## 
## Attaching package: 'olsrr'
## The following object is masked from 'package:datasets':
## 
##     rivers
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Loading required package: ggplot2
## 
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
## 
##     format.pval, units
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:Hmisc':
## 
##     src, summarize
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
## 
## Attaching package: 'reshape'
## The following object is masked from 'package:dplyr':
## 
##     rename
## 
## Attaching package: 'tidyr'
## The following objects are masked from 'package:reshape':
## 
##     expand, smiths
## The following object is masked from 'package:mice':
## 
##     complete
## 
## Attaching package: 'psych'
## The following object is masked from 'package:Hmisc':
## 
##     describe
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
## 
## Attaching package: 'matrixStats'
## The following object is masked from 'package:dplyr':
## 
##     count
## 
## Attaching package: 'e1071'
## The following object is masked from 'package:Hmisc':
## 
##     impute
## corrplot 0.84 loaded
## -------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## -------------------------------------------------------------------------
## 
## Attaching package: 'plyr'
## The following object is masked from 'package:purrr':
## 
##     compact
## The following object is masked from 'package:matrixStats':
## 
##     count
## The following objects are masked from 'package:reshape':
## 
##     rename, round_any
## The following objects are masked from 'package:dplyr':
## 
##     arrange, count, desc, failwith, id, mutate, rename, summarise,
##     summarize
## The following objects are masked from 'package:Hmisc':
## 
##     is.discrete, summarize
## 
## Please cite as:
##  Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
## Warning in checkMatrixPackageVersion(): Package version inconsistency detected.
## TMB was built with Matrix version 1.2.14
## Current Matrix version is 1.2.12
## Please re-install 'TMB' from source using install.packages('TMB', type = 'source') or ask CRAN for a binary version of 'TMB' matching CRAN's 'Matrix' package
## Install package "strengejacke" from GitHub (`devtools::install_github("strengejacke/strengejacke")`) to load all sj-packages at once!

Aims with scaling the emotion predictors

Aim 1 Analyses

Relationship between Mean NA & PA and PTQ

m.ptq2 <- lm(all_70$ptq_total ~ scale(all_70$NA_R_Mean))
summary(m.ptq2)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$NA_R_Mean))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -21.747  -7.743  -1.659   5.664  32.574 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              21.0615     0.9489  22.196  < 2e-16 ***
## scale(all_70$NA_R_Mean)   3.5880     0.9526   3.767 0.000251 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.82 on 128 degrees of freedom
## Multiple R-squared:  0.09978,    Adjusted R-squared:  0.09275 
## F-statistic: 14.19 on 1 and 128 DF,  p-value: 0.0002513
confint(m.ptq2, level=0.95)
##                             2.5 %    97.5 %
## (Intercept)             19.183978 22.939099
## scale(all_70$NA_R_Mean)  1.703132  5.472779
summary(influence.measures(m.ptq2))
## Potentially influential observations of
##   lm(formula = all_70$ptq_total ~ scale(all_70$NA_R_Mean)) :
## 
##     dfb.1_ dfb.s(_7 dffit   cov.r   cook.d hat    
## 1   -0.10   0.26    -0.28    1.06_*  0.04   0.06_*
## 14   0.24   0.12     0.27    0.91_*  0.04   0.01  
## 29   0.25  -0.38     0.46_*  0.92_*  0.10   0.03  
## 33   0.01  -0.02     0.02    1.05_*  0.00   0.03  
## 47  -0.01   0.02    -0.02    1.07_*  0.00   0.05_*
## 49   0.01   0.02     0.03    1.06_*  0.00   0.04  
## 76   0.20  -0.14     0.25    0.95_*  0.03   0.01  
## 108  0.03   0.05     0.06    1.05_*  0.00   0.03  
## 110  0.00   0.01    -0.01    1.09_*  0.00   0.06_*
## 113  0.28   0.18     0.33    0.89_*  0.05   0.01  
## 120  0.04  -0.07     0.08    1.05_*  0.00   0.03
ggplot(all_70, aes(x=all_70$NA_R_Mean, y=all_70$ptq_total)) + 
  geom_point(shape=1) +
  geom_smooth(color= "#000066", method= "lm") +
  annotate("rect", xmin = 57, xmax =63, ymin = 57, ymax = 68, fill = "white", colour="black") +
  annotate("text", x=60, y=65, label = "R^2 == 0.1", parse=T, colour="black") +
  annotate("text", x=60, y=60, label = "beta == 3.59", parse=T) +
  labs(x = "Mean NA", y = "RNT", 
       title = "Relationship Between Mean NA and Repetitive Negative Thinking") +
  theme_classic() 

ggsave("NA_Mean.jpeg")
## Saving 7 x 5 in image
m.ptq2_rr <- lm(all_70$ptq_total ~ scale(all_70$NA_R_Mean) + all_70$nd_resprate)
summary(m.ptq2_rr)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$NA_R_Mean) + all_70$nd_resprate)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -20.114  -7.562  -1.932   5.749  30.553 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                8.457      9.599   0.881 0.379985    
## scale(all_70$NA_R_Mean)    3.614      0.950   3.804 0.000221 ***
## all_70$nd_resprate        15.112     11.452   1.320 0.189335    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.79 on 127 degrees of freedom
## Multiple R-squared:  0.112,  Adjusted R-squared:  0.09797 
## F-statistic: 8.005 on 2 and 127 DF,  p-value: 0.0005316
confint(m.ptq2_rr, level=0.95)
##                              2.5 %   97.5 %
## (Intercept)             -10.537766 27.45070
## scale(all_70$NA_R_Mean)   1.733533  5.49337
## all_70$nd_resprate       -7.548934 37.77287
summary(influence.measures(m.ptq2_rr))
## Potentially influential observations of
##   lm(formula = all_70$ptq_total ~ scale(all_70$NA_R_Mean) + all_70$nd_resprate) :
## 
##     dfb.1_ dfb.s(_7 dfb.a_70 dffit   cov.r   cook.d hat    
## 14  -0.09   0.12     0.11     0.29    0.87_*  0.03   0.01  
## 29   0.27  -0.41    -0.24     0.54_*  0.86_*  0.09   0.03  
## 47   0.00   0.01     0.00    -0.01    1.08_*  0.00   0.05  
## 49   0.01   0.04    -0.01     0.04    1.07_*  0.00   0.05  
## 76   0.21  -0.15    -0.19     0.32    0.91_*  0.03   0.02  
## 103  0.03   0.20    -0.01     0.28    0.93_*  0.03   0.02  
## 110  0.02   0.05    -0.02    -0.05    1.11_*  0.00   0.08_*
## 113 -0.41   0.18     0.44     0.54_*  0.86_*  0.09   0.03
m.ptq4 <- lm(all_70$ptq_total ~ scale(all_70$PA_R_Mean))
summary(m.ptq4)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$PA_R_Mean))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -20.444  -8.290  -1.089   6.398  34.960 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              21.0615     0.9830  21.425   <2e-16 ***
## scale(all_70$PA_R_Mean)  -2.0907     0.9868  -2.119   0.0361 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.21 on 128 degrees of freedom
## Multiple R-squared:  0.03388,    Adjusted R-squared:  0.02633 
## F-statistic: 4.488 on 1 and 128 DF,  p-value: 0.03606
confint(m.ptq4, level=0.95)
##                             2.5 %     97.5 %
## (Intercept)             19.116468 23.0066092
## scale(all_70$PA_R_Mean) -4.043258 -0.1380677
summary(influence.measures(m.ptq4))
## Potentially influential observations of
##   lm(formula = all_70$ptq_total ~ scale(all_70$PA_R_Mean)) :
## 
##     dfb.1_ dfb.s(_7 dffit   cov.r   cook.d hat    
## 1   -0.12  -0.44    -0.46_*  1.12_*  0.10   0.12_*
## 3    0.00  -0.01    -0.01    1.07_*  0.00   0.05_*
## 9   -0.02  -0.05    -0.05    1.05_*  0.00   0.04  
## 14   0.27   0.20     0.33    0.90_*  0.05   0.01  
## 70   0.19   0.12     0.23    0.95_*  0.03   0.01  
## 76   0.22   0.43     0.48_*  0.97    0.11   0.04  
## 85   0.16  -0.35     0.38_*  1.01    0.07   0.04  
## 103  0.23   0.12     0.25    0.93_*  0.03   0.01  
## 113  0.29   0.00     0.29    0.87_*  0.04   0.01
ggplot(all_70, aes(x=all_70$PA_R_Mean, y=all_70$ptq_total)) + 
  geom_point(shape=1) +
  geom_smooth(color= "#66CCCC", method= "lm") +
  annotate("rect", xmin = 81, xmax = 89, ymin = 42, ymax = 53, fill = "white", colour="black") +
  annotate("text", x=85, y=50, label = "R^2 == 0.03", parse=T, colour="black") +
  annotate("text", x=85, y=45, label = "beta == -2.09", parse=T) +
  labs(x = "Mean PA", y = "RNT", 
       title = "Relationship Between Mean PA and Repetitive Negative Thinking") +
  theme_classic() 

ggsave("Mean_PA.png")
## Saving 7 x 5 in image
m.ptq4_rr <- lm(all_70$ptq_total ~ scale(all_70$PA_R_Mean)+ all_70$nd_resprate)
summary(m.ptq4_rr)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$PA_R_Mean) + all_70$nd_resprate)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -19.271  -8.249  -1.308   6.211  32.740 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)  
## (Intercept)               7.4890     9.9663   0.751   0.4538  
## scale(all_70$PA_R_Mean)  -2.1950     0.9864  -2.225   0.0278 *
## all_70$nd_resprate       16.2718    11.8906   1.368   0.1736  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.17 on 127 degrees of freedom
## Multiple R-squared:  0.04792,    Adjusted R-squared:  0.03292 
## F-statistic: 3.196 on 2 and 127 DF,  p-value: 0.04424
confint(m.ptq4_rr, level=0.95)
##                              2.5 %    97.5 %
## (Intercept)             -12.232566 27.210639
## scale(all_70$PA_R_Mean)  -4.146989 -0.243066
## all_70$nd_resprate       -7.257523 39.801119
summary(influence.measures(m.ptq4_rr))
## Potentially influential observations of
##   lm(formula = all_70$ptq_total ~ scale(all_70$PA_R_Mean) + all_70$nd_resprate) :
## 
##     dfb.1_ dfb.s(_7 dfb.a_70 dffit   cov.r   cook.d hat    
## 1    0.01  -0.45    -0.02    -0.47_*  1.11_*  0.07   0.12_*
## 3    0.01   0.02    -0.01     0.02    1.08_*  0.00   0.06  
## 9   -0.01  -0.02     0.01    -0.02    1.08_*  0.00   0.05  
## 14  -0.08   0.19     0.11     0.34    0.85_*  0.04   0.01  
## 70  -0.05   0.12     0.07     0.24    0.93_*  0.02   0.01  
## 76   0.26   0.48    -0.24     0.57_*  0.92_*  0.10   0.05  
## 85   0.24  -0.37    -0.23     0.48_*  0.99    0.08   0.06  
## 103  0.05   0.12    -0.02     0.26    0.89_*  0.02   0.01  
## 113 -0.42  -0.03     0.45     0.53_*  0.85_*  0.09   0.03  
## 117  0.09   0.07    -0.10    -0.13    1.08_*  0.01   0.06

Aim 2 Analyses

Relationship between NA & PA MSSD and PTQ

m.ptq1 <- lm(all_70$ptq_total ~ scale(all_70$NA_R_MSSD))
summary(m.ptq1)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$NA_R_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -23.179  -7.240  -1.697   6.414  28.056 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              21.0615     0.9580  21.985  < 2e-16 ***
## scale(all_70$NA_R_MSSD)   3.2613     0.9617   3.391 0.000926 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.92 on 128 degrees of freedom
## Multiple R-squared:  0.08244,    Adjusted R-squared:  0.07527 
## F-statistic:  11.5 on 1 and 128 DF,  p-value: 0.000926
confint(m.ptq1, level=0.95)
##                             2.5 %    97.5 %
## (Intercept)             19.165982 22.957095
## scale(all_70$NA_R_MSSD)  1.358433  5.164213
summary(influence.measures(m.ptq1))
## Potentially influential observations of
##   lm(formula = all_70$ptq_total ~ scale(all_70$NA_R_MSSD)) :
## 
##     dfb.1_ dfb.s(_7 dffit   cov.r   cook.d hat    
## 8    0.04   0.09     0.10    1.06_*  0.00   0.05_*
## 14   0.22   0.32     0.39_*  0.95_*  0.07   0.02  
## 19   0.22  -0.21     0.30    0.94_*  0.04   0.01  
## 29   0.21  -0.08     0.22    0.94_*  0.02   0.01  
## 85   0.22  -0.15     0.26    0.94_*  0.03   0.01  
## 87  -0.04  -0.11    -0.12    1.09_*  0.01   0.07_*
## 103  0.23  -0.03     0.23    0.92_*  0.03   0.01  
## 106  0.01   0.04     0.04    1.10_*  0.00   0.07_*
## 113  0.24   0.51     0.56_*  0.95_*  0.15   0.04  
## 118 -0.11  -0.38    -0.40_*  1.10_*  0.08   0.10_*
## 122 -0.03  -0.07    -0.08    1.06_*  0.00   0.04  
## 123 -0.01  -0.01    -0.02    1.06_*  0.00   0.04  
## 124 -0.09  -0.29    -0.31    1.09_*  0.05   0.09_*
m.ptq1rr <- lm(all_70$ptq_total ~ scale(all_70$NA_R_MSSD) + all_70$nd_resprate)
summary(m.ptq1rr)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$NA_R_MSSD) + all_70$nd_resprate)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -23.843  -7.271  -1.550   6.253  27.615 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)   
## (Intercept)              17.1029    10.0620   1.700  0.09163 . 
## scale(all_70$NA_R_MSSD)   3.1634     0.9962   3.176  0.00188 **
## all_70$nd_resprate        4.7460    12.0079   0.395  0.69333   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.96 on 127 degrees of freedom
## Multiple R-squared:  0.08357,    Adjusted R-squared:  0.06913 
## F-statistic:  5.79 on 2 and 127 DF,  p-value: 0.003921
ggplot(all_70, aes(x=all_70$NA_R_MSSD, y=all_70$ptq_total)) + 
  geom_point(shape=1) +
  geom_smooth(color= "#000066", method= "lm", linetype = 2) +
  annotate("rect", xmin = 50, xmax =180, ymin = 57, ymax = 68, fill = "white", colour="black") +
  annotate("text", x=120, y=65, label = "R^2 == 0.08", parse=T, colour="black") +
  annotate("text", x=120, y=60, label = "beta == 3.26", parse=T) +
  labs(x = "NA MSSD", y = "RNT", 
       title = "Relationship Between NA Instability and Repetitive Negative Thinking") +
  theme_classic() 

ggsave("NAMSSD.png")
## Saving 7 x 5 in image
m.ptq3 <- lm(all_70$ptq_total ~ scale(all_70$PA_R_MSSD))
summary(m.ptq3)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$PA_R_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -20.768  -8.175  -0.772   6.137  32.119 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              21.0615     0.9829  21.427   <2e-16 ***
## scale(all_70$PA_R_MSSD)   2.0960     0.9867   2.124   0.0356 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.21 on 128 degrees of freedom
## Multiple R-squared:  0.03405,    Adjusted R-squared:  0.0265 
## F-statistic: 4.512 on 1 and 128 DF,  p-value: 0.03558
confint(m.ptq3, level=0.95)
##                              2.5 %    97.5 %
## (Intercept)             19.1166421 23.006435
## scale(all_70$PA_R_MSSD)  0.1435808  4.048421
summary(influence.measures(m.ptq3))
## Potentially influential observations of
##   lm(formula = all_70$ptq_total ~ scale(all_70$PA_R_MSSD)) :
## 
##     dfb.1_ dfb.s(_7 dffit   cov.r   cook.d hat    
## 2   -0.09  -0.29    -0.30    1.10_*  0.04   0.09_*
## 14   0.23   0.31     0.39_*  0.94_*  0.07   0.02  
## 29   0.19   0.00     0.19    0.95_*  0.02   0.01  
## 76   0.14   0.37     0.40_*  1.05_*  0.08   0.07_*
## 85   0.21  -0.21     0.30    0.95_*  0.04   0.02  
## 93  -0.08  -0.20    -0.22    1.07_*  0.02   0.06_*
## 103  0.23  -0.12     0.26    0.93_*  0.03   0.01  
## 106  0.04   0.12     0.12    1.11_*  0.01   0.09_*
## 113  0.26   0.36     0.44_*  0.91_*  0.09   0.02  
## 118 -0.06  -0.17    -0.18    1.09_*  0.02   0.07_*
## 123  0.01   0.03     0.03    1.06_*  0.00   0.04  
## 124 -0.06  -0.21    -0.22    1.12_*  0.03   0.10_*
m.ptq3rr <- lm(all_70$ptq_total ~ scale(all_70$PA_R_MSSD) + all_70$nd_resprate)
summary(m.ptq3rr)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$PA_R_MSSD) + all_70$nd_resprate)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -22.837  -8.040  -1.060   6.011  30.459 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)  
## (Intercept)              10.3999     9.9810   1.042   0.2994  
## scale(all_70$PA_R_MSSD)   2.0335     0.9879   2.059   0.0416 *
## all_70$nd_resprate       12.7820    11.9079   1.073   0.2851  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.2 on 127 degrees of freedom
## Multiple R-squared:  0.04274,    Adjusted R-squared:  0.02766 
## F-statistic: 2.835 on 2 and 127 DF,  p-value: 0.06245
ggplot(all_70, aes(x=all_70$PA_R_MSSD, y=all_70$ptq_total)) + 
  geom_point(shape=1) +
  geom_smooth(color= "#66CCCC", method= "lm", linetype = 2) +
  annotate("rect", xmin = 50, xmax =180, ymin = 57, ymax = 68, fill = "white", colour="black") +
  annotate("text", x=120, y=65, label = "R^2 == 0.03", parse=T, colour="black") +
  annotate("text", x=120, y=60, label = "beta == 2.1", parse=T) +
  labs(x = "PA MSSD", y = "RNT", 
       title = "Relationship Between PA Instability and Repetitive Negative Thinking") +
  theme_classic() 

ggsave("PAMSSD.png")
## Saving 7 x 5 in image

summary of Aims 1 and 2 regression equations

{r} #sjt.lm(m.ptq2, m.ptq4, m.ptq1, m.ptq3, pred.labels = c("Mean NA", "Mean PA", "NA MSSD", "PA MSSD"), depvar.labels = c("RNT Equation 1", "RNT Equation 2", "RNT Equation 3", "RNT Equation 4"), show.aic = TRUE, show.se= TRUE, group.pred=TRUE, emph.p= TRUE) #

Aim 3 Analyses

Relationship between NA Mean and MSSD as they relate to PTQ

m.NA_all <- lm(all_70$ptq_total ~ scale(all_70$NA_R_MSSD) + scale(all_70$NA_R_Mean))
summary(m.NA_all)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$NA_R_MSSD) + scale(all_70$NA_R_Mean))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -20.577  -7.147  -1.766   5.873  30.421 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              21.0615     0.9114  23.108  < 2e-16 ***
## scale(all_70$NA_R_MSSD)   3.1371     0.9155   3.426 0.000824 ***
## scale(all_70$NA_R_Mean)   3.4758     0.9155   3.796 0.000226 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.39 on 127 degrees of freedom
## Multiple R-squared:  0.176,  Adjusted R-squared:  0.163 
## F-statistic: 13.56 on 2 and 127 DF,  p-value: 4.6e-06
confint(m.NA_all, level=0.95)
##                             2.5 %    97.5 %
## (Intercept)             19.257983 22.865094
## scale(all_70$NA_R_MSSD)  1.325381  4.948763
## scale(all_70$NA_R_Mean)  1.664123  5.287505
m.NA_allrr <- lm(all_70$ptq_total ~ scale(all_70$NA_R_MSSD) + scale(all_70$NA_R_Mean) + all_70$nd_resprate)
summary(m.NA_allrr)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$NA_R_MSSD) + scale(all_70$NA_R_Mean) + 
##     all_70$nd_resprate)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -20.139  -7.193  -1.671   5.652  30.840 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              16.0096     9.5727   1.672 0.096923 .  
## scale(all_70$NA_R_MSSD)   3.0116     0.9481   3.176 0.001876 ** 
## scale(all_70$NA_R_Mean)   3.4905     0.9186   3.800 0.000224 ***
## all_70$nd_resprate        6.0566    11.4241   0.530 0.596934    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.42 on 126 degrees of freedom
## Multiple R-squared:  0.1778, Adjusted R-squared:  0.1582 
## F-statistic: 9.082 on 3 and 126 DF,  p-value: 1.731e-05
m.NA_interact <- lm(all_70$ptq_total ~ scale(all_70$NA_R_MSSD)*scale(all_70$NA_R_Mean))
summary(m.NA_interact)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$NA_R_MSSD) * scale(all_70$NA_R_Mean))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -20.581  -7.200  -1.823   6.034  30.406 
## 
## Coefficients:
##                                                 Estimate Std. Error
## (Intercept)                                      21.0527     0.9156
## scale(all_70$NA_R_MSSD)                           3.1305     0.9194
## scale(all_70$NA_R_Mean)                           3.5553     0.9817
## scale(all_70$NA_R_MSSD):scale(all_70$NA_R_Mean)   0.2485     1.0799
##                                                 t value Pr(>|t|)    
## (Intercept)                                      22.992  < 2e-16 ***
## scale(all_70$NA_R_MSSD)                           3.405 0.000889 ***
## scale(all_70$NA_R_Mean)                           3.621 0.000423 ***
## scale(all_70$NA_R_MSSD):scale(all_70$NA_R_Mean)   0.230 0.818397    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.43 on 126 degrees of freedom
## Multiple R-squared:  0.1763, Adjusted R-squared:  0.1567 
## F-statistic:  8.99 on 3 and 126 DF,  p-value: 1.933e-05
confint(m.NA_interact, level=0.95)
##                                                     2.5 %    97.5 %
## (Intercept)                                     19.240681 22.864768
## scale(all_70$NA_R_MSSD)                          1.310943  4.949969
## scale(all_70$NA_R_Mean)                          1.612471  5.498080
## scale(all_70$NA_R_MSSD):scale(all_70$NA_R_Mean) -1.888626  2.385570

Relationship between PA Mean and MSSD as they relate to PTQ

m.PA_all <- lm(all_70$ptq_total ~ scale(all_70$PA_R_MSSD) + scale(all_70$PA_R_Mean))
summary(m.PA_all)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$PA_R_MSSD) + scale(all_70$PA_R_Mean))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -21.382  -7.827  -1.544   6.494  31.953 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              21.0615     0.9670  21.781   <2e-16 ***
## scale(all_70$PA_R_MSSD)   2.2365     0.9726   2.299   0.0231 *  
## scale(all_70$PA_R_Mean)  -2.2315     0.9726  -2.294   0.0234 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.03 on 127 degrees of freedom
## Multiple R-squared:  0.07249,    Adjusted R-squared:  0.05789 
## F-statistic: 4.963 on 2 and 127 DF,  p-value: 0.008407
confint(m.PA_all, level=0.95)
##                              2.5 %     97.5 %
## (Intercept)             19.1481034 22.9749735
## scale(all_70$PA_R_MSSD)  0.3118447  4.1611565
## scale(all_70$PA_R_Mean) -4.1561346 -0.3068228
m.PA_allrr <- lm(all_70$ptq_total ~ scale(all_70$PA_R_MSSD) + scale(all_70$PA_R_Mean) + all_70$nd_resprate)
summary(m.PA_allrr)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$PA_R_MSSD) + scale(all_70$PA_R_Mean) + 
##     all_70$nd_resprate)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -21.015  -8.003  -1.080   6.229  30.017 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)  
## (Intercept)               8.6751     9.8279   0.883   0.3791  
## scale(all_70$PA_R_MSSD)   2.1697     0.9718   2.233   0.0273 *
## scale(all_70$PA_R_Mean)  -2.3225     0.9730  -2.387   0.0185 *
## all_70$nd_resprate       14.8498    11.7256   1.266   0.2077  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11 on 126 degrees of freedom
## Multiple R-squared:  0.08415,    Adjusted R-squared:  0.06234 
## F-statistic: 3.859 on 3 and 126 DF,  p-value: 0.0111
m.PA_interact <- lm(all_70$ptq_total ~ scale(all_70$PA_R_MSSD)*scale(all_70$PA_R_Mean))
summary(m.PA_interact)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$PA_R_MSSD) * scale(all_70$PA_R_Mean))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -20.768  -7.858  -1.046   6.487  32.359 
## 
## Coefficients:
##                                                 Estimate Std. Error
## (Intercept)                                      20.9708     0.9638
## scale(all_70$PA_R_MSSD)                           1.9852     0.9816
## scale(all_70$PA_R_Mean)                          -1.9166     0.9894
## scale(all_70$PA_R_MSSD):scale(all_70$PA_R_Mean)   1.4517     0.9526
##                                                 t value Pr(>|t|)    
## (Intercept)                                      21.758   <2e-16 ***
## scale(all_70$PA_R_MSSD)                           2.022   0.0452 *  
## scale(all_70$PA_R_Mean)                          -1.937   0.0550 .  
## scale(all_70$PA_R_MSSD):scale(all_70$PA_R_Mean)   1.524   0.1300    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.97 on 126 degrees of freedom
## Multiple R-squared:  0.08928,    Adjusted R-squared:  0.0676 
## F-statistic: 4.117 on 3 and 126 DF,  p-value: 0.00799
vcov(m.PA_interact)
##                                                  (Intercept)
## (Intercept)                                      0.928913388
## scale(all_70$PA_R_MSSD)                          0.009814724
## scale(all_70$PA_R_Mean)                         -0.012294881
## scale(all_70$PA_R_MSSD):scale(all_70$PA_R_Mean) -0.056692261
##                                                 scale(all_70$PA_R_MSSD)
## (Intercept)                                                 0.009814724
## scale(all_70$PA_R_MSSD)                                     0.963452272
## scale(all_70$PA_R_Mean)                                    -0.093017356
## scale(all_70$PA_R_MSSD):scale(all_70$PA_R_Mean)            -0.157090266
##                                                 scale(all_70$PA_R_Mean)
## (Intercept)                                                 -0.01229488
## scale(all_70$PA_R_MSSD)                                     -0.09301736
## scale(all_70$PA_R_Mean)                                      0.97893358
## scale(all_70$PA_R_MSSD):scale(all_70$PA_R_Mean)              0.19678660
##                                                 scale(all_70$PA_R_MSSD):scale(all_70$PA_R_Mean)
## (Intercept)                                                                         -0.05669226
## scale(all_70$PA_R_MSSD)                                                             -0.15709027
## scale(all_70$PA_R_Mean)                                                              0.19678660
## scale(all_70$PA_R_MSSD):scale(all_70$PA_R_Mean)                                      0.90739206
confint(m.PA_interact, level=0.95)
##                                                       2.5 %      97.5 %
## (Intercept)                                     19.06350453 22.87817432
## scale(all_70$PA_R_MSSD)                          0.04270942  3.92765054
## scale(all_70$PA_R_Mean)                         -3.87466466  0.04136481
## scale(all_70$PA_R_MSSD):scale(all_70$PA_R_Mean) -0.43342064  3.33680052

full model with all 4 items

m_all <-lm(all_70$ptq_total ~ scale(all_70$PA_R_MSSD) + scale(all_70$PA_R_Mean) + scale(all_70$NA_R_MSSD) + scale(all_70$NA_R_Mean))
summary(m_all)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$PA_R_MSSD) + scale(all_70$PA_R_Mean) + 
##     scale(all_70$NA_R_MSSD) + scale(all_70$NA_R_Mean))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -20.191  -7.295  -2.300   6.021  30.214 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               21.061      0.914  23.044  < 2e-16 ***
## scale(all_70$PA_R_MSSD)   -1.557      1.569  -0.992  0.32295    
## scale(all_70$PA_R_Mean)   -0.534      1.072  -0.498  0.61933    
## scale(all_70$NA_R_MSSD)    4.431      1.567   2.828  0.00546 ** 
## scale(all_70$NA_R_Mean)    3.203      1.071   2.992  0.00334 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.42 on 125 degrees of freedom
## Multiple R-squared:  0.1844, Adjusted R-squared:  0.1583 
## F-statistic: 7.067 on 4 and 125 DF,  p-value: 3.667e-05
confint(m_all, level=0.95)
##                             2.5 %    97.5 %
## (Intercept)             19.252698 22.870379
## scale(all_70$PA_R_MSSD) -4.663564  1.548730
## scale(all_70$PA_R_Mean) -2.655938  1.587975
## scale(all_70$NA_R_MSSD)  1.329690  7.531886
## scale(all_70$NA_R_Mean)  1.084274  5.321790
m_allrr <-lm(all_70$ptq_total ~ scale(all_70$PA_R_MSSD) + scale(all_70$PA_R_Mean) + scale(all_70$NA_R_MSSD) + scale(all_70$NA_R_Mean) + all_70$nd_resprate)
summary(m_allrr)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$PA_R_MSSD) + scale(all_70$PA_R_Mean) + 
##     scale(all_70$NA_R_MSSD) + scale(all_70$NA_R_Mean) + all_70$nd_resprate)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -19.954  -7.471  -2.164   5.881  30.395 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)   
## (Intercept)              17.8708     9.9550   1.795  0.07507 . 
## scale(all_70$PA_R_MSSD)  -1.4230     1.6295  -0.873  0.38420   
## scale(all_70$PA_R_Mean)  -0.5621     1.0796  -0.521  0.60351   
## scale(all_70$NA_R_MSSD)   4.2443     1.6759   2.533  0.01257 * 
## scale(all_70$NA_R_Mean)   3.1977     1.0745   2.976  0.00351 **
## all_70$nd_resprate        3.8253    11.8841   0.322  0.74808   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.46 on 124 degrees of freedom
## Multiple R-squared:  0.1851, Adjusted R-squared:  0.1522 
## F-statistic: 5.633 on 5 and 124 DF,  p-value: 0.0001028

summary of Aim 3 regression equations

```{r, echo=FALSE}

sjt.lm(m.NA_all,m.PA_all, m_all, pred.labels = c(“NA MSSD”, “Mean NA”, “PA MSSD”, “Mean PA”), depvar.labels = c(“RNT Equation 5”, “RNT Equation 6”, “RNT Equation 7”), show.aic = TRUE, show.se= TRUE, group.pred=TRUE, emph.p= TRUE) ###```

model fit comparisons

##          df       AIC
## m.ptq1    3  994.5307
## m.ptq2    3  992.0504
## m.ptq3    3 1001.2116
## m.ptq4    3 1001.2349
## m.NA_all  4  982.5559
## m.PA_all  4  997.9322
## m_all     6  985.2131
##          df      BIC
## m.ptq1    3 1003.133
## m.ptq2    3 1000.653
## m.ptq3    3 1009.814
## m.ptq4    3 1009.838
## m.NA_all  4  994.026
## m.PA_all  4 1009.402
## m_all     6 1002.418
##             model df.x       AIC df.y      BIC
## 1         NA_Mean    3  992.0504    3 1000.653
## 2    NA_Mean&MSSD    4  982.5559    4  994.026
## 3         NA_MSSD    3  994.5307    3 1003.133
## 4         PA_Mean    3 1001.2349    3 1009.838
## 5    PA_Mean&MSSD    4  997.9322    4 1009.402
## 6         PA_MSSD    3 1001.2116    3 1009.814
## 7 PA_NA_Mean&MSSD    6  985.2131    6 1002.418
print(model_fit)
##             model df.x       AIC      BIC log_likelihood
## 1         NA_Mean    3  992.0504 1000.653      -494.2653
## 2    NA_Mean&MSSD    4  982.5559  994.026      -493.0252
## 3         NA_MSSD    3  994.5307 1003.133      -497.6058
## 4         PA_Mean    3 1001.2349 1009.838      -497.6175
## 5    PA_Mean&MSSD    4  997.9322 1009.402      -487.2779
## 6         PA_MSSD    3 1001.2116 1009.814      -494.9661
## 7 PA_NA_Mean&MSSD    6  985.2131 1002.418      -486.6065

Aim 4 Analyses

Correlation matrix of the individual item means

##                anxious_mean nervous_mean upset_mean sluggish_mean
## anxious_mean           1.00         0.93       0.75          0.63
## nervous_mean           0.93         1.00       0.83          0.63
## upset_mean             0.75         0.83       1.00          0.67
## sluggish_mean          0.63         0.63       0.67          1.00
## irritable_mean         0.76         0.78       0.88          0.77
## content_mean          -0.46        -0.44      -0.61         -0.41
## relaxed_mean          -0.62        -0.56      -0.47         -0.39
## excited_mean          -0.14        -0.08      -0.16         -0.17
## happy_mean            -0.39        -0.43      -0.57         -0.41
## attentive_mean        -0.17        -0.27      -0.26         -0.49
##                irritable_mean content_mean relaxed_mean excited_mean
## anxious_mean             0.76        -0.46        -0.62        -0.14
## nervous_mean             0.78        -0.44        -0.56        -0.08
## upset_mean               0.88        -0.61        -0.47        -0.16
## sluggish_mean            0.77        -0.41        -0.39        -0.17
## irritable_mean           1.00        -0.58        -0.47        -0.21
## content_mean            -0.58         1.00         0.71         0.67
## relaxed_mean            -0.47         0.71         1.00         0.52
## excited_mean            -0.21         0.67         0.52         1.00
## happy_mean              -0.52         0.90         0.69         0.74
## attentive_mean          -0.33         0.55         0.38         0.58
##                happy_mean attentive_mean
## anxious_mean        -0.39          -0.17
## nervous_mean        -0.43          -0.27
## upset_mean          -0.57          -0.26
## sluggish_mean       -0.41          -0.49
## irritable_mean      -0.52          -0.33
## content_mean         0.90           0.55
## relaxed_mean         0.69           0.38
## excited_mean         0.74           0.58
## happy_mean           1.00           0.56
## attentive_mean       0.56           1.00
## 
## n
##                anxious_mean nervous_mean upset_mean sluggish_mean
## anxious_mean            130           85        130            85
## nervous_mean             85           85         85            85
## upset_mean              130           85        130            85
## sluggish_mean            85           85         85            85
## irritable_mean          130           85        130            85
## content_mean            130           85        130            85
## relaxed_mean            130           85        130            85
## excited_mean            130           85        130            85
## happy_mean              130           85        130            85
## attentive_mean          130           85        130            85
##                irritable_mean content_mean relaxed_mean excited_mean
## anxious_mean              130          130          130          130
## nervous_mean               85           85           85           85
## upset_mean                130          130          130          130
## sluggish_mean              85           85           85           85
## irritable_mean            130          130          130          130
## content_mean              130          130          130          130
## relaxed_mean              130          130          130          130
## excited_mean              130          130          130          130
## happy_mean                130          130          130          130
## attentive_mean            130          130          130          130
##                happy_mean attentive_mean
## anxious_mean          130            130
## nervous_mean           85             85
## upset_mean            130            130
## sluggish_mean          85             85
## irritable_mean        130            130
## content_mean          130            130
## relaxed_mean          130            130
## excited_mean          130            130
## happy_mean            130            130
## attentive_mean        130            130
## 
## P
##                anxious_mean nervous_mean upset_mean sluggish_mean
## anxious_mean                0.0000       0.0000     0.0000       
## nervous_mean   0.0000                    0.0000     0.0000       
## upset_mean     0.0000       0.0000                  0.0000       
## sluggish_mean  0.0000       0.0000       0.0000                  
## irritable_mean 0.0000       0.0000       0.0000     0.0000       
## content_mean   0.0000       0.0000       0.0000     0.0001       
## relaxed_mean   0.0000       0.0000       0.0000     0.0002       
## excited_mean   0.1113       0.4690       0.0735     0.1225       
## happy_mean     0.0000       0.0000       0.0000     0.0001       
## attentive_mean 0.0465       0.0135       0.0033     0.0000       
##                irritable_mean content_mean relaxed_mean excited_mean
## anxious_mean   0.0000         0.0000       0.0000       0.1113      
## nervous_mean   0.0000         0.0000       0.0000       0.4690      
## upset_mean     0.0000         0.0000       0.0000       0.0735      
## sluggish_mean  0.0000         0.0001       0.0002       0.1225      
## irritable_mean                0.0000       0.0000       0.0192      
## content_mean   0.0000                      0.0000       0.0000      
## relaxed_mean   0.0000         0.0000                    0.0000      
## excited_mean   0.0192         0.0000       0.0000                   
## happy_mean     0.0000         0.0000       0.0000       0.0000      
## attentive_mean 0.0001         0.0000       0.0000       0.0000      
##                happy_mean attentive_mean
## anxious_mean   0.0000     0.0465        
## nervous_mean   0.0000     0.0135        
## upset_mean     0.0000     0.0033        
## sluggish_mean  0.0001     0.0000        
## irritable_mean 0.0000     0.0001        
## content_mean   0.0000     0.0000        
## relaxed_mean   0.0000     0.0000        
## excited_mean   0.0000     0.0000        
## happy_mean                0.0000        
## attentive_mean 0.0000

Correlation matrix of the individual item mssd

##                anxious_mssd nervous_mssd upset_mssd sluggish_mssd
## anxious_mssd           1.00         0.43       0.63          0.33
## nervous_mssd           0.43         1.00       0.16          0.77
## upset_mssd             0.63         0.16       1.00          0.09
## sluggish_mssd          0.33         0.77       0.09          1.00
## irritable_mssd         0.70         0.24       0.72          0.25
## content_mssd           0.70         0.23       0.76          0.18
## relaxed_mssd           0.76         0.17       0.66          0.14
## excited_mssd           0.69         0.28       0.67          0.28
## happy_mssd             0.72         0.21       0.71          0.15
## attentive_mssd         0.62         0.35       0.47          0.37
##                irritable_mssd content_mssd relaxed_mssd excited_mssd
## anxious_mssd             0.70         0.70         0.76         0.69
## nervous_mssd             0.24         0.23         0.17         0.28
## upset_mssd               0.72         0.76         0.66         0.67
## sluggish_mssd            0.25         0.18         0.14         0.28
## irritable_mssd           1.00         0.68         0.65         0.69
## content_mssd             0.68         1.00         0.68         0.75
## relaxed_mssd             0.65         0.68         1.00         0.72
## excited_mssd             0.69         0.75         0.72         1.00
## happy_mssd               0.69         0.89         0.72         0.76
## attentive_mssd           0.61         0.57         0.55         0.65
##                happy_mssd attentive_mssd
## anxious_mssd         0.72           0.62
## nervous_mssd         0.21           0.35
## upset_mssd           0.71           0.47
## sluggish_mssd        0.15           0.37
## irritable_mssd       0.69           0.61
## content_mssd         0.89           0.57
## relaxed_mssd         0.72           0.55
## excited_mssd         0.76           0.65
## happy_mssd           1.00           0.54
## attentive_mssd       0.54           1.00
## 
## n= 130 
## 
## 
## P
##                anxious_mssd nervous_mssd upset_mssd sluggish_mssd
## anxious_mssd                0.0000       0.0000     0.0002       
## nervous_mssd   0.0000                    0.0711     0.0000       
## upset_mssd     0.0000       0.0711                  0.3199       
## sluggish_mssd  0.0002       0.0000       0.3199                  
## irritable_mssd 0.0000       0.0070       0.0000     0.0047       
## content_mssd   0.0000       0.0098       0.0000     0.0402       
## relaxed_mssd   0.0000       0.0502       0.0000     0.1185       
## excited_mssd   0.0000       0.0013       0.0000     0.0014       
## happy_mssd     0.0000       0.0141       0.0000     0.0861       
## attentive_mssd 0.0000       0.0000       0.0000     0.0000       
##                irritable_mssd content_mssd relaxed_mssd excited_mssd
## anxious_mssd   0.0000         0.0000       0.0000       0.0000      
## nervous_mssd   0.0070         0.0098       0.0502       0.0013      
## upset_mssd     0.0000         0.0000       0.0000       0.0000      
## sluggish_mssd  0.0047         0.0402       0.1185       0.0014      
## irritable_mssd                0.0000       0.0000       0.0000      
## content_mssd   0.0000                      0.0000       0.0000      
## relaxed_mssd   0.0000         0.0000                    0.0000      
## excited_mssd   0.0000         0.0000       0.0000                   
## happy_mssd     0.0000         0.0000       0.0000       0.0000      
## attentive_mssd 0.0000         0.0000       0.0000       0.0000      
##                happy_mssd attentive_mssd
## anxious_mssd   0.0000     0.0000        
## nervous_mssd   0.0141     0.0000        
## upset_mssd     0.0000     0.0000        
## sluggish_mssd  0.0861     0.0000        
## irritable_mssd 0.0000     0.0000        
## content_mssd   0.0000     0.0000        
## relaxed_mssd   0.0000     0.0000        
## excited_mssd   0.0000     0.0000        
## happy_mssd                0.0000        
## attentive_mssd 0.0000

Correlation matrix of the individual item means and mssd

PCA for item means

means.pca <- prcomp(na.omit(indiv_means),
                    center = TRUE,
                    scale = TRUE)
summary(means.pca)
## Importance of components:
##                           PC1    PC2    PC3     PC4     PC5    PC6     PC7
## Standard deviation     2.4314 1.4561 0.8283 0.66576 0.53048 0.4940 0.38397
## Proportion of Variance 0.5912 0.2120 0.0686 0.04432 0.02814 0.0244 0.01474
## Cumulative Proportion  0.5912 0.8032 0.8718 0.91614 0.94428 0.9687 0.98342
##                            PC8     PC9    PC10
## Standard deviation     0.27510 0.22331 0.20058
## Proportion of Variance 0.00757 0.00499 0.00402
## Cumulative Proportion  0.99099 0.99598 1.00000
print(means.pca)
## Standard deviations (1, .., p=10):
##  [1] 2.4314404 1.4560817 0.8282742 0.6657619 0.5304782 0.4939907 0.3839744
##  [8] 0.2750958 0.2233084 0.2005800
## 
## Rotation (n x k) = (10 x 10):
##                       PC1        PC2          PC3         PC4         PC5
## anxious_mean    0.3288094 -0.3162490  0.251999500 -0.37479636  0.14788507
## nervous_mean    0.3291338 -0.3326932  0.224616318 -0.16367606  0.09674457
## upset_mean      0.3428561 -0.2704493 -0.003171761  0.48517546 -0.05170728
## sluggish_mean   0.3018074 -0.2095316 -0.613274781 -0.19606325  0.12240297
## irritable_mean  0.3444031 -0.2761856 -0.178622381  0.26653394  0.12332698
## content_mean   -0.3403434 -0.3094750 -0.126066245 -0.31309278  0.21995902
## relaxed_mean   -0.3274357 -0.1575449 -0.459800059  0.39729640  0.25862471
## excited_mean   -0.2104801 -0.5095268  0.006499109  0.06413939 -0.79977709
## happy_mean     -0.3396801 -0.3249538 -0.094695226 -0.32434484  0.11799716
## attentive_mean -0.2712409 -0.3319176  0.491633576  0.35025206  0.40874123
##                        PC6         PC7         PC8         PC9
## anxious_mean   -0.19218768  0.02887847 -0.40139279 -0.26993827
## nervous_mean   -0.39526389  0.36301498  0.14659770  0.33977975
## upset_mean     -0.16981279 -0.13475205  0.60574012 -0.33361373
## sluggish_mean   0.51781077  0.39352968  0.10012930 -0.04173951
## irritable_mean  0.13240365 -0.62407196 -0.40652534  0.24277066
## content_mean   -0.06541904 -0.30833760  0.39282730  0.50463523
## relaxed_mean   -0.49586590  0.28915957 -0.30339555 -0.01782858
## excited_mean    0.08903964  0.10741780 -0.14717361  0.09169001
## happy_mean     -0.04270792 -0.25431502  0.06987057 -0.61336254
## attentive_mean  0.48210018  0.22359914 -0.04773894  0.01048353
##                        PC10
## anxious_mean   -0.542468427
## nervous_mean    0.519066180
## upset_mean     -0.214509289
## sluggish_mean  -0.026793660
## irritable_mean  0.236125370
## content_mean   -0.343173637
## relaxed_mean   -0.099775777
## excited_mean   -0.052414976
## happy_mean      0.450928801
## attentive_mean -0.001875378
biplot(means.pca, scale = 0)

screeplot(means.pca)

PCA for item means using an oblique rotation

means.pca.oblique <- principal(indiv_means, nfactors = 1,  rotate = "oblimin")
means.pca.oblique
## Principal Components Analysis
## Call: principal(r = indiv_means, nfactors = 1, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                  PC1   h2   u2 com
## anxious_mean    0.80 0.64 0.36   1
## nervous_mean    0.81 0.66 0.34   1
## upset_mean      0.85 0.72 0.28   1
## sluggish_mean   0.74 0.55 0.45   1
## irritable_mean  0.85 0.73 0.27   1
## content_mean   -0.83 0.68 0.32   1
## relaxed_mean   -0.76 0.58 0.42   1
## excited_mean   -0.52 0.27 0.73   1
## happy_mean     -0.80 0.65 0.35   1
## attentive_mean -0.56 0.32 0.68   1
## 
##                 PC1
## SS loadings    5.81
## Proportion Var 0.58
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 component is sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.18 
##  with the empirical chi square  400.19  with prob <  1.5e-63 
## 
## Fit based upon off diagonal values = 0.89
summary(means.pca.oblique)
## 
## Factor analysis with Call: principal(r = indiv_means, nfactors = 1, rotate = "oblimin")
## 
## Test of the hypothesis that 1 factor is sufficient.
## The degrees of freedom for the model is 35  and the objective function was  6.67 
## The number of observations was  130  with Chi Square =  828.08  with prob <  2.8e-151 
## 
## The root mean square of the residuals (RMSA) is  0.18
biplot(means.pca.oblique)

means.pca.oblique2 <- principal(indiv_means, nfactors = 2,  rotate = "oblimin")
means.pca.oblique2
## Principal Components Analysis
## Call: principal(r = indiv_means, nfactors = 2, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                  TC1   TC2   h2   u2 com
## anxious_mean    0.94  0.05 0.85 0.15 1.0
## nervous_mean    0.96  0.06 0.88 0.12 1.0
## upset_mean      0.89 -0.07 0.85 0.15 1.0
## sluggish_mean   0.76 -0.09 0.63 0.37 1.0
## irritable_mean  0.89 -0.08 0.85 0.15 1.0
## content_mean   -0.25  0.80 0.85 0.15 1.2
## relaxed_mean   -0.36  0.58 0.63 0.37 1.7
## excited_mean    0.25  0.98 0.84 0.16 1.1
## happy_mean     -0.18  0.85 0.88 0.12 1.1
## attentive_mean -0.01  0.73 0.54 0.46 1.0
## 
##                        TC1  TC2
## SS loadings           4.41 3.39
## Proportion Var        0.44 0.34
## Cumulative Var        0.44 0.78
## Proportion Explained  0.57 0.43
## Cumulative Proportion 0.57 1.00
## 
##  With component correlations of 
##       TC1   TC2
## TC1  1.00 -0.39
## TC2 -0.39  1.00
## 
## Mean item complexity =  1.1
## Test of the hypothesis that 2 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.07 
##  with the empirical chi square  63.32  with prob <  5.9e-05 
## 
## Fit based upon off diagonal values = 0.98
summary(means.pca.oblique2)
## 
## Factor analysis with Call: principal(r = indiv_means, nfactors = 2, rotate = "oblimin")
## 
## Test of the hypothesis that 2 factors are sufficient.
## The degrees of freedom for the model is 26  and the objective function was  3.47 
## The number of observations was  130  with Chi Square =  428.57  with prob <  1.8e-74 
## 
## The root mean square of the residuals (RMSA) is  0.07 
## 
##  With component correlations of 
##       TC1   TC2
## TC1  1.00 -0.39
## TC2 -0.39  1.00
biplot(means.pca.oblique2)

400.19 - 63.32
## [1] 336.87
35 - 26
## [1] 9
means.pca.oblique3 <- principal(indiv_means, nfactors = 3,  rotate = "oblimin")
means.pca.oblique3
## Principal Components Analysis
## Call: principal(r = indiv_means, nfactors = 3, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                  TC1   TC2   TC3   h2   u2 com
## anxious_mean    0.91 -0.08  0.20 0.89 0.11 1.1
## nervous_mean    0.94 -0.02  0.10 0.89 0.11 1.0
## upset_mean      0.87 -0.11 -0.01 0.85 0.15 1.0
## sluggish_mean   0.78  0.11 -0.50 0.86 0.14 1.8
## irritable_mean  0.88 -0.05 -0.16 0.87 0.13 1.1
## content_mean   -0.21  0.83  0.02 0.88 0.12 1.1
## relaxed_mean   -0.31  0.74 -0.27 0.79 0.21 1.6
## excited_mean    0.27  0.93  0.16 0.84 0.16 1.2
## happy_mean     -0.15  0.86  0.06 0.89 0.11 1.1
## attentive_mean -0.04  0.43  0.72 0.87 0.13 1.6
## 
##                        TC1  TC2  TC3
## SS loadings           4.28 3.29 1.03
## Proportion Var        0.43 0.33 0.10
## Cumulative Var        0.43 0.76 0.86
## Proportion Explained  0.50 0.38 0.12
## Cumulative Proportion 0.50 0.88 1.00
## 
##  With component correlations of 
##       TC1   TC2   TC3
## TC1  1.00 -0.37 -0.09
## TC2 -0.37  1.00  0.23
## TC3 -0.09  0.23  1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 3 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.05 
##  with the empirical chi square  32.61  with prob <  0.019 
## 
## Fit based upon off diagonal values = 0.99
summary(means.pca.oblique3)
## 
## Factor analysis with Call: principal(r = indiv_means, nfactors = 3, rotate = "oblimin")
## 
## Test of the hypothesis that 3 factors are sufficient.
## The degrees of freedom for the model is 18  and the objective function was  3.43 
## The number of observations was  130  with Chi Square =  421.69  with prob <  2.7e-78 
## 
## The root mean square of the residuals (RMSA) is  0.05 
## 
##  With component correlations of 
##       TC1   TC2   TC3
## TC1  1.00 -0.37 -0.09
## TC2 -0.37  1.00  0.23
## TC3 -0.09  0.23  1.00
63.32- 32.61
## [1] 30.71
26- 18
## [1] 8
means.pca.oblique4 <- principal(indiv_means, nfactors = 4,  rotate = "oblimin")
means.pca.oblique4
## Principal Components Analysis
## Call: principal(r = indiv_means, nfactors = 4, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                  TC2   TC4   TC1   TC3   h2    u2 com
## anxious_mean    0.11  0.88  0.21 -0.02 0.95 0.054 1.1
## nervous_mean    0.11  0.75  0.33 -0.08 0.92 0.080 1.4
## upset_mean     -0.31  0.20  0.78  0.04 0.95 0.051 1.5
## sluggish_mean   0.17  0.22  0.46 -0.63 0.87 0.133 2.3
## irritable_mean -0.18  0.21  0.72 -0.16 0.91 0.085 1.4
## content_mean    0.86 -0.08 -0.24  0.03 0.92 0.077 1.2
## relaxed_mean    0.38 -0.83  0.31  0.01 0.91 0.090 1.7
## excited_mean    0.77  0.01  0.25  0.26 0.84 0.161 1.4
## happy_mean      0.88 -0.03 -0.20  0.07 0.93 0.066 1.1
## attentive_mean  0.18  0.06  0.11  0.90 0.92 0.079 1.1
## 
##                        TC2  TC4  TC1  TC3
## SS loadings           2.74 2.65 2.15 1.58
## Proportion Var        0.27 0.26 0.21 0.16
## Cumulative Var        0.27 0.54 0.75 0.91
## Proportion Explained  0.30 0.29 0.24 0.17
## Cumulative Proportion 0.30 0.59 0.83 1.00
## 
##  With component correlations of 
##       TC2   TC4   TC1   TC3
## TC2  1.00 -0.39 -0.05  0.43
## TC4 -0.39  1.00  0.50 -0.31
## TC1 -0.05  0.50  1.00 -0.22
## TC3  0.43 -0.31 -0.22  1.00
## 
## Mean item complexity =  1.4
## Test of the hypothesis that 4 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.03 
##  with the empirical chi square  13.14  with prob <  0.28 
## 
## Fit based upon off diagonal values = 1
summary(means.pca.oblique4)
## 
## Factor analysis with Call: principal(r = indiv_means, nfactors = 4, rotate = "oblimin")
## 
## Test of the hypothesis that 4 factors are sufficient.
## The degrees of freedom for the model is 11  and the objective function was  2.51 
## The number of observations was  130  with Chi Square =  306.68  with prob <  3.4e-59 
## 
## The root mean square of the residuals (RMSA) is  0.03 
## 
##  With component correlations of 
##       TC2   TC4   TC1   TC3
## TC2  1.00 -0.39 -0.05  0.43
## TC4 -0.39  1.00  0.50 -0.31
## TC1 -0.05  0.50  1.00 -0.22
## TC3  0.43 -0.31 -0.22  1.00
biplot(means.pca.oblique4)

32.61 - 12.14
## [1] 20.47
18 - 11
## [1] 7

PCA for item mssd

mssd.pca <- prcomp(na.omit(indiv_mssd),
                    center = TRUE,
                    scale. = TRUE)
print(mssd.pca)
## Standard deviations (1, .., p=10):
##  [1] 2.4455598 1.2934528 0.7290772 0.6438012 0.6236411 0.5356204 0.5146298
##  [8] 0.4596993 0.3939898 0.3049110
## 
## Rotation (n x k) = (10 x 10):
##                      PC1         PC2         PC3         PC4         PC5
## anxious_mssd   0.3569231 -0.05945655  0.01321629 -0.51575911  0.16467356
## nervous_mssd   0.1656344 -0.64493401  0.27739834 -0.09329767  0.01145196
## upset_mssd     0.3314090  0.20580867  0.30245597  0.34235814  0.37757973
## sluggish_mssd  0.1474116 -0.66682435  0.07147702  0.14922888  0.01620386
## irritable_mssd 0.3435385  0.06673242 -0.12127990  0.29809497  0.62389085
## content_mssd   0.3603563  0.14387024  0.27840301  0.21081789 -0.40246077
## relaxed_mssd   0.3403734  0.15147065 -0.07585054 -0.63796964  0.11306095
## excited_mssd   0.3580319  0.04307830 -0.13280154  0.07546866 -0.27012603
## happy_mssd     0.3591847  0.15960798  0.26872465  0.04672888 -0.39894200
## attentive_mssd 0.3044324 -0.13448958 -0.79904153  0.19396020 -0.18385435
##                        PC6         PC7         PC8         PC9        PC10
## anxious_mssd   -0.36188861  0.16966806 -0.17527521 -0.61787096 -0.05945368
## nervous_mssd   -0.28486142 -0.20908833 -0.36698550  0.44840908  0.10112816
## upset_mssd     -0.05705468 -0.63899608  0.09774287 -0.15500097 -0.22672774
## sluggish_mssd   0.40709173  0.13131860  0.47313229 -0.29552909 -0.10869438
## irritable_mssd  0.04235532  0.53646834 -0.10704544  0.24495285  0.15383752
## content_mssd   -0.17610018  0.06987219  0.22820088 -0.09128215  0.68499354
## relaxed_mssd    0.32355544 -0.19474415  0.36032010  0.38661200  0.11725365
## excited_mssd    0.60083319 -0.10495157 -0.61675139 -0.14344187  0.02616069
## happy_mssd     -0.11544823  0.34363683  0.08557126  0.25185119 -0.64015184
## attentive_mssd -0.32724534 -0.20549323  0.14185468  0.06320019 -0.07687076
biplot(mssd.pca, scale = 0)

screeplot(mssd.pca)

summary(mssd.pca)
## Importance of components:
##                           PC1    PC2     PC3     PC4     PC5     PC6
## Standard deviation     2.4456 1.2935 0.72908 0.64380 0.62364 0.53562
## Proportion of Variance 0.5981 0.1673 0.05316 0.04145 0.03889 0.02869
## Cumulative Proportion  0.5981 0.7654 0.81853 0.85998 0.89887 0.92756
##                            PC7     PC8     PC9   PC10
## Standard deviation     0.51463 0.45970 0.39399 0.3049
## Proportion of Variance 0.02648 0.02113 0.01552 0.0093
## Cumulative Proportion  0.95405 0.97518 0.99070 1.0000

PCA for item mssd using an oblique rotation

mssd.pca.oblique <- principal(indiv_mssd, nfactors = 1, rotate = "oblimin")
mssd.pca.oblique
## Principal Components Analysis
## Call: principal(r = indiv_mssd, nfactors = 1, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                 PC1   h2   u2 com
## anxious_mssd   0.87 0.76 0.24   1
## nervous_mssd   0.41 0.16 0.84   1
## upset_mssd     0.81 0.66 0.34   1
## sluggish_mssd  0.36 0.13 0.87   1
## irritable_mssd 0.84 0.71 0.29   1
## content_mssd   0.88 0.78 0.22   1
## relaxed_mssd   0.83 0.69 0.31   1
## excited_mssd   0.88 0.77 0.23   1
## happy_mssd     0.88 0.77 0.23   1
## attentive_mssd 0.74 0.55 0.45   1
## 
##                 PC1
## SS loadings    5.98
## Proportion Var 0.60
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 component is sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.13 
##  with the empirical chi square  190.88  with prob <  2.3e-23 
## 
## Fit based upon off diagonal values = 0.95
summary(mssd.pca.oblique)
## 
## Factor analysis with Call: principal(r = indiv_mssd, nfactors = 1, rotate = "oblimin")
## 
## Test of the hypothesis that 1 factor is sufficient.
## The degrees of freedom for the model is 35  and the objective function was  1.94 
## The number of observations was  130  with Chi Square =  240.84  with prob <  1.5e-32 
## 
## The root mean square of the residuals (RMSA) is  0.13
biplot(mssd.pca.oblique)

mssd.pca.oblique2 <- principal(indiv_mssd, nfactors = 2, rotate = "oblimin")
mssd.pca.oblique2
## Principal Components Analysis
## Call: principal(r = indiv_mssd, nfactors = 2, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                  TC1   TC2   h2   u2 com
## anxious_mssd    0.79  0.22 0.77 0.23 1.2
## nervous_mssd    0.03  0.92 0.86 0.14 1.0
## upset_mssd      0.88 -0.14 0.73 0.27 1.1
## sluggish_mssd  -0.02  0.94 0.87 0.13 1.0
## irritable_mssd  0.83  0.05 0.71 0.29 1.0
## content_mssd    0.91 -0.05 0.81 0.19 1.0
## relaxed_mssd    0.87 -0.07 0.73 0.27 1.0
## excited_mssd    0.85  0.08 0.77 0.23 1.0
## happy_mssd      0.92 -0.07 0.81 0.19 1.0
## attentive_mssd  0.63  0.30 0.58 0.42 1.4
## 
##                        TC1  TC2
## SS loadings           5.70 1.95
## Proportion Var        0.57 0.20
## Cumulative Var        0.57 0.77
## Proportion Explained  0.74 0.26
## Cumulative Proportion 0.74 1.00
## 
##  With component correlations of 
##      TC1  TC2
## TC1 1.00 0.26
## TC2 0.26 1.00
## 
## Mean item complexity =  1.1
## Test of the hypothesis that 2 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.05 
##  with the empirical chi square  28.83  with prob <  0.32 
## 
## Fit based upon off diagonal values = 0.99
summary(mssd.pca.oblique2)
## 
## Factor analysis with Call: principal(r = indiv_mssd, nfactors = 2, rotate = "oblimin")
## 
## Test of the hypothesis that 2 factors are sufficient.
## The degrees of freedom for the model is 26  and the objective function was  1.01 
## The number of observations was  130  with Chi Square =  125.31  with prob <  5.8e-15 
## 
## The root mean square of the residuals (RMSA) is  0.05 
## 
##  With component correlations of 
##      TC1  TC2
## TC1 1.00 0.26
## TC2 0.26 1.00
biplot(mssd.pca.oblique2)

171.71- 30.73
## [1] 140.98
mssd.pca.oblique3 <- principal(indiv_mssd, nfactors = 3, rotate = "oblimin")
mssd.pca.oblique3
## Principal Components Analysis
## Call: principal(r = indiv_mssd, nfactors = 3, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                  TC1   TC2   TC3   h2    u2 com
## anxious_mssd    0.67  0.21  0.19 0.77 0.232 1.4
## nervous_mssd    0.08  0.96 -0.08 0.90 0.099 1.0
## upset_mssd      0.95 -0.05 -0.11 0.78 0.224 1.0
## sluggish_mssd  -0.09  0.92  0.10 0.88 0.123 1.0
## irritable_mssd  0.65  0.01  0.29 0.72 0.279 1.4
## content_mssd    0.95  0.03 -0.07 0.85 0.148 1.0
## relaxed_mssd    0.72 -0.09  0.24 0.73 0.266 1.3
## excited_mssd    0.65  0.04  0.31 0.78 0.221 1.4
## happy_mssd      0.95  0.01 -0.06 0.85 0.147 1.0
## attentive_mssd  0.07  0.05  0.90 0.92 0.076 1.0
## 
##                        TC1  TC2  TC3
## SS loadings           4.86 1.87 1.45
## Proportion Var        0.49 0.19 0.15
## Cumulative Var        0.49 0.67 0.82
## Proportion Explained  0.59 0.23 0.18
## Cumulative Proportion 0.59 0.82 1.00
## 
##  With component correlations of 
##      TC1  TC2  TC3
## TC1 1.00 0.22 0.56
## TC2 0.22 1.00 0.35
## TC3 0.56 0.35 1.00
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 3 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.04 
##  with the empirical chi square  23.08  with prob <  0.19 
## 
## Fit based upon off diagonal values = 0.99
summary(mssd.pca.oblique3)
## 
## Factor analysis with Call: principal(r = indiv_mssd, nfactors = 3, rotate = "oblimin")
## 
## Test of the hypothesis that 3 factors are sufficient.
## The degrees of freedom for the model is 18  and the objective function was  1.13 
## The number of observations was  130  with Chi Square =  138.52  with prob <  1.2e-20 
## 
## The root mean square of the residuals (RMSA) is  0.04 
## 
##  With component correlations of 
##      TC1  TC2  TC3
## TC1 1.00 0.22 0.56
## TC2 0.22 1.00 0.35
## TC3 0.56 0.35 1.00
30.73 - 25.44
## [1] 5.29
mssd.pca.oblique4 <- principal(indiv_mssd, nfactors = 4, rotate = "oblimin")
mssd.pca.oblique4
## Principal Components Analysis
## Call: principal(r = indiv_mssd, nfactors = 4, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                  TC1   TC2   TC4   TC3   h2    u2 com
## anxious_mssd    0.10  0.20  0.76  0.06 0.88 0.122 1.2
## nervous_mssd   -0.01  0.95  0.11 -0.09 0.90 0.096 1.0
## upset_mssd      0.99 -0.04 -0.08 -0.03 0.82 0.175 1.0
## sluggish_mssd   0.01  0.92 -0.12  0.13 0.89 0.114 1.1
## irritable_mssd  0.65  0.01 -0.01  0.34 0.76 0.242 1.5
## content_mssd    0.89  0.04  0.06 -0.02 0.87 0.129 1.0
## relaxed_mssd    0.04 -0.10  0.90  0.07 0.90 0.097 1.0
## excited_mssd    0.49  0.04  0.21  0.31 0.78 0.219 2.1
## happy_mssd      0.77  0.02  0.22 -0.05 0.85 0.146 1.2
## attentive_mssd  0.01  0.04  0.09  0.90 0.94 0.060 1.0
## 
##                        TC1  TC2  TC4  TC3
## SS loadings           3.46 1.86 1.93 1.35
## Proportion Var        0.35 0.19 0.19 0.14
## Cumulative Var        0.35 0.53 0.72 0.86
## Proportion Explained  0.40 0.22 0.22 0.16
## Cumulative Proportion 0.40 0.62 0.84 1.00
## 
##  With component correlations of 
##      TC1  TC2  TC4  TC3
## TC1 1.00 0.19 0.75 0.52
## TC2 0.19 1.00 0.23 0.34
## TC4 0.75 0.23 1.00 0.51
## TC3 0.52 0.34 0.51 1.00
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 4 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.04 
##  with the empirical chi square  20.27  with prob <  0.042 
## 
## Fit based upon off diagonal values = 0.99
summary(mssd.pca.oblique4)
## 
## Factor analysis with Call: principal(r = indiv_mssd, nfactors = 4, rotate = "oblimin")
## 
## Test of the hypothesis that 4 factors are sufficient.
## The degrees of freedom for the model is 11  and the objective function was  1.39 
## The number of observations was  130  with Chi Square =  170.39  with prob <  9.8e-31 
## 
## The root mean square of the residuals (RMSA) is  0.04 
## 
##  With component correlations of 
##      TC1  TC2  TC4  TC3
## TC1 1.00 0.19 0.75 0.52
## TC2 0.19 1.00 0.23 0.34
## TC4 0.75 0.23 1.00 0.51
## TC3 0.52 0.34 0.51 1.00

Creating the new PCA groups for the item means and mssd

md3$convivial <- rowMeans(md3[,c("happy", "content", "excited")], na.rm=T)
convivial <- ddply(md3,.(id), summarize, mean=mean(convivial, na.rm=T), number=length(id))
all4$convivial <- c(convivial$mean)

#reverse coding relaxed
md3$relaxed_rc <- md3$relaxed * -1
md3$anxiety_me <- rowMeans(md3[,c("nervous", "anxious", "relaxed_rc")], na.rm=T)
anxiety_me <- ddply(md3,.(id), summarize, mean=mean(anxiety_me, na.rm=T), number=length(id))
all4$anxiety_me <- c(anxiety_me$mean)

md3$anger <- rowMeans(md3[,c("upset", "irritable")], na.rm=T)
anger<- ddply(md3,.(id), summarize, mean=mean(anger, na.rm=T), number=length(id))
all4$anger <- c(anger$mean)

#reverse coding sluggish
md3$sluggish_rc <- md3$sluggish * -1
md3$sleep <- rowMeans(md3[,c("sluggish_rc", "attentive")], na.rm=T)
sleep <- ddply(md3,.(id), summarize, mean=mean(sleep, na.rm=T), number=length(id))
all4$sleep <- c(sleep$mean)

all4$Convivial_MSSD <- mssd(md3$convivial, group = md3$id, lag = 1, na.rm=T)

all4$Anxiety_MSSD <- mssd(md3$anxiety_me, group = md3$id, lag = 1, na.rm=T)
all4$Anger_MSSD <- mssd(md3$anger, group = md3$id, lag = 1, na.rm=T)
all4$Sleep_MSSD<- mssd(md3$sleep, group = md3$id, lag = 1, na.rm=T)

all_70 <- subset(all4, nd_resprate >= 0.70)

Correlation for the aim 4 PCA groups mean and mssd

PCA_group<- all_70[c("convivial", "anxiety_me", "anger", "sleep")]

PCA_group <- data.frame(PCA_group)


PCA_group_cor <- cor(PCA_group, y= NULL, use="complete.obs", method = "pearson")
corrplot(PCA_group_cor, type = "upper", order = "hclust", 
         tl.col = "black")

View(PCA_group_cor)

PCA_group_matrix <- as.matrix(PCA_group)
rcorr(PCA_group_matrix, type="pearson")
##            convivial anxiety_me anger sleep
## convivial       1.00      -0.48 -0.50  0.28
## anxiety_me     -0.48       1.00  0.60 -0.56
## anger          -0.50       0.60  1.00 -0.08
## sleep           0.28      -0.56 -0.08  1.00
## 
## n= 130 
## 
## 
## P
##            convivial anxiety_me anger  sleep 
## convivial            0.0000     0.0000 0.0011
## anxiety_me 0.0000               0.0000 0.0000
## anger      0.0000    0.0000            0.3962
## sleep      0.0011    0.0000     0.3962
PCA_group_MSSD<- all_70[c("Convivial_MSSD", "Anxiety_MSSD", "Anger_MSSD", "Sleep_MSSD", "ptq_total")]

PCA_group_MSSD <- data.frame(PCA_group_MSSD)


PCA_group_cor_MSSD <- cor(PCA_group_MSSD, y= NULL, use="complete.obs", method = "pearson")
corrplot(PCA_group_cor_MSSD, type = "upper", order = "hclust", 
         tl.col = "black")

View(PCA_group_cor_MSSD)

PCA_group_matrix_MSSD <- as.matrix(PCA_group_cor_MSSD)
rcorr(PCA_group_matrix_MSSD, type="pearson")
##                Convivial_MSSD Anxiety_MSSD Anger_MSSD Sleep_MSSD ptq_total
## Convivial_MSSD           1.00         0.77       0.86       0.57     -0.86
## Anxiety_MSSD             0.77         1.00       0.70       0.53     -0.83
## Anger_MSSD               0.86         0.70       1.00       0.50     -0.76
## Sleep_MSSD               0.57         0.53       0.50       1.00     -0.88
## ptq_total               -0.86        -0.83      -0.76      -0.88      1.00
## 
## n= 5 
## 
## 
## P
##                Convivial_MSSD Anxiety_MSSD Anger_MSSD Sleep_MSSD ptq_total
## Convivial_MSSD                0.1296       0.0643     0.3205     0.0633   
## Anxiety_MSSD   0.1296                      0.1905     0.3573     0.0849   
## Anger_MSSD     0.0643         0.1905                  0.3959     0.1319   
## Sleep_MSSD     0.3205         0.3573       0.3959                0.0471   
## ptq_total      0.0633         0.0849       0.1319     0.0471

Relationship between circumplex group means and PTQ

ptq_paa <- lm(all_70$ptq_total ~ scale(all_70$PAA_Mean))
summary(ptq_paa)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$PAA_Mean))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -20.547  -8.838  -0.792   6.441  34.679 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             21.0615     0.9857  21.368   <2e-16 ***
## scale(all_70$PAA_Mean)  -1.9231     0.9895  -1.944   0.0541 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.24 on 128 degrees of freedom
## Multiple R-squared:  0.02866,    Adjusted R-squared:  0.02108 
## F-statistic: 3.777 on 1 and 128 DF,  p-value: 0.05415
confint(ptq_paa, level=0.95)
##                            2.5 %      97.5 %
## (Intercept)            19.111227 23.01185029
## scale(all_70$PAA_Mean) -3.880932  0.03478071
ptq_pad <- lm(all_70$ptq_total ~ scale(all_70$PAD_Mean))
summary(ptq_pad)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$PAD_Mean))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -20.187  -8.497  -1.647   6.000  35.365 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             21.0615     0.9839  21.407   <2e-16 ***
## scale(all_70$PAD_Mean)  -2.0377     0.9877  -2.063   0.0411 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.22 on 128 degrees of freedom
## Multiple R-squared:  0.03218,    Adjusted R-squared:  0.02462 
## F-statistic: 4.256 on 1 and 128 DF,  p-value: 0.04112
confint(ptq_pad, level=0.95)
##                            2.5 %      97.5 %
## (Intercept)            19.114763 23.00831375
## scale(all_70$PAD_Mean) -3.992027 -0.08341389
ggplot(all_70, aes(x=all_70$PAD_Mean, y=all_70$ptq_total)) + 
  geom_point(shape=1) +
  geom_smooth(color= "#660066", method= "lm", linetype = 2) +
  annotate("rect", xmin = 36, xmax =44, ymin = 57, ymax = 68, fill = "white", colour="black") +
  annotate("text", x=40, y=65, label = "R^2 == 0.03", parse=T, colour="black") +
  annotate("text", x=40, y=60, label = "beta == -2.04", parse=T) +
  labs(x = "Mean PAD", y = "RNT", 
       title = "Relationship Between Mean PAD and Repetitive Negative Thinking") +
  theme_classic() 

ggsave("PAD_Mean_ptq.png")
## Saving 7 x 5 in image
ptq_naa <- lm(all_70$ptq_total ~ scale(all_70$NAA_Mean))
summary(ptq_naa)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$NAA_Mean))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -22.010  -7.530  -1.885   5.465  32.211 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             21.0615     0.9412  22.378  < 2e-16 ***
## scale(all_70$NAA_Mean)   3.8421     0.9448   4.067 8.28e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.73 on 128 degrees of freedom
## Multiple R-squared:  0.1144, Adjusted R-squared:  0.1075 
## F-statistic: 16.54 on 1 and 128 DF,  p-value: 8.281e-05
confint(ptq_naa, level=0.95)
##                            2.5 %    97.5 %
## (Intercept)            19.199304 22.923773
## scale(all_70$NAA_Mean)  1.972672  5.711549
ggplot(all_70, aes(x=all_70$NAA_Mean, y=all_70$ptq_total)) + 
  geom_point(shape=1) +
  geom_smooth(color= "#CC6600", method= "lm") +
  annotate("rect", xmin = 1, xmax =9, ymin = 52, ymax = 63, fill = "white", colour="black") +
  annotate("text", x=5, y=60, label = "R^2 == 0.11", parse=T, colour="black") +
  annotate("text", x=5, y=55, label = "beta == 3.84", parse=T) +
  labs(x = "Mean NAA", y = "RNT", 
       title = "Relationship Between Mean NAA and Repetitive Negative Thinking") +
  theme_classic()

ggsave("NAA_Mean_ptq.png")
## Saving 7 x 5 in image
#removing the 0's so they're not included in analyses
all_70$NAD_Mean[all_70$NAD_Mean == "0"] <- NA
ptq_nad <- lm(all_70$ptq_total ~ scale(all_70$NAD_Mean))
summary(ptq_nad)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$NAD_Mean))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -19.199  -8.879  -1.868   6.472  31.247 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              19.612      1.254  15.634   <2e-16 ***
## scale(all_70$NAD_Mean)    1.731      1.262   1.372    0.174    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.57 on 83 degrees of freedom
##   (45 observations deleted due to missingness)
## Multiple R-squared:  0.02218,    Adjusted R-squared:  0.0104 
## F-statistic: 1.882 on 1 and 83 DF,  p-value: 0.1738
confint(ptq_nad, level=0.95)
##                            2.5 %   97.5 %
## (Intercept)            17.116677 22.10685
## scale(all_70$NAD_Mean) -0.778551  4.24124

relationship between PCA groups and ptq

ptq_convi <- lm(all_70$ptq_total ~ scale(all_70$convivial))
summary(ptq_convi)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$convivial))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -20.454  -8.265  -1.335   6.145  35.036 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              21.0615     0.9908  21.257   <2e-16 ***
## scale(all_70$convivial)  -1.5467     0.9946  -1.555    0.122    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.3 on 128 degrees of freedom
## Multiple R-squared:  0.01854,    Adjusted R-squared:  0.01087 
## F-statistic: 2.418 on 1 and 128 DF,  p-value: 0.1224
confint(ptq_convi, level=0.95)
##                             2.5 %     97.5 %
## (Intercept)             19.101091 23.0219855
## scale(all_70$convivial) -3.514744  0.4213185
ptq_anxiety <- lm(all_70$ptq_total ~ scale(all_70$anxiety_me))
summary(ptq_anxiety)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$anxiety_me))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -20.847  -8.240  -1.331   6.158  36.260 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               21.0615     0.9768  21.561   <2e-16 ***
## scale(all_70$anxiety_me)   2.4363     0.9806   2.485   0.0143 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.14 on 128 degrees of freedom
## Multiple R-squared:  0.04601,    Adjusted R-squared:  0.03855 
## F-statistic: 6.173 on 1 and 128 DF,  p-value: 0.01426
confint(ptq_anxiety, level=0.95)
##                               2.5 %    97.5 %
## (Intercept)              19.1287154 22.994361
## scale(all_70$anxiety_me)  0.4960288  4.376629
ggplot(all_70, aes(x=all_70$anxiety_me, y=all_70$ptq_total)) + 
  geom_point(shape=1) +
  geom_smooth(color= "#FF3399", method= "lm") +
  annotate("rect", xmin = -34, xmax =-26, ymin = 52, ymax = 63, fill = "white", colour="black") +
  annotate("text", x=-30, y=60, label = "R^2 == 0.05", parse=T, colour="black") +
  annotate("text", x=-30, y=55, label = "beta == 2.44", parse=T) +
  labs(x = "Mean Anxiety", y = "RNT", 
       title = "Relationship Between Mean Anxiety and Repetitive Negative Thinking") +
  theme_classic()

ggsave("Mean_Anxiety_ptq.png")
## Saving 7 x 5 in image
ptq_anger <- lm(all_70$ptq_total ~ scale(all_70$anger))
summary(ptq_anger)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$anger))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -22.065  -7.877  -1.867   5.058  32.219 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          21.0615     0.9568  22.012  < 2e-16 ***
## scale(all_70$anger)   3.3048     0.9605   3.441 0.000784 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.91 on 128 degrees of freedom
## Multiple R-squared:  0.08465,    Adjusted R-squared:  0.0775 
## F-statistic: 11.84 on 1 and 128 DF,  p-value: 0.0007843
confint(ptq_anger, level=0.95)
##                         2.5 %    97.5 %
## (Intercept)         19.168270 22.954807
## scale(all_70$anger)  1.404227  5.205413
ggplot(all_70, aes(x=all_70$anger, y=all_70$ptq_total)) + 
  geom_point(shape=1) +
  geom_smooth(color= "#990000", method= "lm") +
  annotate("rect", xmin = 6, xmax =14, ymin = 57, ymax = 68, fill = "white", colour="black") +
  annotate("text", x=10, y=65, label = "R^2 == 0.09", parse=T, colour="black") +
  annotate("text", x=10, y=60, label = "beta == 3.3", parse=T) +
  labs(x = "Mean Anger", y = "RNT", 
       title = "Relationship Between Mean Anger and Repetitive Negative Thinking") +
  theme_classic()

ggsave("Mean_Anger_ptq.png")
## Saving 7 x 5 in image
ptq_sleep <- lm(all_70$ptq_total ~ scale(all_70$sleep))
summary(ptq_sleep)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$sleep))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -21.647  -7.653  -1.227   5.913  34.272 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          21.0615     0.9986  21.092   <2e-16 ***
## scale(all_70$sleep)   0.6327     1.0024   0.631    0.529    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.39 on 128 degrees of freedom
## Multiple R-squared:  0.003103,   Adjusted R-squared:  -0.004686 
## F-statistic: 0.3984 on 1 and 128 DF,  p-value: 0.5291
confint(ptq_sleep, level=0.95)
##                         2.5 %    97.5 %
## (Intercept)         19.085731 23.037346
## scale(all_70$sleep) -1.350753  2.616148
ptq_pca_all <- lm(all_70$ptq_total ~ scale(all_70$convivial) + scale(all_70$anxiety_me) + scale(all_70$anger) + scale(all_70$sleep))
summary(ptq_pca_all)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$convivial) + scale(all_70$anxiety_me) + 
##     scale(all_70$anger) + scale(all_70$sleep))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -20.325  -7.661  -1.778   5.471  32.345 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              21.061538   0.955592  22.040   <2e-16 ***
## scale(all_70$convivial)   0.001573   1.158151   0.001   0.9989    
## scale(all_70$anxiety_me)  2.470290   1.574500   1.569   0.1192    
## scale(all_70$anger)       1.996903   1.378864   1.448   0.1501    
## scale(all_70$sleep)       2.172571   1.278035   1.700   0.0916 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10.9 on 125 degrees of freedom
## Multiple R-squared:  0.1084, Adjusted R-squared:  0.0799 
## F-statistic: 3.801 on 4 and 125 DF,  p-value: 0.005963
confint(ptq_pca_all, level = 0.95)
##                               2.5 %    97.5 %
## (Intercept)              19.1703025 22.952774
## scale(all_70$convivial)  -2.2905510  2.293697
## scale(all_70$anxiety_me) -0.6458416  5.586422
## scale(all_70$anger)      -0.7320407  4.725846
## scale(all_70$sleep)      -0.3568187  4.701960
##sjt.lm(ptq_convi,ptq_anxiety, ptq_anger, ptq_sleep, ptq_pca_all, pred.labels = c("Convivial", "Anxiety", "Anger", "Sleep"), depvar.labels = c("RNT Equation 8.1.2", "RNT Equation 8.2.2", "RNT Equation 8.3.2", "RNT Equation 8.4.2", "RNT Equation 9.2"), show.aic = TRUE, show.se= TRUE, group.pred=TRUE, emph.p= TRUE)

Relationship between PCA group MSSD and PTQ

ptq_convi_MSSD <- lm(all_70$ptq_total ~ scale(all_70$Convivial_MSSD))
summary(ptq_convi_MSSD)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$Convivial_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -20.658  -8.183  -1.012   5.856  31.956 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                   21.0615     0.9838   21.41   <2e-16 ***
## scale(all_70$Convivial_MSSD)   2.0443     0.9876    2.07   0.0405 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.22 on 128 degrees of freedom
## Multiple R-squared:  0.03239,    Adjusted R-squared:  0.02483 
## F-statistic: 4.285 on 1 and 128 DF,  p-value: 0.04046
confint(ptq_convi_MSSD, level=0.95)
##                                    2.5 %    97.5 %
## (Intercept)                  19.11497363 23.008103
## scale(all_70$Convivial_MSSD)  0.09023862  3.998429
ggplot(all_70, aes(x=all_70$Convivial_MSSD, y=all_70$ptq_total)) + 
  geom_point(shape=1) +
  geom_smooth(color= "#FFFF00", method= "lm", linetype = 2) +
  annotate("rect", xmin = 5, xmax =225, ymin = 57, ymax = 68, fill = "white", colour="black") +
  annotate("text", x=120, y=65, label = "R^2 == 0.03", parse=T, colour="black") +
  annotate("text", x=120, y=60, label = "beta == 2.04", parse=T) +
  labs(x = "Instability of Convivial", y = "RNT", 
       title = "Relationship Between Instability of Convivial and Repetitive Negative Thinking") +
  theme_classic()

ggsave("Convivial_MSSD_ptq.png")
## Saving 7 x 5 in image
ptq_anxiety_MSSD <- lm(all_70$ptq_total ~ scale(all_70$Anxiety_MSSD))
summary(ptq_anxiety_MSSD)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$Anxiety_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -20.790  -7.666  -1.815   6.124  31.532 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 21.0615     0.9800  21.491   <2e-16 ***
## scale(all_70$Anxiety_MSSD)   2.2641     0.9838   2.301    0.023 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.17 on 128 degrees of freedom
## Multiple R-squared:  0.03973,    Adjusted R-squared:  0.03223 
## F-statistic: 5.296 on 1 and 128 DF,  p-value: 0.02299
confint(ptq_anxiety_MSSD, level=0.95)
##                                 2.5 %    97.5 %
## (Intercept)                19.1223679 23.000709
## scale(all_70$Anxiety_MSSD)  0.3173826  4.210727
ggplot(all_70, aes(x=all_70$Anxiety_MSSD, y=all_70$ptq_total)) + 
  geom_point(shape=1) +
  geom_smooth(color= "#FF3399", method= "lm", linetype = 2) +
  annotate("rect", xmin = 5, xmax =225, ymin = 57, ymax = 68, fill = "white", colour="black") +
  annotate("text", x=120, y=65, label = "R^2 == 0.04", parse=T, colour="black") +
  annotate("text", x=120, y=60, label = "beta == 2.26", parse=T) +
  labs(x = "Instability of Anxiety", y = "RNT", 
       title = "Relationship Between Instability of Anxiety and Repetitive Negative Thinking") +
  theme_classic()

ggsave("Anxiety_MSSD_ptq.png")
## Saving 7 x 5 in image
ptq_anger_MSSD <- lm(all_70$ptq_total ~ scale(all_70$Anger_MSSD))
summary(ptq_anger_MSSD)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$Anger_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -21.363  -7.556  -1.311   6.654  31.074 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               21.0615     0.9660  21.804  < 2e-16 ***
## scale(all_70$Anger_MSSD)   2.9424     0.9697   3.034  0.00292 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.01 on 128 degrees of freedom
## Multiple R-squared:  0.0671, Adjusted R-squared:  0.05981 
## F-statistic: 9.207 on 1 and 128 DF,  p-value: 0.002921
confint(ptq_anger_MSSD, level=0.95)
##                              2.5 %    97.5 %
## (Intercept)              19.150206 22.972871
## scale(all_70$Anger_MSSD)  1.023643  4.861096
ggplot(all_70, aes(x=all_70$Anger_MSSD, y=all_70$ptq_total)) + 
  geom_point(shape=1) +
  geom_smooth(color= "#990000", method= "lm", linetype = 2) +
  annotate("rect", xmin = 5, xmax =160, ymin = 57, ymax = 68, fill = "white", colour="black") +
  annotate("text", x=80, y=65, label = "R^2 == 0.07", parse=T, colour="black") +
  annotate("text", x=80, y=60, label = "beta == 2.94", parse=T) +
  labs(x = "Instability of Anger", y = "RNT", 
       title = "Relationship Between Instability of Anger and Repetitive Negative Thinking") +
  theme_classic()

ggsave("Anger_MSSD_ptq.png")
## Saving 7 x 5 in image
ptq_sleep_MSSD <- lm(all_70$ptq_total ~ scale(all_70$Sleep_MSSD))
summary(ptq_sleep_MSSD)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$Sleep_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -20.689  -7.689  -1.348   6.836  34.470 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               21.0615     0.9923  21.225   <2e-16 ***
## scale(all_70$Sleep_MSSD)   1.4153     0.9962   1.421    0.158    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.31 on 128 degrees of freedom
## Multiple R-squared:  0.01552,    Adjusted R-squared:  0.007833 
## F-statistic: 2.018 on 1 and 128 DF,  p-value: 0.1578
confint(ptq_sleep_MSSD, level=0.95)
##                               2.5 %    97.5 %
## (Intercept)              19.0980796 23.024997
## scale(all_70$Sleep_MSSD) -0.5558011  3.386308
ggplot(all_70, aes(x=all_70$Sleep_MSSD, y=all_70$ptq_total)) + 
  geom_point(shape=1) +
  geom_smooth(color= "#336699", method= "lm", linetype = 2) +
  annotate("rect", xmin = 5, xmax =250, ymin = 57, ymax = 68, fill = "white", colour="black") +
  annotate("text", x=125, y=65, label = "R^2 == 0.02", parse=T, colour="black") +
  annotate("text", x=125, y=60, label = "beta == 1.42", parse=T) +
  labs(x = "Instability of Sleep", y = "RNT", 
       title = "Relationship Between Instability of Sleep and Repetitive Negative Thinking") +
  theme_classic()

ggsave("Sleep_MSSD_ptq.png")
## Saving 7 x 5 in image
ptq_pca_all_MSSD <- lm(all_70$ptq_total ~ scale(all_70$Convivial_MSSD) + scale(all_70$Anxiety_MSSD) + scale(all_70$Anger_MSSD) + scale(all_70$Sleep_MSSD))
summary(ptq_pca_all_MSSD)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$Convivial_MSSD) + 
##     scale(all_70$Anxiety_MSSD) + scale(all_70$Anger_MSSD) + scale(all_70$Sleep_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -20.899  -7.643  -1.705   6.320  30.625 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                   21.0615     0.9748  21.606   <2e-16 ***
## scale(all_70$Convivial_MSSD)  -0.9024     1.7504  -0.516   0.6071    
## scale(all_70$Anxiety_MSSD)     0.9441     1.5172   0.622   0.5349    
## scale(all_70$Anger_MSSD)       3.3577     1.6807   1.998   0.0479 *  
## scale(all_70$Sleep_MSSD)      -0.6043     1.3090  -0.462   0.6451    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.11 on 125 degrees of freedom
## Multiple R-squared:  0.07222,    Adjusted R-squared:  0.04253 
## F-statistic: 2.432 on 4 and 125 DF,  p-value: 0.05092
confint(ptq_pca_all_MSSD, level = 0.95)
##                                    2.5 %    97.5 %
## (Intercept)                  19.13227167 22.990805
## scale(all_70$Convivial_MSSD) -4.36666477  2.561833
## scale(all_70$Anxiety_MSSD)   -2.05870199  3.946927
## scale(all_70$Anger_MSSD)      0.03137876  6.684116
## scale(all_70$Sleep_MSSD)     -3.19486033  1.986331
##sjt.lm(ptq_convi_MSSD,ptq_anxiety_MSSD, ptq_anger_MSSD, ptq_sleep_MSSD, ptq_pca_all_MSSD, pred.labels = c("Convivial", "Anxiety", "Anger", "Sleep"), depvar.labels = c("RNT Equation 10.1.2", "RNT Equation 10.2.2", "RNT Equation 10.3.2", "RNT Equation 10.4.2", "RNT Equation 11.2"), show.aic = TRUE, show.se= TRUE, group.pred=TRUE, emph.p= TRUE)

Relationship between the circumplex groups together (as mean and MSSD) as they relate to PTQ

ptq_circumplex_mean <- lm(all_70$ptq_total ~ scale(all_70$NAD_Mean) + scale(all_70$NAA_Mean) + scale(all_70$PAA_Mean) + scale(all_70$PAD_Mean))
summary(ptq_circumplex_mean )
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$NAD_Mean) + scale(all_70$NAA_Mean) + 
##     scale(all_70$PAA_Mean) + scale(all_70$PAD_Mean))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -20.863  -7.844  -1.970   5.664  30.340 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             20.2034     1.2397  16.297  < 2e-16 ***
## scale(all_70$NAD_Mean)  -2.2483     1.8806  -1.195  0.23543    
## scale(all_70$NAA_Mean)   5.8418     2.1518   2.715  0.00812 ** 
## scale(all_70$PAA_Mean)  -0.6973     2.4022  -0.290  0.77235    
## scale(all_70$PAD_Mean)   1.2399     2.6334   0.471  0.63904    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.15 on 80 degrees of freedom
##   (45 observations deleted due to missingness)
## Multiple R-squared:  0.1242, Adjusted R-squared:  0.0804 
## F-statistic: 2.836 on 4 and 80 DF,  p-value: 0.02966
confint(ptq_circumplex_mean, level=0.95)
##                            2.5 %    97.5 %
## (Intercept)            17.736327 22.670525
## scale(all_70$NAD_Mean) -5.990817  1.494287
## scale(all_70$NAA_Mean)  1.559493 10.124067
## scale(all_70$PAA_Mean) -5.477855  4.083216
## scale(all_70$PAD_Mean) -4.000707  6.480460
ptq_circumplex_mssd <- lm(all_70$ptq_total ~ scale(all_70$NAD_MSSD) + scale(all_70$NAA_MSSD) + scale(all_70$PAA_MSSD) + scale(all_70$PAD_MSSD))
summary(ptq_circumplex_mssd )
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$NAD_MSSD) + scale(all_70$NAA_MSSD) + 
##     scale(all_70$PAA_MSSD) + scale(all_70$PAD_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -22.357  -7.987  -1.134   6.524  28.349 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             21.0615     0.9743  21.616   <2e-16 ***
## scale(all_70$NAD_MSSD)  -0.4207     1.0546  -0.399   0.6907    
## scale(all_70$NAA_MSSD)   3.4846     1.8203   1.914   0.0579 .  
## scale(all_70$PAA_MSSD)  -1.0960     1.6994  -0.645   0.5201    
## scale(all_70$PAD_MSSD)   0.3617     1.8696   0.193   0.8469    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.11 on 125 degrees of freedom
## Multiple R-squared:  0.07312,    Adjusted R-squared:  0.04346 
## F-statistic: 2.465 on 4 and 125 DF,  p-value: 0.04841
confint(ptq_circumplex_mssd, level=0.95)
##                             2.5 %    97.5 %
## (Intercept)            19.1332085 22.989868
## scale(all_70$NAD_MSSD) -2.5078784  1.666544
## scale(all_70$NAA_MSSD) -0.1178697  7.087138
## scale(all_70$PAA_MSSD) -4.4593336  2.267289
## scale(all_70$PAD_MSSD) -3.3385834  4.061924

summary of the circumplexgroup means and ptq regression equations

##sjt.lm(ptq_paa,ptq_pad, ptq_naa, ptq_nad, ptq_circumplex_mean, pred.labels = c("PAA", "PAD", "NAA", "NAD"), depvar.labels = c("RNT Equation 8.1", "RNT Equation 8.2", "RNT Equation 8.3", "RNT Equation 8.4", "RNT Equation 9"), show.aic = TRUE, show.se= TRUE, group.pred=TRUE, emph.p= TRUE)

Relationship between emotion group MSSD and PTQ

ptq_paa_mssd <- lm(all_70$ptq_total ~ scale(all_70$PAA_MSSD))
summary(ptq_paa_mssd)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$PAA_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -20.320  -7.726  -1.028   6.496  33.723 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             21.0615     0.9897  21.280   <2e-16 ***
## scale(all_70$PAA_MSSD)   1.6320     0.9936   1.643    0.103    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.28 on 128 degrees of freedom
## Multiple R-squared:  0.02064,    Adjusted R-squared:  0.01299 
## F-statistic: 2.698 on 1 and 128 DF,  p-value: 0.1029
confint(ptq_paa_mssd, level=0.95)
##                            2.5 %    97.5 %
## (Intercept)            19.103190 23.019887
## scale(all_70$PAA_MSSD) -0.333974  3.597875
ptq_pad_mssd <- lm(all_70$ptq_total ~ scale(all_70$PAD_MSSD))
summary(ptq_pad_mssd)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$PAD_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -21.314  -7.909  -1.262   6.052  31.622 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             21.0615     0.9790  21.514   <2e-16 ***
## scale(all_70$PAD_MSSD)   2.3238     0.9827   2.365   0.0196 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.16 on 128 degrees of freedom
## Multiple R-squared:  0.04185,    Adjusted R-squared:  0.03437 
## F-statistic: 5.591 on 1 and 128 DF,  p-value: 0.01955
confint(ptq_pad_mssd, level=0.95)
##                             2.5 %    97.5 %
## (Intercept)            19.1245142 22.998563
## scale(all_70$PAD_MSSD)  0.3792824  4.268318
ggplot(all_70, aes(x=all_70$PAD_MSSD, y=all_70$ptq_total)) + 
  geom_point(shape=1) +
  geom_smooth(color= "#660066", method= "lm", linetype = 2) +
  annotate("rect", xmin = 5, xmax =225, ymin = 57, ymax = 68, fill = "white", colour="black") +
  annotate("text", x=120, y=65, label = "R^2 == 0.04", parse=T, colour="black") +
  annotate("text", x=120, y=60, label = "beta == 2.32", parse=T) +
  labs(x = "PAD MSSD", y = "RNT", 
       title = "Relationship Between PAD Instability and Repetitive Negative Thinking") +
  theme_classic()

ggsave("PAD_MSSD_ptq.png")
## Saving 7 x 5 in image
ptq_naa_mssd <- lm(all_70$ptq_total ~ scale(all_70$NAA_MSSD))
summary(ptq_naa_mssd)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$NAA_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -22.142  -8.364  -1.832   6.380  29.472 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             21.0615     0.9662  21.798  < 2e-16 ***
## scale(all_70$NAA_MSSD)   2.9313     0.9700   3.022  0.00303 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.02 on 128 degrees of freedom
## Multiple R-squared:  0.0666, Adjusted R-squared:  0.05931 
## F-statistic: 9.133 on 1 and 128 DF,  p-value: 0.003032
confint(ptq_naa_mssd, level=0.95)
##                            2.5 %    97.5 %
## (Intercept)            19.149692 22.973385
## scale(all_70$NAA_MSSD)  1.012104  4.850589
ggplot(all_70, aes(x=all_70$NAA_MSSD, y=all_70$ptq_total)) + 
  geom_point(shape=1) +
  geom_smooth(color= "#CC6600", method= "lm") +
  annotate("rect", xmin = 5, xmax =225, ymin = 52, ymax = 63, fill = "white", colour="black") +
  annotate("text", x=120, y=60, label = "R^2 == 0.07", parse=T, colour="black") +
  annotate("text", x=120, y=55, label = "beta == 2.93", parse=T) +
  labs(x = "Instability of NAA", y = "RNT", 
       title = "Relationship Between NAA Instability and Repetitive Negative Thinking") +
  theme_classic()

ggsave("NAA_MSSD_ptq.png")
## Saving 7 x 5 in image
#removing the 0's in the NAD column so they're not included in the analyses
all_70$NAD_MSSD[all_70$NAD_MSSD == "0"] <- NA

ptq_nad_mssd <- lm(all_70$ptq_total ~ scale(all_70$NAD_MSSD))
summary(ptq_nad_mssd)
## 
## Call:
## lm(formula = all_70$ptq_total ~ scale(all_70$NAD_MSSD))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -18.222  -7.597  -1.832   5.630  30.205 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              19.612      1.256  15.611   <2e-16 ***
## scale(all_70$NAD_MSSD)    1.619      1.264   1.281    0.204    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.58 on 83 degrees of freedom
##   (45 observations deleted due to missingness)
## Multiple R-squared:  0.01939,    Adjusted R-squared:  0.00758 
## F-statistic: 1.642 on 1 and 83 DF,  p-value: 0.2037
confint(ptq_nad_mssd, level=0.95)
##                             2.5 %    97.5 %
## (Intercept)            17.1131301 22.110399
## scale(all_70$NAD_MSSD) -0.8943593  4.132568

summary of the emotion group mssd and ptq regression equations

##sjt.lm(ptq_paa_mssd,ptq_pad_mssd, ptq_naa_mssd, ptq_nad_mssd, ptq_circumplex_mssd, pred.labels = c("PAA", "PAD", "NAA", "NAD"), depvar.labels = c("RNT Equation 10.1", "RNT Equation 10.2", "RNT Equation 10.3", "RNT Equation 10.4", "RNT Equation 11"), show.aic = TRUE, show.se= TRUE, group.pred=TRUE, emph.p= TRUE)

Redoing Aim 4.1 EFA without Sluggish

indiv_means_noslug <- all_70[c("anxious_mean", "nervous_mean", "upset_mean",
                      "irritable_mean", "content_mean", "relaxed_mean", "excited_mean",
                      "happy_mean", "attentive_mean")]

indiv_means_noslug <- data.frame(indiv_means_noslug)
View(indiv_means_noslug)

indiv_means_noslug_cor <- cor(indiv_means_noslug)

PCA for item means using an oblique rotation

means.pca.oblique.2 <- principal(indiv_means_noslug, nfactors = 1,  rotate = "oblimin")
means.pca.oblique.2
## Principal Components Analysis
## Call: principal(r = indiv_means_noslug, nfactors = 1, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                  PC1   h2   u2 com
## anxious_mean   -0.78 0.62 0.38   1
## nervous_mean   -0.80 0.64 0.36   1
## upset_mean     -0.83 0.69 0.31   1
## irritable_mean -0.82 0.68 0.32   1
## content_mean    0.86 0.74 0.26   1
## relaxed_mean    0.79 0.62 0.38   1
## excited_mean    0.56 0.31 0.69   1
## happy_mean      0.84 0.70 0.30   1
## attentive_mean  0.56 0.31 0.69   1
## 
##                 PC1
## SS loadings    5.31
## Proportion Var 0.59
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 component is sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.19 
##  with the empirical chi square  355.01  with prob <  6.7e-59 
## 
## Fit based upon off diagonal values = 0.88
summary(means.pca.oblique.2)
## 
## Factor analysis with Call: principal(r = indiv_means_noslug, nfactors = 1, rotate = "oblimin")
## 
## Test of the hypothesis that 1 factor is sufficient.
## The degrees of freedom for the model is 27  and the objective function was  5.74 
## The number of observations was  130  with Chi Square =  714.71  with prob <  3.2e-133 
## 
## The root mean square of the residuals (RMSA) is  0.19
means.pca.oblique2.2 <- principal(indiv_means_noslug, nfactors = 2,  rotate = "oblimin")
means.pca.oblique2.2
## Principal Components Analysis
## Call: principal(r = indiv_means_noslug, nfactors = 2, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                  TC1   TC2   h2   u2 com
## anxious_mean    0.95  0.04 0.87 0.13 1.0
## nervous_mean    0.97  0.05 0.91 0.09 1.0
## upset_mean      0.89 -0.08 0.85 0.15 1.0
## irritable_mean  0.86 -0.10 0.82 0.18 1.0
## content_mean   -0.27  0.79 0.86 0.14 1.2
## relaxed_mean   -0.40  0.57 0.65 0.35 1.8
## excited_mean    0.25  0.98 0.83 0.17 1.1
## happy_mean     -0.19  0.85 0.88 0.12 1.1
## attentive_mean  0.05  0.76 0.55 0.45 1.0
## 
##                        TC1  TC2
## SS loadings           3.86 3.37
## Proportion Var        0.43 0.37
## Cumulative Var        0.43 0.80
## Proportion Explained  0.53 0.47
## Cumulative Proportion 0.53 1.00
## 
##  With component correlations of 
##       TC1   TC2
## TC1  1.00 -0.37
## TC2 -0.37  1.00
## 
## Mean item complexity =  1.1
## Test of the hypothesis that 2 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.07 
##  with the empirical chi square  39.88  with prob <  0.0034 
## 
## Fit based upon off diagonal values = 0.99
summary(means.pca.oblique2.2)
## 
## Factor analysis with Call: principal(r = indiv_means_noslug, nfactors = 2, rotate = "oblimin")
## 
## Test of the hypothesis that 2 factors are sufficient.
## The degrees of freedom for the model is 19  and the objective function was  2.49 
## The number of observations was  130  with Chi Square =  307.8  with prob <  5e-54 
## 
## The root mean square of the residuals (RMSA) is  0.07 
## 
##  With component correlations of 
##       TC1   TC2
## TC1  1.00 -0.37
## TC2 -0.37  1.00
means.pca.oblique3.2 <- principal(indiv_means_noslug, nfactors = 3,  rotate = "oblimin")
means.pca.oblique3.2
## Principal Components Analysis
## Call: principal(r = indiv_means_noslug, nfactors = 3, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                  TC1   TC2   TC3   h2    u2 com
## anxious_mean    0.86 -0.14  0.23 0.89 0.106 1.2
## nervous_mean    0.95  0.00  0.06 0.91 0.089 1.0
## upset_mean      0.93 -0.01 -0.12 0.88 0.120 1.0
## irritable_mean  0.92  0.03 -0.21 0.87 0.127 1.1
## content_mean   -0.22  0.76  0.15 0.87 0.134 1.3
## relaxed_mean   -0.19  0.87 -0.33 0.87 0.134 1.4
## excited_mean    0.28  0.89  0.23 0.84 0.160 1.3
## happy_mean     -0.15  0.80  0.17 0.88 0.117 1.2
## attentive_mean -0.15  0.27  0.77 0.85 0.155 1.3
## 
##                        TC1  TC2  TC3
## SS loadings           3.72 3.12 1.02
## Proportion Var        0.41 0.35 0.11
## Cumulative Var        0.41 0.76 0.87
## Proportion Explained  0.47 0.40 0.13
## Cumulative Proportion 0.47 0.87 1.00
## 
##  With component correlations of 
##       TC1   TC2  TC3
## TC1  1.00 -0.43 0.00
## TC2 -0.43  1.00 0.31
## TC3  0.00  0.31 1.00
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 3 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.06 
##  with the empirical chi square  29.06  with prob <  0.0039 
## 
## Fit based upon off diagonal values = 0.99
summary(means.pca.oblique3.2)
## 
## Factor analysis with Call: principal(r = indiv_means_noslug, nfactors = 3, rotate = "oblimin")
## 
## Test of the hypothesis that 3 factors are sufficient.
## The degrees of freedom for the model is 12  and the objective function was  2.85 
## The number of observations was  130  with Chi Square =  350.97  with prob <  8.7e-68 
## 
## The root mean square of the residuals (RMSA) is  0.06 
## 
##  With component correlations of 
##       TC1   TC2  TC3
## TC1  1.00 -0.43 0.00
## TC2 -0.43  1.00 0.31
## TC3  0.00  0.31 1.00
means.pca.oblique4.2 <- principal(indiv_means_noslug, nfactors = 4,  rotate = "oblimin")
means.pca.oblique4.2
## Principal Components Analysis
## Call: principal(r = indiv_means_noslug, nfactors = 4, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                  TC1   TC2   TC3   TC4   h2    u2 com
## anxious_mean    0.88  0.02  0.01 -0.33 0.95 0.053 1.3
## nervous_mean    0.95  0.11 -0.12 -0.20 0.95 0.047 1.1
## upset_mean      0.88 -0.23  0.06  0.26 0.96 0.045 1.3
## irritable_mean  0.88 -0.13 -0.09  0.23 0.90 0.099 1.2
## content_mean   -0.19  0.86  0.03 -0.06 0.92 0.080 1.1
## relaxed_mean   -0.23  0.61 -0.04  0.56 0.93 0.072 2.3
## excited_mean    0.31  0.81  0.26  0.11 0.84 0.160 1.6
## happy_mean     -0.11  0.90  0.05 -0.06 0.93 0.066 1.0
## attentive_mean -0.07  0.03  0.96 -0.03 0.98 0.015 1.0
## 
##                        TC1  TC2  TC3  TC4
## SS loadings           3.59 2.95 1.18 0.64
## Proportion Var        0.40 0.33 0.13 0.07
## Cumulative Var        0.40 0.73 0.86 0.93
## Proportion Explained  0.43 0.35 0.14 0.08
## Cumulative Proportion 0.43 0.78 0.92 1.00
## 
##  With component correlations of 
##       TC1   TC2   TC3   TC4
## TC1  1.00 -0.38 -0.15 -0.14
## TC2 -0.38  1.00  0.50  0.11
## TC3 -0.15  0.50  1.00  0.05
## TC4 -0.14  0.11  0.05  1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 4 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.03 
##  with the empirical chi square  7.63  with prob <  0.27 
## 
## Fit based upon off diagonal values = 1
summary(means.pca.oblique4.2)
## 
## Factor analysis with Call: principal(r = indiv_means_noslug, nfactors = 4, rotate = "oblimin")
## 
## Test of the hypothesis that 4 factors are sufficient.
## The degrees of freedom for the model is 6  and the objective function was  1.53 
## The number of observations was  130  with Chi Square =  187.09  with prob <  1.1e-37 
## 
## The root mean square of the residuals (RMSA) is  0.03 
## 
##  With component correlations of 
##       TC1   TC2   TC3   TC4
## TC1  1.00 -0.38 -0.15 -0.14
## TC2 -0.38  1.00  0.50  0.11
## TC3 -0.15  0.50  1.00  0.05
## TC4 -0.14  0.11  0.05  1.00
means.pca.oblique5.2 <- principal(indiv_means_noslug, nfactors = 5,  rotate = "oblimin")
means.pca.oblique5.2
## Principal Components Analysis
## Call: principal(r = indiv_means_noslug, nfactors = 5, rotate = "oblimin")
## 
##  Warning: A Heywood case was detected. 
## Standardized loadings (pattern matrix) based upon correlation matrix
##                  TC1   TC4   TC2   TC3   TC5   h2      u2 com
## anxious_mean    0.84 -0.23 -0.07  0.10  0.31 0.97 0.03064 1.5
## nervous_mean    0.86 -0.18  0.12 -0.10  0.20 0.95 0.04571 1.3
## upset_mean      0.91  0.01  0.04  0.00 -0.28 0.96 0.04348 1.2
## irritable_mean  0.96  0.16 -0.09 -0.07 -0.13 0.91 0.09070 1.1
## content_mean   -0.17  0.46  0.22  0.14  0.47 0.94 0.05553 2.9
## relaxed_mean   -0.01  0.95  0.03  0.04  0.00 0.96 0.03685 1.0
## excited_mean    0.03 -0.01  1.00  0.03 -0.05 1.00 0.00480 1.0
## happy_mean     -0.15  0.38  0.36  0.11  0.42 0.94 0.06136 3.4
## attentive_mean  0.01 -0.01  0.00  1.01 -0.04 1.00 0.00078 1.0
## 
##                        TC1  TC4  TC2  TC3  TC5
## SS loadings           3.49 1.70 1.47 1.22 0.74
## Proportion Var        0.39 0.19 0.16 0.14 0.08
## Cumulative Var        0.39 0.58 0.74 0.88 0.96
## Proportion Explained  0.40 0.20 0.17 0.14 0.09
## Cumulative Proportion 0.40 0.60 0.77 0.91 1.00
## 
##  With component correlations of 
##       TC1   TC4   TC2   TC3   TC5
## TC1  1.00 -0.52 -0.16 -0.26 -0.13
## TC4 -0.52  1.00  0.51  0.34  0.04
## TC2 -0.16  0.51  1.00  0.58  0.32
## TC3 -0.26  0.34  0.58  1.00  0.22
## TC5 -0.13  0.04  0.32  0.22  1.00
## 
## Mean item complexity =  1.6
## Test of the hypothesis that 5 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.02 
##  with the empirical chi square  3.22  with prob <  0.073 
## 
## Fit based upon off diagonal values = 1
summary(means.pca.oblique5.2)
## 
## Factor analysis with Call: principal(r = indiv_means_noslug, nfactors = 5, rotate = "oblimin")
## 
## Test of the hypothesis that 5 factors are sufficient.
## The degrees of freedom for the model is 1  and the objective function was  1.45 
## The number of observations was  130  with Chi Square =  176.73  with prob <  2.5e-40 
## 
## The root mean square of the residuals (RMSA) is  0.02 
## 
##  With component correlations of 
##       TC1   TC4   TC2   TC3   TC5
## TC1  1.00 -0.52 -0.16 -0.26 -0.13
## TC4 -0.52  1.00  0.51  0.34  0.04
## TC2 -0.16  0.51  1.00  0.58  0.32
## TC3 -0.26  0.34  0.58  1.00  0.22
## TC5 -0.13  0.04  0.32  0.22  1.00

PCA for item mssd

indiv_mssd_noslug <- all_70[c("anxious_mssd", "nervous_mssd", "upset_mssd",
                     "irritable_mssd", "content_mssd", "relaxed_mssd", "excited_mssd",
                     "happy_mssd", "attentive_mssd")]

indiv_mssd_noslug <- data.frame(indiv_mssd_noslug)

PCA for item mssd using an oblique rotation

mssd.pca.oblique.2 <- principal(indiv_mssd_noslug, nfactors = 1, rotate = "oblimin")
mssd.pca.oblique.2
## Principal Components Analysis
## Call: principal(r = indiv_mssd_noslug, nfactors = 1, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                 PC1   h2   u2 com
## anxious_mssd   0.87 0.76 0.24   1
## nervous_mssd   0.36 0.13 0.87   1
## upset_mssd     0.82 0.68 0.32   1
## irritable_mssd 0.84 0.71 0.29   1
## content_mssd   0.89 0.79 0.21   1
## relaxed_mssd   0.84 0.71 0.29   1
## excited_mssd   0.88 0.77 0.23   1
## happy_mssd     0.89 0.79 0.21   1
## attentive_mssd 0.74 0.54 0.46   1
## 
##                 PC1
## SS loadings    5.87
## Proportion Var 0.65
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 component is sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.07 
##  with the empirical chi square  47.6  with prob <  0.0085 
## 
## Fit based upon off diagonal values = 0.99
summary(mssd.pca.oblique.2)
## 
## Factor analysis with Call: principal(r = indiv_mssd_noslug, nfactors = 1, rotate = "oblimin")
## 
## Test of the hypothesis that 1 factor is sufficient.
## The degrees of freedom for the model is 27  and the objective function was  0.99 
## The number of observations was  130  with Chi Square =  123.28  with prob <  2.9e-14 
## 
## The root mean square of the residuals (RMSA) is  0.07
biplot(mssd.pca.oblique.2)

mssd.pca.oblique2.2 <- principal(indiv_mssd_noslug, nfactors = 2, rotate = "oblimin")
mssd.pca.oblique2.2
## Principal Components Analysis
## Call: principal(r = indiv_mssd_noslug, nfactors = 2, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                  TC1   TC2   h2    u2 com
## anxious_mssd    0.76  0.29 0.79 0.212 1.3
## nervous_mssd   -0.01  0.96 0.91 0.088 1.0
## upset_mssd      0.89 -0.16 0.74 0.263 1.1
## irritable_mssd  0.83  0.03 0.71 0.286 1.0
## content_mssd    0.92 -0.06 0.82 0.184 1.0
## relaxed_mssd    0.87 -0.05 0.73 0.271 1.0
## excited_mssd    0.85  0.08 0.77 0.231 1.0
## happy_mssd      0.92 -0.07 0.82 0.183 1.0
## attentive_mssd  0.60  0.36 0.61 0.389 1.6
## 
##                        TC1  TC2
## SS loadings           5.66 1.23
## Proportion Var        0.63 0.14
## Cumulative Var        0.63 0.77
## Proportion Explained  0.82 0.18
## Cumulative Proportion 0.82 1.00
## 
##  With component correlations of 
##      TC1  TC2
## TC1 1.00 0.28
## TC2 0.28 1.00
## 
## Mean item complexity =  1.1
## Test of the hypothesis that 2 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.06 
##  with the empirical chi square  28.45  with prob <  0.075 
## 
## Fit based upon off diagonal values = 0.99
summary(mssd.pca.oblique2.2)
## 
## Factor analysis with Call: principal(r = indiv_mssd_noslug, nfactors = 2, rotate = "oblimin")
## 
## Test of the hypothesis that 2 factors are sufficient.
## The degrees of freedom for the model is 19  and the objective function was  0.88 
## The number of observations was  130  with Chi Square =  109.18  with prob <  1.1e-14 
## 
## The root mean square of the residuals (RMSA) is  0.06 
## 
##  With component correlations of 
##      TC1  TC2
## TC1 1.00 0.28
## TC2 0.28 1.00
mssd.pca.oblique3.2 <- principal(indiv_mssd_noslug, nfactors = 3, rotate = "oblimin")
mssd.pca.oblique3.2
## Principal Components Analysis
## Call: principal(r = indiv_mssd_noslug, nfactors = 3, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                  TC1   TC3   TC2   h2    u2 com
## anxious_mssd    0.64  0.20  0.27 0.79 0.210 1.6
## nervous_mssd   -0.01  0.00  1.00 0.98 0.016 1.0
## upset_mssd      0.95 -0.11 -0.05 0.78 0.223 1.0
## irritable_mssd  0.64  0.31 -0.03 0.72 0.276 1.4
## content_mssd    0.95 -0.07  0.03 0.85 0.147 1.0
## relaxed_mssd    0.72  0.22 -0.07 0.73 0.269 1.2
## excited_mssd    0.65  0.33  0.01 0.78 0.220 1.5
## happy_mssd      0.95 -0.06  0.02 0.85 0.148 1.0
## attentive_mssd  0.03  0.93  0.04 0.93 0.070 1.0
## 
##                        TC1  TC3  TC2
## SS loadings           4.80 1.49 1.13
## Proportion Var        0.53 0.17 0.13
## Cumulative Var        0.53 0.70 0.82
## Proportion Explained  0.65 0.20 0.15
## Cumulative Proportion 0.65 0.85 1.00
## 
##  With component correlations of 
##      TC1  TC3  TC2
## TC1 1.00 0.58 0.24
## TC3 0.58 1.00 0.33
## TC2 0.24 0.33 1.00
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 3 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.05 
##  with the empirical chi square  19.46  with prob <  0.078 
## 
## Fit based upon off diagonal values = 0.99
summary(mssd.pca.oblique3.2)
## 
## Factor analysis with Call: principal(r = indiv_mssd_noslug, nfactors = 3, rotate = "oblimin")
## 
## Test of the hypothesis that 3 factors are sufficient.
## The degrees of freedom for the model is 12  and the objective function was  0.78 
## The number of observations was  130  with Chi Square =  96.6  with prob <  2.6e-15 
## 
## The root mean square of the residuals (RMSA) is  0.05 
## 
##  With component correlations of 
##      TC1  TC3  TC2
## TC1 1.00 0.58 0.24
## TC3 0.58 1.00 0.33
## TC2 0.24 0.33 1.00
mssd.pca.oblique4.2 <- principal(indiv_mssd_noslug, nfactors = 4, rotate = "oblimin")
mssd.pca.oblique4.2
## Principal Components Analysis
## Call: principal(r = indiv_mssd_noslug, nfactors = 4, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                  TC1   TC4   TC3   TC2   h2    u2 com
## anxious_mssd    0.10  0.72  0.06  0.26 0.88 0.123 1.3
## nervous_mssd    0.00 -0.01  0.01  0.99 0.99 0.014 1.0
## upset_mssd      0.98 -0.08 -0.02 -0.03 0.82 0.178 1.0
## irritable_mssd  0.60  0.02  0.36 -0.02 0.75 0.251 1.6
## content_mssd    0.90  0.04  0.00  0.04 0.88 0.125 1.0
## relaxed_mssd    0.01  0.97  0.02 -0.09 0.93 0.070 1.0
## excited_mssd    0.46  0.23  0.32  0.01 0.78 0.219 2.4
## happy_mssd      0.78  0.20 -0.05  0.03 0.85 0.146 1.1
## attentive_mssd -0.01  0.02  0.96  0.03 0.95 0.048 1.0
## 
##                        TC1  TC4  TC3  TC2
## SS loadings           3.38 1.91 1.43 1.12
## Proportion Var        0.38 0.21 0.16 0.12
## Cumulative Var        0.38 0.59 0.75 0.87
## Proportion Explained  0.43 0.24 0.18 0.14
## Cumulative Proportion 0.43 0.68 0.86 1.00
## 
##  With component correlations of 
##      TC1  TC4  TC3  TC2
## TC1 1.00 0.75 0.56 0.21
## TC4 0.75 1.00 0.58 0.25
## TC3 0.56 0.58 1.00 0.34
## TC2 0.21 0.25 0.34 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 4 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.04 
##  with the empirical chi square  15.87  with prob <  0.014 
## 
## Fit based upon off diagonal values = 1
summary(mssd.pca.oblique4.2)
## 
## Factor analysis with Call: principal(r = indiv_mssd_noslug, nfactors = 4, rotate = "oblimin")
## 
## Test of the hypothesis that 4 factors are sufficient.
## The degrees of freedom for the model is 6  and the objective function was  0.99 
## The number of observations was  130  with Chi Square =  121.08  with prob <  9.7e-24 
## 
## The root mean square of the residuals (RMSA) is  0.04 
## 
##  With component correlations of 
##      TC1  TC4  TC3  TC2
## TC1 1.00 0.75 0.56 0.21
## TC4 0.75 1.00 0.58 0.25
## TC3 0.56 0.58 1.00 0.34
## TC2 0.21 0.25 0.34 1.00

EFA for item mean using the fa() command

mean.pca.oblimin.2 <- fa(r = indiv_means_noslug, nfactors = 1, rotate = "oblimin")
mean.pca.oblimin.2
## Factor Analysis using method =  minres
## Call: fa(r = indiv_means_noslug, nfactors = 1, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                  MR1   h2   u2 com
## anxious_mean   -0.75 0.57 0.43   1
## nervous_mean   -0.77 0.59 0.41   1
## upset_mean     -0.82 0.67 0.33   1
## irritable_mean -0.80 0.65 0.35   1
## content_mean    0.84 0.71 0.29   1
## relaxed_mean    0.75 0.57 0.43   1
## excited_mean    0.50 0.25 0.75   1
## happy_mean      0.81 0.65 0.35   1
## attentive_mean  0.49 0.24 0.76   1
## 
##                 MR1
## SS loadings    4.90
## Proportion Var 0.54
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 factor is sufficient.
## 
## The degrees of freedom for the null model are  36  and the objective function was  10.62 with Chi Square of  1329.6
## The degrees of freedom for the model are 27  and the objective function was  5.68 
## 
## The root mean square of the residuals (RMSR) is  0.19 
## The df corrected root mean square of the residuals is  0.22 
## 
## The harmonic number of observations is  117 with the empirical chi square  296.94  with prob <  3e-47 
## The total number of observations was  130  with Likelihood Chi Square =  706.98  with prob <  1.3e-131 
## 
## Tucker Lewis Index of factoring reliability =  0.295
## RMSEA index =  0.45  and the 90 % confidence intervals are  0.414 0.47
## BIC =  575.56
## Fit based upon off diagonal values = 0.89
## Measures of factor score adequacy             
##                                                    MR1
## Correlation of (regression) scores with factors   0.96
## Multiple R square of scores with factors          0.93
## Minimum correlation of possible factor scores     0.86
mean.pca.oblimin2.2 <- fa(r = indiv_means_noslug, nfactors = 2, rotate = "oblimin")
mean.pca.oblimin2.2
## Factor Analysis using method =  minres
## Call: fa(r = indiv_means_noslug, nfactors = 2, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                  MR1   MR2   h2    u2 com
## anxious_mean    0.92  0.03 0.83 0.168 1.0
## nervous_mean    0.98  0.06 0.92 0.077 1.0
## upset_mean      0.85 -0.10 0.81 0.194 1.0
## irritable_mean  0.81 -0.12 0.76 0.244 1.0
## content_mean   -0.22  0.82 0.87 0.135 1.1
## relaxed_mean   -0.35  0.54 0.57 0.430 1.7
## excited_mean    0.25  0.94 0.75 0.250 1.1
## happy_mean     -0.14  0.88 0.90 0.098 1.0
## attentive_mean  0.00  0.62 0.39 0.613 1.0
## 
##                        MR1  MR2
## SS loadings           3.61 3.18
## Proportion Var        0.40 0.35
## Cumulative Var        0.40 0.75
## Proportion Explained  0.53 0.47
## Cumulative Proportion 0.53 1.00
## 
##  With factor correlations of 
##       MR1   MR2
## MR1  1.00 -0.41
## MR2 -0.41  1.00
## 
## Mean item complexity =  1.1
## Test of the hypothesis that 2 factors are sufficient.
## 
## The degrees of freedom for the null model are  36  and the objective function was  10.62 with Chi Square of  1329.6
## The degrees of freedom for the model are 19  and the objective function was  2.14 
## 
## The root mean square of the residuals (RMSR) is  0.05 
## The df corrected root mean square of the residuals is  0.07 
## 
## The harmonic number of observations is  117 with the empirical chi square  20.26  with prob <  0.38 
## The total number of observations was  130  with Likelihood Chi Square =  264.46  with prob <  3.6e-45 
## 
## Tucker Lewis Index of factoring reliability =  0.636
## RMSEA index =  0.323  and the 90 % confidence intervals are  0.283 0.351
## BIC =  171.98
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy             
##                                                    MR1  MR2
## Correlation of (regression) scores with factors   0.99 0.98
## Multiple R square of scores with factors          0.97 0.95
## Minimum correlation of possible factor scores     0.94 0.91
mean.pca.oblimin3.2 <- fa(r = indiv_means_noslug, nfactors = 3, rotate = "oblimin")
## The estimated weights for the factor scores are probably incorrect.  Try a different factor extraction method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate =
## rotate, : An ultra-Heywood case was detected. Examine the results carefully
mean.pca.oblimin3.2
## Factor Analysis using method =  minres
## Call: fa(r = indiv_means_noslug, nfactors = 3, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                  MR2   MR1   MR3   h2       u2 com
## anxious_mean    0.05  0.97  0.06 1.00 -0.00194 1.0
## nervous_mean    0.04  0.73  0.32 0.90  0.09917 1.4
## upset_mean     -0.10  0.12  0.88 1.00  0.00083 1.1
## irritable_mean -0.13  0.25  0.65 0.80  0.20083 1.4
## content_mean    0.81 -0.04 -0.24 0.87  0.12959 1.2
## relaxed_mean    0.55 -0.57  0.18 0.69  0.31291 2.2
## excited_mean    0.92  0.05  0.19 0.75  0.24564 1.1
## happy_mean      0.88  0.02 -0.21 0.91  0.08996 1.1
## attentive_mean  0.61  0.04 -0.07 0.39  0.61305 1.0
## 
##                        MR2  MR1  MR3
## SS loadings           3.15 2.28 1.88
## Proportion Var        0.35 0.25 0.21
## Cumulative Var        0.35 0.60 0.81
## Proportion Explained  0.43 0.31 0.26
## Cumulative Proportion 0.43 0.74 1.00
## 
##  With factor correlations of 
##       MR2   MR1   MR3
## MR2  1.00 -0.35 -0.31
## MR1 -0.35  1.00  0.65
## MR3 -0.31  0.65  1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 3 factors are sufficient.
## 
## The degrees of freedom for the null model are  36  and the objective function was  10.62 with Chi Square of  1329.6
## The degrees of freedom for the model are 12  and the objective function was  0.9 
## 
## The root mean square of the residuals (RMSR) is  0.03 
## The df corrected root mean square of the residuals is  0.04 
## 
## The harmonic number of observations is  117 with the empirical chi square  5.37  with prob <  0.94 
## The total number of observations was  130  with Likelihood Chi Square =  110.59  with prob <  4.6e-18 
## 
## Tucker Lewis Index of factoring reliability =  0.768
## RMSEA index =  0.259  and the 90 % confidence intervals are  0.211 0.296
## BIC =  52.18
## Fit based upon off diagonal values = 1
fa.diagram(mean.pca.oblimin3.2)

mean.pca.oblimin4.2 <- fa(r = indiv_means_noslug, nfactors = 4, rotate = "oblimin")
## The estimated weights for the factor scores are probably incorrect.  Try a different factor extraction method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate =
## rotate, : An ultra-Heywood case was detected. Examine the results carefully
mean.pca.oblimin4.2
## Factor Analysis using method =  minres
## Call: fa(r = indiv_means_noslug, nfactors = 4, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                  MR2   MR1   MR4   MR3   h2      u2 com
## anxious_mean    0.00  0.95  0.07  0.01 0.98  0.0183 1.0
## nervous_mean    0.10  0.78  0.27 -0.12 0.93  0.0685 1.3
## upset_mean     -0.18  0.18  0.82  0.01 1.00 -0.0013 1.2
## irritable_mean -0.10  0.31  0.60 -0.12 0.80  0.1971 1.7
## content_mean    0.83 -0.01 -0.21  0.05 0.89  0.1080 1.1
## relaxed_mean    0.60 -0.55  0.22 -0.03 0.73  0.2666 2.3
## excited_mean    0.75  0.07  0.19  0.21 0.70  0.3004 1.3
## happy_mean      0.89  0.05 -0.18  0.05 0.93  0.0655 1.1
## attentive_mean  0.02 -0.01  0.01  0.99 1.00  0.0044 1.0
## 
##                        MR2  MR1  MR4  MR3
## SS loadings           2.76 2.36 1.63 1.22
## Proportion Var        0.31 0.26 0.18 0.14
## Cumulative Var        0.31 0.57 0.75 0.89
## Proportion Explained  0.35 0.30 0.21 0.15
## Cumulative Proportion 0.35 0.64 0.85 1.00
## 
##  With factor correlations of 
##       MR2   MR1   MR4   MR3
## MR2  1.00 -0.37 -0.27  0.54
## MR1 -0.37  1.00  0.59 -0.19
## MR4 -0.27  0.59  1.00 -0.17
## MR3  0.54 -0.19 -0.17  1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 4 factors are sufficient.
## 
## The degrees of freedom for the null model are  36  and the objective function was  10.62 with Chi Square of  1329.6
## The degrees of freedom for the model are 6  and the objective function was  0.59 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.03 
## 
## The harmonic number of observations is  117 with the empirical chi square  0.93  with prob <  0.99 
## The total number of observations was  130  with Likelihood Chi Square =  72.38  with prob <  1.3e-13 
## 
## Tucker Lewis Index of factoring reliability =  0.685
## RMSEA index =  0.301  and the 90 % confidence intervals are  0.235 0.355
## BIC =  43.17
## Fit based upon off diagonal values = 1
fa.diagram(mean.pca.oblimin4.2)

mean.pca.oblimin5.2 <- fa(r = indiv_means_noslug, nfactors = 5, rotate = "oblimin")
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate =
## rotate, : An ultra-Heywood case was detected. Examine the results carefully
mean.pca.oblimin5.2
## Factor Analysis using method =  minres
## Call: fa(r = indiv_means_noslug, nfactors = 5, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                  MR2   MR1   MR4   MR3   MR5   h2       u2 com
## anxious_mean    0.05  0.82  0.18  0.02 -0.22 0.98  0.01573 1.3
## nervous_mean   -0.01  0.90  0.13 -0.08  0.15 1.00 -0.00085 1.1
## upset_mean     -0.14  0.12  0.86  0.04  0.08 1.00  0.00456 1.1
## irritable_mean  0.01  0.15  0.77 -0.12 -0.10 0.83  0.16813 1.2
## content_mean    0.70  0.07 -0.32  0.08  0.16 0.89  0.10907 1.6
## relaxed_mean    0.56 -0.51  0.17 -0.01  0.20 0.73  0.27294 2.4
## excited_mean    0.66  0.11  0.12  0.25  0.17 0.70  0.30211 1.6
## happy_mean      0.95 -0.03 -0.10  0.03 -0.10 1.00  0.00408 1.0
## attentive_mean  0.00 -0.02  0.00  0.99 -0.01 1.00  0.00486 1.0
## 
##                        MR2  MR1  MR4  MR3  MR5
## SS loadings           2.53 2.15 1.91 1.24 0.29
## Proportion Var        0.28 0.24 0.21 0.14 0.03
## Cumulative Var        0.28 0.52 0.73 0.87 0.90
## Proportion Explained  0.31 0.27 0.23 0.15 0.04
## Cumulative Proportion 0.31 0.58 0.81 0.96 1.00
## 
##  With factor correlations of 
##       MR2   MR1   MR4   MR3   MR5
## MR2  1.00 -0.30 -0.39  0.54  0.34
## MR1 -0.30  1.00  0.70 -0.17 -0.22
## MR4 -0.39  0.70  1.00 -0.22  0.01
## MR3  0.54 -0.17 -0.22  1.00  0.15
## MR5  0.34 -0.22  0.01  0.15  1.00
## 
## Mean item complexity =  1.4
## Test of the hypothesis that 5 factors are sufficient.
## 
## The degrees of freedom for the null model are  36  and the objective function was  10.62 with Chi Square of  1329.6
## The degrees of freedom for the model are 1  and the objective function was  0.15 
## 
## The root mean square of the residuals (RMSR) is  0.01 
## The df corrected root mean square of the residuals is  0.04 
## 
## The harmonic number of observations is  117 with the empirical chi square  0.38  with prob <  0.54 
## The total number of observations was  130  with Likelihood Chi Square =  17.85  with prob <  2.4e-05 
## 
## Tucker Lewis Index of factoring reliability =  0.518
## RMSEA index =  0.372  and the 90 % confidence intervals are  0.227 0.517
## BIC =  12.98
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                   MR2 MR1  MR4  MR3  MR5
## Correlation of (regression) scores with factors     1   1 1.00 1.00 0.97
## Multiple R square of scores with factors            1   1 0.99 1.00 0.94
## Minimum correlation of possible factor scores       1   1 0.99 0.99 0.87