Coursera Reproducible Pitch

Joel Jogy
16th October, 2018

About

  • URL: https://github.com/joeljogy/DevelopingDataProducts
  • Find here all the data that have been use for this presentation and also for the first part of the data Science Project: “First, you will create a Shiny application and deploy it on Rstudio's servers.Second, you will use Slidify or Rstudio Presenter to prepare a reproducible pitch presentation about your application.”

'mtcars' Dataset

head(mtcars)
                   mpg cyl disp  hp drat    wt  qsec vs am gear carb
Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1

Analysis - main code

  formulaTextPoint <- reactive({
    paste("mpg ~", "as.integer(", input$variable, ")")  })

  fit <- reactive({
    lm(as.formula(formulaTextPoint()), data=mpgData)  })
  ...
  output$fit <- renderPrint({
    summary(fit()) })

  output$mpgPlot <- renderPlot({
    with(mpgData, {
      plot(as.formula(formulaTextPoint()))
      abline(fit(), col=2)
    })  })