Solution:
Chebyshev’s inequality is given as:
\[P(|X - \mu| \ge k\sigma ) \le \frac{\sigma^2}{k^2 \sigma^2}=\frac{1}{k^2}, \\ \space where \space E(x) = \mu, \space and \space V(X) = \sigma^2 \space and \space \mu= k\sigma = k \]
\[P(|X - 50| \ge 15) = \frac{1}{k^2}\]
Calculate k:
\[k \sigma = 15\] \[k.5 = 15 \] \[\begin{align*} \therefore k& = \frac{15}{5} \\ &= 3 \end{align*}\]
\[ \begin{align*} P(|X - 50| \ge 15) &= \frac{1}{k^2} \\ &= \frac{1}{ \frac{1}{3^2}} \\ &= \frac{1}{9} \end{align*} \]
There is a \(\frac{1}{9}\) probability that the number of heads deviates from the expected number of 50 by three or more standard deviations.