
## [1] 6.620973e+14
# SSB for the SRS sample = 871039831387
SRSSample_SSB
## [1] 871039831387
# SSW for the SRS sample = 6.612262e+14
SRSSample_SSW
## [1] 6.612262e+14
# SST for the SRS sample = 6.620973e+14
SRSSample_SST
## [1] 6.620973e+14
# Double check Sample SST using the computed values for SSB and SSW
# SST for the SRS sample = 7.425776e+13
(SRSSample_SST_Check <- SRSSample_SSB + SRSSample_SSW)
## [1] 6.620973e+14
# Generate the ANOVA for the SRS Samples
(SRSSampleSourceOfVariation <- c("SSB","SSW","SST"))
## [1] "SSB" "SSW" "SST"
(SRSSampleDF <- c(H-1,nSRS-H,nSRS-1))
## [1]    3 2996 2999
(SRSSampleSumOfSquares <- c(format(round(SRSSample_SSB,2),nsmall=2,scientific=FALSE),
                            format(round(SRSSample_SSW,2),nsmall=2,scientific=FALSE),
                            format(round(SRSSample_SST,2),nsmall=2,scientific=FALSE)))
## [1] "871039831386.56"    "661226234304214.75" "662097274135601.50"
(SRSSampleAnovaSummary <- as.data.frame(cbind(SRSSampleSourceOfVariation,SRSSampleDF,SRSSampleSumOfSquares)))
##   SRSSampleSourceOfVariation SRSSampleDF SRSSampleSumOfSquares
## 1                        SSB           3       871039831386.56
## 2                        SSW        2996    661226234304214.75
## 3                        SST        2999    662097274135601.50

Item 6.B

##############################################
############      ITEM 6.B      ##############
##############################################
# Construct the sample ANOVA table 
# using ybar_STR for ybar_mu
##############################################

# Specify the sample mean per stratum for reference
# North East region stratum sample mean = 128784.7
(NEregion_samplemean <- mean(NEregion_sampled10$ACRES92))
## [1] 128784.7
# North Central region stratum sample mean = 334934
(NCregion_samplemean <- mean(NCregion_sampled11$ACRES92))
## [1] 334934
# South region stratum sample mean = 217776
(Sregion_samplemean <- mean(Sregion_sampled12$ACRES92))
## [1] 217776
# West region stratum sample mean = 838613.6
(Wregion_samplemean <- mean(Wregion_sampled13$ACRES92))
## [1] 838613.6
# Compute the stratified sample mean ( equation 3.2 )
# Stratified sample mean = 336705.5
(agpop_sampled_stratified_mean <- (N.NCregion/N)*NCregion_samplemean +
                                  (N.NEregion/N)*NEregion_samplemean +
                                  (N.Sregion/N)*Sregion_samplemean +
                                  (N.Wregion/N)*Wregion_samplemean )
## [1] 336705.5
# Create Sum of Squares function
SSFunction <- function(rowdata,target){
  rowdata_count <- 1
  rowdata_sqddiff <- 0
  rowdata_length <- nrow(rowdata)
  while (rowdata_count < rowdata_length + 1 ) {
    rowdata_unit <- rowdata[rowdata_count,]
    rowdata_sqddiff <- rowdata_sqddiff + (rowdata_unit-target)^2
    rowdata_count = rowdata_count + 1
  }
  return(rowdata_sqddiff)
}

# Compute for STR Sample SSB
(STRSample_SSB <- (n.NCregion * (NCregion_samplemean-agpop_sampled_stratified_mean)^2) +
                  (n.NEregion * (NEregion_samplemean-agpop_sampled_stratified_mean)^2) +
                  (n.Sregion  * (Sregion_samplemean-agpop_sampled_stratified_mean)^2)  +
                  (n.Wregion  * (Wregion_samplemean-agpop_sampled_stratified_mean)^2)  )
## [1] 1.314603e+13
# Compute for STR Sample SSW
(STRSample_SSW_NE <- SSFunction(as.data.frame(NEregion_sampled10$ACRES92),NEregion_samplemean))
## [1] 127912221885
(STRSample_SSW_NC <- SSFunction(as.data.frame(NCregion_sampled11$ACRES92),NCregion_samplemean))
## [1] 7.643786e+12
(STRSample_SSW_S  <- SSFunction(as.data.frame(Sregion_sampled12$ACRES92),Sregion_samplemean))
## [1] 7.695654e+12
(STRSample_SSW_W  <- SSFunction(as.data.frame(Wregion_sampled13$ACRES92),Wregion_samplemean))
## [1] 4.564438e+13
(STRSample_SSW <- STRSample_SSW_NE + STRSample_SSW_NC + STRSample_SSW_S + STRSample_SSW_W)
## [1] 6.111174e+13
# Compute for STR Sample SST
(STRSample_SST_NE <- SSFunction(as.data.frame(NEregion_sampled10$ACRES92),agpop_sampled_stratified_mean))
## [1] 1.035764e+12
(STRSample_SST_NC <- SSFunction(as.data.frame(NCregion_sampled11$ACRES92),agpop_sampled_stratified_mean))
## [1] 7.644109e+12
(STRSample_SST_S  <- SSFunction(as.data.frame(Sregion_sampled12$ACRES92),agpop_sampled_stratified_mean))
## [1] 9.605122e+12
(STRSample_SST_W  <- SSFunction(as.data.frame(Wregion_sampled13$ACRES92),agpop_sampled_stratified_mean))
## [1] 5.597277e+13
(STRSample_SST <- STRSample_SST_NC + STRSample_SST_NE + STRSample_SST_S + STRSample_SST_W)
## [1] 7.425776e+13
# SSB for the stratified sample = 1.314603e+13
STRSample_SSB
## [1] 1.314603e+13
# SSW for the stratified sample = 6.111174e+13
STRSample_SSW
## [1] 6.111174e+13
# SST for the stratified sample = 7.425776e+13
STRSample_SST
## [1] 7.425776e+13
# Double check Sample SST using the computed values for SSB and SSW
# SST for the stratified sample = 7.425776e+13
(STRSample_SST_Check <- STRSample_SSB + STRSample_SSW)
## [1] 7.425776e+13
# Generate the ANOVA for the Stratified Samples
(STRSampleSourceOfVariation <- c("SSB","SSW","SST"))
## [1] "SSB" "SSW" "SST"
(STRSampleDF <- c(H-1,n-H,n-1))
## [1]   3 296 299
(STRSampleSumOfSquares <- c(format(round(STRSample_SSB,2),nsmall=2,scientific=FALSE),
                            format(round(STRSample_SSW,2),nsmall=2,scientific=FALSE),
                            format(round(STRSample_SST,2),nsmall=2,scientific=FALSE)))
## [1] "13146026098979.40" "61111736466354.48" "74257762565333.86"
(STRSampleAnovaSummary <- as.data.frame(cbind(STRSampleSourceOfVariation,STRSampleDF,STRSampleSumOfSquares)))
##   STRSampleSourceOfVariation STRSampleDF STRSampleSumOfSquares
## 1                        SSB           3     13146026098979.40
## 2                        SSW         296     61111736466354.48
## 3                        SST         299     74257762565333.86