Data distribution between groups
aggregate(age~study.group,FUN = function(i) c(summary(i, na.rm=TRUE),sd=(sd(i,na.rm=TRUE))),data=bdpa2)
## study.group age.Min. age.1st Qu. age.Median age.Mean age.3rd Qu.
## 1 CM 18.000000 21.000000 24.500000 26.333333 31.500000
## 2 M 18.000000 22.500000 27.000000 27.333333 30.000000
## 3 OJ 19.000000 21.250000 24.000000 26.000000 30.750000
## age.Max. age.sd
## 1 41.000000 7.129062
## 2 42.000000 6.543969
## 3 35.000000 5.335784
aggregate(weight~study.group,FUN = function(i) c(summary(i, na.rm=TRUE),sd=(sd(i,na.rm=TRUE))),data=bdpa2)
## study.group weight.Min. weight.1st Qu. weight.Median weight.Mean
## 1 CM 57.000000 64.500000 70.025000 72.000000
## 2 M 53.300000 66.250000 71.650000 72.250000
## 3 OJ 59.300000 68.000000 72.000000 72.216667
## weight.3rd Qu. weight.Max. weight.sd
## 1 77.450000 99.000000 11.183036
## 2 76.400000 98.000000 10.100393
## 3 76.550000 89.000000 8.455506
aggregate(height~study.group,FUN = function(i) c(summary(i, na.rm=TRUE),sd=(sd(i,na.rm=TRUE))),data=bdpa2)
## study.group height.Min. height.1st Qu. height.Median height.Mean
## 1 CM 1.49000000 1.58000000 1.59500000 1.60500000
## 2 M 1.48000000 1.57250000 1.60000000 1.60388889
## 3 OJ 1.50000000 1.56250000 1.62000000 1.60555556
## height.3rd Qu. height.Max. height.sd
## 1 1.62000000 1.72000000 0.05933455
## 2 1.63500000 1.72000000 0.05637468
## 3 1.64500000 1.69000000 0.05627895
aggregate(gestational.age~study.group,FUN = function(i) c(summary(i, na.rm=TRUE),sd=(sd(i,na.rm=TRUE))),data=bdpa2)
## study.group gestational.age.Min. gestational.age.1st Qu.
## 1 CM 37.000000 38.035000
## 2 M 24.420000 38.070000
## 3 OJ 25.420000 38.210000
## gestational.age.Median gestational.age.Mean gestational.age.3rd Qu.
## 1 38.565000 38.790000 39.532500
## 2 38.850000 38.266111 40.030000
## 3 39.280000 38.494444 39.962500
## gestational.age.Max. gestational.age.sd
## 1 40.870000 1.120688
## 2 41.570000 3.721232
## 3 40.850000 3.442585
aggregate(parityG~study.group,FUN = function(i) c(summary(i, na.rm=TRUE),sd=(sd(i,na.rm=TRUE))),data=bdpa2)
## study.group parityG.Min. parityG.1st Qu. parityG.Median parityG.Mean
## 1 CM 1.0000000 1.0000000 2.0000000 1.8333333
## 2 M 1.0000000 1.0000000 2.0000000 2.1666667
## 3 OJ 1.0000000 1.0000000 2.0000000 2.2777778
## parityG.3rd Qu. parityG.Max. parityG.sd
## 1 2.0000000 4.0000000 0.9235481
## 2 2.7500000 7.0000000 1.5811388
## 3 2.7500000 7.0000000 1.7083034
aggregate(parityP~study.group,FUN = function(i) c(summary(i, na.rm=TRUE),sd=(sd(i,na.rm=TRUE))),data=bdpa2)
## study.group parityP.Min. parityP.1st Qu. parityP.Median parityP.Mean
## 1 CM 0.0000000 0.0000000 0.0000000 0.5555556
## 2 M 0.0000000 0.0000000 0.0000000 0.8888889
## 3 OJ 0.0000000 0.0000000 0.0000000 0.6666667
## parityP.3rd Qu. parityP.Max. parityP.sd
## 1 1.0000000 2.0000000 0.7838234
## 2 1.0000000 6.0000000 1.5296631
## 3 1.0000000 4.0000000 1.0846523
aggregate(parityC~study.group,FUN = function(i) c(summary(i, na.rm=TRUE),sd=(sd(i,na.rm=TRUE))),data=bdpa2)
## study.group parityC.Min. parityC.1st Qu. parityC.Median parityC.Mean
## 1 CM 0.0000000 0.0000000 0.0000000 0.1111111
## 2 M 0.0000000 0.0000000 0.0000000 0.1666667
## 3 OJ 0.0000000 0.0000000 0.0000000 0.1111111
## parityC.3rd Qu. parityC.Max. parityC.sd
## 1 0.0000000 1.0000000 0.3233808
## 2 0.0000000 1.0000000 0.3834825
## 3 0.0000000 1.0000000 0.3233808
aggregate(parityA~study.group,FUN = function(i) c(summary(i, na.rm=TRUE),sd=(sd(i,na.rm=TRUE))),data=bdpa2)
## study.group parityA.Min. parityA.1st Qu. parityA.Median parityA.Mean
## 1 CM 0.0000000 0.0000000 0.0000000 0.1666667
## 2 M 0.0000000 0.0000000 0.0000000 0.1111111
## 3 OJ 0.0000000 0.0000000 0.0000000 0.5000000
## parityA.3rd Qu. parityA.Max. parityA.sd
## 1 0.0000000 2.0000000 0.5144958
## 2 0.0000000 1.0000000 0.3233808
## 3 1.0000000 2.0000000 0.7859052
aggregate(labor.hours~study.group,FUN = function(i) c(summary(i, na.rm=TRUE),sd=(sd(i,na.rm=TRUE))),data=bdpa2)
## study.group labor.hours.Min. labor.hours.1st Qu. labor.hours.Median
## 1 CM 6.000000 6.000000 6.000000
## 2 M 1.000000 1.000000 1.000000
## 3 OJ 2.000000 5.500000 9.000000
## labor.hours.Mean labor.hours.3rd Qu. labor.hours.Max. labor.hours.sd
## 1 6.750000 6.750000 9.000000 1.500000
## 2 1.000000 1.000000 1.000000 NA
## 3 7.666667 10.500000 12.000000 5.131601
aggregate(fasted.antral.area~study.group,FUN = function(i) c(summary(i, na.rm=TRUE),sd=(sd(i,na.rm=TRUE))),data=bdpa2)
## study.group fasted.antral.area.Min. fasted.antral.area.1st Qu.
## 1 CM 0.8972603 1.2924658
## 2 M 0.9479452 1.2116438
## 3 OJ 0.9849315 1.3034247
## fasted.antral.area.Median fasted.antral.area.Mean
## 1 1.6191781 1.7021309
## 2 1.4760274 1.4846271
## 3 1.5520548 1.6627093
## fasted.antral.area.3rd Qu. fasted.antral.area.Max. fasted.antral.area.sd
## 1 2.0061644 3.8863014 0.7181185
## 2 1.6904110 2.2986301 0.3565778
## 3 1.8315068 2.8972603 0.4800739
aggregate(time.5.area~study.group,FUN = function(i) c(summary(i, na.rm=TRUE),sd=(sd(i,na.rm=TRUE))),data=bdpa2)
## study.group time.5.area.Min. time.5.area.1st Qu. time.5.area.Median
## 1 CM 12.298630 18.204452 19.897945
## 2 M 8.628767 10.749315 11.731507
## 3 OJ 18.900000 22.745205 24.384247
## time.5.area.Mean time.5.area.3rd Qu. time.5.area.Max. time.5.area.sd
## 1 20.465677 21.073973 29.297260 4.322567
## 2 11.695129 12.572603 14.273973 1.452768
## 3 23.838965 25.650000 27.698630 2.726833
aggregate(time.30.area~study.group,FUN = function(i) c(summary(i, na.rm=TRUE),sd=(sd(i,na.rm=TRUE))),data=bdpa2)
## study.group time.30.area.Min. time.30.area.1st Qu. time.30.area.Median
## 1 CM 6.668493 13.123973 13.819863
## 2 M 2.628767 2.934932 3.226027
## 3 OJ 7.689041 10.397603 11.698630
## time.30.area.Mean time.30.area.3rd Qu. time.30.area.Max. time.30.area.sd
## 1 13.466591 14.190068 18.845205 2.909226
## 2 3.809209 3.910616 7.846575 1.416304
## 3 12.343798 13.470890 17.302740 2.906101
aggregate(time.60.area~study.group,FUN = function(i) c(summary(i, na.rm=TRUE),sd=(sd(i,na.rm=TRUE))),data=bdpa2)
## study.group time.60.area.Min. time.60.area.1st Qu. time.60.area.Median
## 1 CM 5.0945205 5.6390411 5.8561644
## 2 M 0.8273973 1.3736301 1.4952055
## 3 OJ 3.5191781 5.2832192 5.3815068
## time.60.area.Mean time.60.area.3rd Qu. time.60.area.Max. time.60.area.sd
## 1 6.6705479 6.7335616 12.8383562 2.1660518
## 2 1.7369102 1.9325342 4.0068493 0.7179637
## 3 6.2836377 5.9770548 10.6246575 2.1479291
aggregate(time.90.area~study.group,FUN = function(i) c(summary(i, na.rm=TRUE),sd=(sd(i,na.rm=TRUE))),data=bdpa2)
## study.group time.90.area.Min. time.90.area.1st Qu. time.90.area.Median
## 1 CM 2.7465753 3.1739726 3.5424658
## 2 M 0.7876712 0.8972603 1.0479452
## 3 OJ 1.7986301 2.2140411 2.5897260
## time.90.area.Mean time.90.area.3rd Qu. time.90.area.Max. time.90.area.sd
## 1 3.6579909 4.1027397 5.3452055 0.6501418
## 2 1.1471081 1.2869863 1.8328767 0.3394416
## 3 2.7431507 3.0027397 4.3684932 0.6727453
aggregate(time.120.area~study.group,FUN = function(i) c(summary(i, na.rm=TRUE),sd=(sd(i,na.rm=TRUE))),data=bdpa2)
## study.group time.120.area.Min. time.120.area.1st Qu.
## 1 CM 1.2876712 2.0962329
## 2 M 0.7684932 0.8493151
## 3 OJ 0.9410959 1.2167808
## time.120.area.Median time.120.area.Mean time.120.area.3rd Qu.
## 1 2.1801370 2.3063927 2.4996575
## 2 0.8726027 1.0310502 0.9739726
## 3 1.5363014 1.5127854 1.7465753
## time.120.area.Max. time.120.area.sd
## 1 4.2493151 0.6369628
## 2 1.8328767 0.3433957
## 3 2.0972603 0.3638995