About
R can be used to make basic visual analytics, which can be helpful in understanding the data holistically. Additionally, R can help find correlations between variables and create scatter plots.
Tableau is a tool more tailored for visual analytics, while R is a powerful tool for statistics and other advanced topics in data analytics. In this lab we will explore both capabilities using two earlier sets of data credistrisk and marketing.
Setup
Remember to always set your working directory to the source file location. Go to ‘Session’, scroll down to ‘Set Working Directory’, and click ‘To Source File Location’. Read carefully the below and follow the instructions to complete the tasks and answer any questions. Submit your work to RPubs as detailed in previous notes.
Note
For your assignment you may be using different data sets than what is included here. Always read carefully the instructions on Sakai. For clarity, tasks/questions to be completed/answered are highlighted in red color and numbered according to their particular placement in the task section. Quite often you will need to add your own code chunk.
Execute all code chunks, preview, publish, and submit link on Sakai.
Task 1: Basic Visual Analytics in R
Read the file marketing.csv and make sure all the columns are captured by checking the first couple rows of the dataset “head(mydata)”
mydata = read.csv("data/marketing.csv")
head(mydata)
How to create a bar chart using a categorical variable
# Extract the State column from mydata
state = mydata$State
# Create a frequency table to extract the count for each state
state_table = table(state)
# Execute the command
barplot(state_table)

##### 1A) Use the code chunk below to repeat the above bar chart by adding proper labels to X and Y axis.
# Add title and labels to plot by replacing the ?? with the proper wordings
barplot(state_table, main = 'Cases of Each State', xlab= 'States', ylab = 'Number of Cases' )

A more elegant representation of the bar plot would be to order the bars by increasing value. This is shown in the code chunk below.
# Order and execute
barplot(state_table[order(state_table)])

How to create a histogram
# Extract the TV column from the data and create a histogram by running the command hist(variable)
# where variable corresponds to the extracted sales column variable
tv=mydata$tv
hist(tv)

##### 1B) Create a new histogram plot for Sales. Explain what the x-axis and y-axis represent. Can one derive the total cummulative sales from the histogram? Explain your answer.
# Extract the sales column from the data and create a histogram by running the command hist(variable)
# where variable corresponds to the extracted sales column variable
Sales=mydata$sales
hist(Sales)

Task 2 Scatter Plots & Correlation
The previous task focused on visualizing one variable. A good way to visualize two variables and also very common is a scatter plot. A scatter plot is a good way to study relationships and trends.
How to create a scatter plot
# Plot Sales vs. Radio
# Radio will be on the x-axis
# Sales will be on the y-axis
sales = mydata$sales
radio = mydata$radio
plot(radio,sales)

# It is easier to see the trend and possible relationship by including a line that fit through the points.
# This is done with the command
scatter.smooth(radio,sales)

##### 2A) Create three separate scatter plots for Sales vs TV, Sales vs Paper, and Sales vs Pos. Include the best fitting line in each plot. Pay attention to what variable goes on the x-axis and the y-axis.
# Plot Sales vs. TV
# TV will be on the x-axis
# Sales will be on the y-axis
sales = mydata$sales
TV = mydata$tv
plot(TV,sales)

# It is easier to see the trend and possible relationship by including a line that fit through the points.
# This is done with the command
scatter.smooth(TV,sales)

How to create a scatter plot
# Plot Sales vs. Paper
# Paper will be on the x-axis
# Sales will be on the y-axis
sales = mydata$sales
Paper = mydata$paper
plot(Paper,sales)

# It is easier to see the trend and possible relationship by including a line that fit through the points.
# This is done with the command
scatter.smooth(Paper,sales)

How to create a scatter plot
# Plot Sales vs. Pos
# Pos will be on the x-axis
# Sales will be on the y-axis
sales = mydata$sales
pos = mydata$pos
plot(pos,sales)

# It is easier to see the trend and possible relationship by including a line that fit through the points.
# This is done with the command
scatter.smooth(pos,sales)

##### 2B) Share your observations on trends and relationships. How do your observations reconcile with your findings from lab04? ##### The scatter ploys shows the strong positive relationship between TV and sales. As the number of tv increase, the amount of sales increases as well, which means it would be beneficial for predictive variables for product sales, and its follow by lab4. However, there is near negative correlation between Paper and sales. As the number of paper ads increase, the amount of sales decreases, so it might not be useful in a model seeking to predict product sales,it also has same result in lab4. The relatively positive correlation between sales and pos is shown in both labs but is weaker than the others.
As part of any data anlytics it is important to consider both qualitative and quantitative analysis. Scatter plots provide us with qualitative insights on possible trends and relationships. To quantify the strength of any relationships in the data, we need to look at the correlation between two variables.
How to compute correlation
cor(sales,radio)
##### 2C) Repeat the correlation calculation for the following pair of variables (sales,tv), (sales,paper), and (sales,pos)
cor(sales,tv)
[1] 0.9579703
cor(sales,Paper)
[1] -0.2830683
cor(sales,pos)
[1] 0.0126486
##### 2D) Which pair has the highest correlation? How do these results reconcile with your scatter plots observations? #### The sales and tv hashighest correlation, which is very closing to a perfect positive correlation value of 1. These results confirm the findings from the scatter plot observations.The scatter plot also shows the negative result in sales vs paper and the calculation shows that the negative correlation is low.
Task 3 - Basic Visual Analytics in Tableau
Follow the directions on the worksheet, download tableau academic on your personal computer or use one of the labs computers. Make sure to download the academic version and not the free limited trial version.
– Download Tableau academic here: https://www.tableau.com/academic/students
– Refer to file ‘creditrisk.csv’ in the data folder
– Start Tableau and enter your LUC email if prompted.
– Import the file into Tableau. Choose the Text File option when importing
– Under the dimensions tab located on the left side of the screen DOUBLE click on the ‘Loan Purpose’, then DOUBLE click on ‘Number of Records’ variable located under Measures on the bottom left of the screen.
– From the upper right corner of the screen select the horizontal bars view and note the new chart. Familiarize yourself with the tool by trying other views. Only valid views will be highlighted in the menu.
– Create a new sheet by clicking on the icon in the bottom next to your current sheet.
##### 3A) Double-click on the ‘Age’ variable in Measures and select the ‘Histogram’ view. Capture a screen shot and include here. Which age bin has the highest age count and what is the count? 
From histogram we can see that the highest bin is 22 with a count of 97.
##### 3B) Drag-drop the variable ’Marital Status’found under Dimensions into the Marks Color box. Capture a screen shot and include here. Which age bin has the highest divorce count and what is the count?

The bin that has the highest divorce count is 22 with a count of 46.
##### 3C) Create another new sheet. Double-click ‘Months Employed’ and then double-click ‘Age’. Make sure Age appears in the columns field as shown in the image below. From the Sum(Age) drop down menu select Dimension. Repeat for Sum(Months Employed). Add another variable to the scatter plot by drag-drop the dimension variable ‘Gender’ into the Marks Color box. Capture a screen shot and include here. Share a story on what the data is telling us

From the graph, we can see that young age tends to have the lower number of months employed, and while the age is increasing the number of months employed starts to rise as well.
##### 3D) In a new sheet generate a view of Gender, Number of Records, and Marital Status. Choose the best fitting view of your choice for the intended scope. Capture a screen shot and include here. Share a story on what the data is telling us. 
#### From the graph, we can tell that the number of divorced female is lager than male. While the female divorced, most of the male is single.
LS0tDQp0aXRsZTogIkJTQUQzNDMgRmFsbCAyMDE4IExhYiBXb3Jrc2hlZXQgMDUiDQphdXRob3I6ICJZaVBhbiINCmRhdGU6ICIxMC0xNC0yMDE4Ig0Kb3V0cHV0Og0KICBodG1sX25vdGVib29rOiBkZWZhdWx0DQogIGh0bWxfZG9jdW1lbnQ6IGRlZmF1bHQNCiAgcGRmX2RvY3VtZW50OiBkZWZhdWx0DQpzdWJ0aXRsZTogQmFzaWMgVmlzdWFsIEFuYWx5dGljcyAoYnNhZC1sYWIwNSkNCi0tLQ0KDQojIyMgQWJvdXQNCg0KUiBjYW4gYmUgdXNlZCB0byBtYWtlIGJhc2ljIHZpc3VhbCBhbmFseXRpY3MsIHdoaWNoIGNhbiBiZSBoZWxwZnVsIGluIHVuZGVyc3RhbmRpbmcgdGhlIGRhdGEgaG9saXN0aWNhbGx5LiBBZGRpdGlvbmFsbHksIFIgY2FuIGhlbHAgZmluZCBjb3JyZWxhdGlvbnMgYmV0d2VlbiB2YXJpYWJsZXMgYW5kIGNyZWF0ZSBzY2F0dGVyIHBsb3RzLiANCg0KVGFibGVhdSBpcyBhIHRvb2wgbW9yZSB0YWlsb3JlZCBmb3IgdmlzdWFsIGFuYWx5dGljcywgd2hpbGUgUiBpcyBhICBwb3dlcmZ1bCB0b29sIGZvciBzdGF0aXN0aWNzIGFuZCBvdGhlciBhZHZhbmNlZCB0b3BpY3MgaW4gZGF0YSBhbmFseXRpY3MuICBJbiB0aGlzIGxhYiAgd2Ugd2lsbCBleHBsb3JlIGJvdGggY2FwYWJpbGl0aWVzIHVzaW5nIHR3byBlYXJsaWVyIHNldHMgb2YgZGF0YSBjcmVkaXN0cmlzayBhbmQgbWFya2V0aW5nLiANCg0KIyMjIFNldHVwDQoNClJlbWVtYmVyIHRvIGFsd2F5cyBzZXQgeW91ciB3b3JraW5nIGRpcmVjdG9yeSB0byB0aGUgc291cmNlIGZpbGUgbG9jYXRpb24uIEdvIHRvICdTZXNzaW9uJywgc2Nyb2xsIGRvd24gdG8gJ1NldCBXb3JraW5nIERpcmVjdG9yeScsIGFuZCBjbGljayAnVG8gU291cmNlIEZpbGUgTG9jYXRpb24nLiBSZWFkIGNhcmVmdWxseSB0aGUgYmVsb3cgYW5kIGZvbGxvdyB0aGUgaW5zdHJ1Y3Rpb25zIHRvIGNvbXBsZXRlIHRoZSB0YXNrcyBhbmQgYW5zd2VyIGFueSBxdWVzdGlvbnMuICBTdWJtaXQgeW91ciB3b3JrIHRvIFJQdWJzIGFzIGRldGFpbGVkIGluIHByZXZpb3VzIG5vdGVzLiANCg0KIyMjIE5vdGUNCg0KRm9yIHlvdXIgYXNzaWdubWVudCB5b3UgbWF5IGJlIHVzaW5nIGRpZmZlcmVudCBkYXRhIHNldHMgdGhhbiB3aGF0IGlzIGluY2x1ZGVkIGhlcmUuIEFsd2F5cyByZWFkIGNhcmVmdWxseSB0aGUgaW5zdHJ1Y3Rpb25zIG9uIFNha2FpLiAgRm9yIGNsYXJpdHksIHRhc2tzL3F1ZXN0aW9ucyB0byBiZSBjb21wbGV0ZWQvYW5zd2VyZWQgYXJlIGhpZ2hsaWdodGVkIGluIHJlZCBjb2xvciBhbmQgbnVtYmVyZWQgYWNjb3JkaW5nIHRvIHRoZWlyIHBhcnRpY3VsYXIgcGxhY2VtZW50IGluIHRoZSB0YXNrIHNlY3Rpb24uICBRdWl0ZSBvZnRlbiB5b3Ugd2lsbCBuZWVkIHRvIGFkZCB5b3VyIG93biBjb2RlIGNodW5rLg0KDQpFeGVjdXRlIGFsbCBjb2RlIGNodW5rcywgcHJldmlldywgcHVibGlzaCwgYW5kIHN1Ym1pdCBsaW5rIG9uIFNha2FpLg0KDQotLS0tLS0tLS0tLS0tLQ0KDQoNCiMjIyBUYXNrIDE6IEJhc2ljIFZpc3VhbCBBbmFseXRpY3MgaW4gUg0KDQpSZWFkIHRoZSBmaWxlIGBtYXJrZXRpbmcuY3N2YCBhbmQgbWFrZSBzdXJlIGFsbCB0aGUgY29sdW1ucyBhcmUgY2FwdHVyZWQgYnkgY2hlY2tpbmcgdGhlIGZpcnN0IGNvdXBsZSAgcm93cyBvZiB0aGUgZGF0YXNldCAiaGVhZChteWRhdGEpIg0KDQpgYGB7cn0NCm15ZGF0YSA9IHJlYWQuY3N2KCJkYXRhL21hcmtldGluZy5jc3YiKQ0KaGVhZChteWRhdGEpDQpgYGANCg0KSG93IHRvIGNyZWF0ZSBhIGJhciBjaGFydCB1c2luZyBhIGNhdGVnb3JpY2FsIHZhcmlhYmxlDQoNCmBgYHtyfQ0KIyBFeHRyYWN0IHRoZSBTdGF0ZSBjb2x1bW4gZnJvbSBteWRhdGENCnN0YXRlID0gbXlkYXRhJFN0YXRlDQojIENyZWF0ZSBhIGZyZXF1ZW5jeSB0YWJsZSB0byBleHRyYWN0IHRoZSBjb3VudCBmb3IgZWFjaCBzdGF0ZQ0Kc3RhdGVfdGFibGUgPSB0YWJsZShzdGF0ZSkNCiMgRXhlY3V0ZSB0aGUgIGNvbW1hbmQgDQpiYXJwbG90KHN0YXRlX3RhYmxlKQ0KYGBgDQoNCjxzcGFuIHN0eWxlPSJjb2xvcjpyZWQiPg0KIyMjIyMgMUEpIFVzZSB0aGUgY29kZSBjaHVuayBiZWxvdyB0byByZXBlYXQgdGhlIGFib3ZlIGJhciBjaGFydCBieSBhZGRpbmcgcHJvcGVyIGxhYmVscyB0byBYIGFuZCBZIGF4aXMuICANCjwvc3Bhbj4NCg0KYGBge3J9DQojIEFkZCB0aXRsZSBhbmQgbGFiZWxzIHRvIHBsb3QgYnkgcmVwbGFjaW5nIHRoZSA/PyB3aXRoIHRoZSBwcm9wZXIgd29yZGluZ3MNCmJhcnBsb3Qoc3RhdGVfdGFibGUsIG1haW4gPSAnQ2FzZXMgb2YgIEVhY2ggU3RhdGUnLCB4bGFiPSAnU3RhdGVzJywgeWxhYiA9ICdOdW1iZXIgb2YgQ2FzZXMnICkNCmBgYA0KDQpBIG1vcmUgZWxlZ2FudCByZXByZXNlbnRhdGlvbiBvZiB0aGUgYmFyIHBsb3Qgd291bGQgYmUgdG8gb3JkZXIgdGhlIGJhcnMgYnkgaW5jcmVhc2luZyB2YWx1ZS4gIFRoaXMgaXMgc2hvd24gaW4gdGhlIGNvZGUgY2h1bmsgYmVsb3cuDQoNCmBgYHtyfQ0KIyBPcmRlciBhbmQgZXhlY3V0ZQ0KYmFycGxvdChzdGF0ZV90YWJsZVtvcmRlcihzdGF0ZV90YWJsZSldKQ0KYGBgDQoNCg0KSG93IHRvIGNyZWF0ZSBhIGhpc3RvZ3JhbSANCmBgYHtyfQ0KIyBFeHRyYWN0IHRoZSBUViBjb2x1bW4gZnJvbSB0aGUgZGF0YSBhbmQgY3JlYXRlIGEgaGlzdG9ncmFtIGJ5IHJ1bm5pbmcgdGhlIGNvbW1hbmQgaGlzdCh2YXJpYWJsZSkgDQojIHdoZXJlIHZhcmlhYmxlIGNvcnJlc3BvbmRzIHRvIHRoZSBleHRyYWN0ZWQgc2FsZXMgY29sdW1uIHZhcmlhYmxlDQp0dj1teWRhdGEkdHYNCmhpc3QodHYpDQpgYGANCg0KPHNwYW4gc3R5bGU9ImNvbG9yOnJlZCI+DQojIyMjIyAxQikgQ3JlYXRlIGEgbmV3IGhpc3RvZ3JhbSBwbG90IGZvciBTYWxlcy4gRXhwbGFpbiB3aGF0IHRoZSB4LWF4aXMgYW5kIHktYXhpcyByZXByZXNlbnQuIENhbiBvbmUgZGVyaXZlIHRoZSB0b3RhbCBjdW1tdWxhdGl2ZSBzYWxlcyBmcm9tIHRoZSBoaXN0b2dyYW0/IEV4cGxhaW4geW91ciBhbnN3ZXIuDQo8L3NwYW4+DQpgYGB7cn0NCiMgRXh0cmFjdCB0aGUgc2FsZXMgY29sdW1uIGZyb20gdGhlIGRhdGEgYW5kIGNyZWF0ZSBhIGhpc3RvZ3JhbSBieSBydW5uaW5nIHRoZSBjb21tYW5kIGhpc3QodmFyaWFibGUpIA0KIyB3aGVyZSB2YXJpYWJsZSBjb3JyZXNwb25kcyB0byB0aGUgZXh0cmFjdGVkIHNhbGVzIGNvbHVtbiB2YXJpYWJsZQ0KU2FsZXM9bXlkYXRhJHNhbGVzDQpoaXN0KFNhbGVzKQ0KYGBgDQojIyMjIyBUaGUgWC1heGlzIGlzIHJlcHJlc2VudCB0aGUgYW1vdW50IG9mIHNhbGVzIGluIGRvbGxhcnMgaW4gYSByYW5nZSwgYW5kIHRoZSBZLWF4aWVzIHJlcHJlc2VudCB0aGUgIGZyZXF1ZW5jeSBvZiBjYXNlcyBvZiB0aGUgc2FsZXMgYW1vdW50cy4gWW91IGNhbm5vdCBkZXJpdmUgdGhlIGN1bW11bGF0aXZlIHNhbGVzIGZyb20gdGhlIGhpc3RvZ3JhbSBiZWNhdXNlIGl0IGRpZG5pdCBzaG93IHRoZSBzcGVjZWZpYyB2YWx1ZSBvZiBlYWNoIHNhbGUgYW5kIHNhbGVzIGlzIGEgcmFuZ2UgYW5kIG5vdCB0aGUgZXhhY3Qgc2FsZXMgZmlndXJlcy4gDQoNCkhvdyB0byBjcmVhdGUgYSBwaWUgY2hhcnQNCmBgYHtyfQ0KIyBUaGUgY29tbWFuZCB0byBjcmVhdGUgYSBwaWUgY2hhcnQgaXMgcGllKHZhcmlhYmxlKSB3aGVyZSAgdmFyaWFibGUgaXMgaW4gcmVmZXJlbmNlIHRvIHRoZSBwYXJ0aWN1bGFyIGNvbHVtbiBleHRyYWN0ZWQgZnJvbSB0aGUgZmlsZS4gSW4gdGhpcyBleGFtcGxlIHdlIGRlZmluZSBhIHZhcmlhYmxlIGNhbGxlZCB4LiANCnggPSBjKDIsMyw0LDUpDQpwaWUoeCkNCmBgYA0KDQo8c3BhbiBzdHlsZT0iY29sb3I6cmVkIj4NCiMjIyMjIDFDKSBDcmVhdGUgYSBuZXcgcGllIGNoYXJ0IGZvciBzdGF0ZSBjb3VudC4gUmVmZXIgdG8gdmFyaWFibGUgYHN0YXRlX3RhYmxlYCB0byBjYXB0dXJlIHRoZSBmcmVxdWVuY3kgY291bnQuDQo8L3NwYW4+DQpgYGB7cn0NCiMgVGhlIGNvbW1hbmQgdG8gY3JlYXRlIGEgcGllIGNoYXJ0IGlzIHBpZSh2YXJpYWJsZSkgd2hlcmUgIHZhcmlhYmxlIGlzIGluIHJlZmVyZW5jZSB0byB0aGUgcGFydGljdWxhciBjb2x1bW4gZXh0cmFjdGVkIGZyb20gdGhlIGZpbGUuIEluIHRoaXMgZXhhbXBsZSB3ZSBkZWZpbmUgYSB2YXJpYWJsZSBjYWxsZWQgeC4gDQp4ID0gYygyLDMsNCw1KQ0KcGllKHN0YXRlX3RhYmxlKQ0KYGBgDQoNCjxzcGFuIHN0eWxlPSJjb2xvcjpyZWQiPg0KIyMjIyMgMUQpIFdoYXQgZG9lcyBlYWNoIHNsaWNlIG9mIHRoZSBwaWUgcmVwcmVzZW50PyBDb21wYXJlIHRoZSBwaWUgY2hhcnQgdG8gZWFybGllciBiYXIgY2hhcnRzLiBXaGljaCB0eXBlIG9mIGNoYXJ0cyBpcyBhIGJldHRlciByZXByZXNlbnRhdGlvbiBvZiB0aGUgZGF0YSBhbmQgd2h5IHNvPw0KPC9zcGFuPg0KIyMjIyMjIEVhY2ggc2xpY2Ugb2YgdGhlIHBpZSBjaGFydCByZXByZXNlbnRzIHRoZSBwZXJjZW50IG9mIG1hcmtldGluZyBjYW1wYWlnbnMgaW4gZWFjaCBzdGF0ZS4gQ29tcGFyZSB0aGUgcGllIGNoYXRyIGFuZCBiYXIgY2hhcnQsIEkgdGhpbmsgdGhlIGJhciBjaGFydCBpcyBhIGJldHRlciByZXByZXNlbnRhdGlvbiBvZiB0aGUgZGF0YSBiZWNhdXNlIHRoZSBwaWUgY2hhcnQgdHlwaWNhbGx5IHJlcHJlc2VudHMgbnVtYmVycyBpbiBwZXJjZW50YWdlcywgdXNlZCB0byB2aXN1YWxpemUgYSBwYXJ0IHRvIHdob2xlIHJlbGF0aW9uc2hpcCBvciBhIGNvbXBvc2l0aW9uLiBQaWUgY2hhcnRzIGFyZSBub3QgbWVhbnQgdG8gY29tcGFyZSBpbmRpdmlkdWFsIHNlY3Rpb25zIHRvIGVhY2ggb3RoZXIgb3IgdG8gcmVwcmVzZW50IGV4YWN0IHZhbHVlcy4gQWxzbywgZnJvbSB0aGUgYmFyIGNoYXJ0LCBpdCdzIGVhc3kgdG8gc2VlIHRoZSByZWxhdGl2ZSBzYWxlcyB2YWx1ZXMgb2YgZWFjaCBzdGF0ZS4NCg0KLS0tLS0tLS0tLQ0KDQojIyMgVGFzayAyIFNjYXR0ZXIgUGxvdHMgJiBDb3JyZWxhdGlvbiANCg0KVGhlIHByZXZpb3VzIHRhc2sgZm9jdXNlZCBvbiB2aXN1YWxpemluZyBvbmUgdmFyaWFibGUuIEEgZ29vZCB3YXkgdG8gdmlzdWFsaXplIHR3byB2YXJpYWJsZXMgYW5kIGFsc28gdmVyeSBjb21tb24gaXMgYSBzY2F0dGVyIHBsb3QuIEEgc2NhdHRlciBwbG90IGlzIGEgZ29vZCB3YXkgdG8gc3R1ZHkgcmVsYXRpb25zaGlwcyBhbmQgdHJlbmRzLg0KDQpIb3cgdG8gY3JlYXRlIGEgc2NhdHRlciBwbG90DQpgYGB7cn0NCiMgUGxvdCBTYWxlcyB2cy4gUmFkaW8NCiMgUmFkaW8gd2lsbCBiZSBvbiB0aGUgeC1heGlzDQojIFNhbGVzIHdpbGwgYmUgb24gdGhlIHktYXhpcw0KDQpzYWxlcyA9IG15ZGF0YSRzYWxlcw0KcmFkaW8gPSBteWRhdGEkcmFkaW8NCnBsb3QocmFkaW8sc2FsZXMpDQoNCiMgSXQgaXMgZWFzaWVyIHRvIHNlZSB0aGUgdHJlbmQgYW5kIHBvc3NpYmxlIHJlbGF0aW9uc2hpcCBieSBpbmNsdWRpbmcgYSBsaW5lIHRoYXQgZml0IHRocm91Z2ggdGhlIHBvaW50cy4NCiMgVGhpcyBpcyBkb25lIHdpdGggdGhlIGNvbW1hbmQgDQpzY2F0dGVyLnNtb290aChyYWRpbyxzYWxlcykNCmBgYA0KDQo8c3BhbiBzdHlsZT0iY29sb3I6cmVkIj4NCiMjIyMjIDJBKSBDcmVhdGUgdGhyZWUgc2VwYXJhdGUgc2NhdHRlciBwbG90cyBmb3IgU2FsZXMgdnMgVFYsIFNhbGVzIHZzIFBhcGVyLCBhbmQgU2FsZXMgdnMgUG9zLiBJbmNsdWRlIHRoZSBiZXN0IGZpdHRpbmcgbGluZSBpbiBlYWNoIHBsb3QuIFBheSBhdHRlbnRpb24gdG8gd2hhdCB2YXJpYWJsZSBnb2VzIG9uIHRoZSB4LWF4aXMgYW5kIHRoZSB5LWF4aXMuDQo8L3NwYW4+DQpgYGB7cn0NCiMgUGxvdCBTYWxlcyB2cy4gVFYNCiMgVFYgd2lsbCBiZSBvbiB0aGUgeC1heGlzDQojIFNhbGVzIHdpbGwgYmUgb24gdGhlIHktYXhpcw0KDQpzYWxlcyA9IG15ZGF0YSRzYWxlcw0KVFYgPSBteWRhdGEkdHYNCnBsb3QoVFYsc2FsZXMpDQoNCiMgSXQgaXMgZWFzaWVyIHRvIHNlZSB0aGUgdHJlbmQgYW5kIHBvc3NpYmxlIHJlbGF0aW9uc2hpcCBieSBpbmNsdWRpbmcgYSBsaW5lIHRoYXQgZml0IHRocm91Z2ggdGhlIHBvaW50cy4NCiMgVGhpcyBpcyBkb25lIHdpdGggdGhlIGNvbW1hbmQgDQpzY2F0dGVyLnNtb290aChUVixzYWxlcykNCmBgYA0KSG93IHRvIGNyZWF0ZSBhIHNjYXR0ZXIgcGxvdA0KYGBge3J9DQojIFBsb3QgU2FsZXMgdnMuIFBhcGVyDQojIFBhcGVyIHdpbGwgYmUgb24gdGhlIHgtYXhpcw0KIyBTYWxlcyB3aWxsIGJlIG9uIHRoZSB5LWF4aXMNCg0Kc2FsZXMgPSBteWRhdGEkc2FsZXMNClBhcGVyID0gbXlkYXRhJHBhcGVyDQpwbG90KFBhcGVyLHNhbGVzKQ0KDQojIEl0IGlzIGVhc2llciB0byBzZWUgdGhlIHRyZW5kIGFuZCBwb3NzaWJsZSByZWxhdGlvbnNoaXAgYnkgaW5jbHVkaW5nIGEgbGluZSB0aGF0IGZpdCB0aHJvdWdoIHRoZSBwb2ludHMuDQojIFRoaXMgaXMgZG9uZSB3aXRoIHRoZSBjb21tYW5kIA0Kc2NhdHRlci5zbW9vdGgoUGFwZXIsc2FsZXMpDQpgYGANCkhvdyB0byBjcmVhdGUgYSBzY2F0dGVyIHBsb3QNCmBgYHtyfQ0KIyBQbG90IFNhbGVzIHZzLiBQb3MNCiMgUG9zIHdpbGwgYmUgb24gdGhlIHgtYXhpcw0KIyBTYWxlcyB3aWxsIGJlIG9uIHRoZSB5LWF4aXMNCg0Kc2FsZXMgPSBteWRhdGEkc2FsZXMNCnBvcyA9IG15ZGF0YSRwb3MNCnBsb3QocG9zLHNhbGVzKQ0KDQojIEl0IGlzIGVhc2llciB0byBzZWUgdGhlIHRyZW5kIGFuZCBwb3NzaWJsZSByZWxhdGlvbnNoaXAgYnkgaW5jbHVkaW5nIGEgbGluZSB0aGF0IGZpdCB0aHJvdWdoIHRoZSBwb2ludHMuDQojIFRoaXMgaXMgZG9uZSB3aXRoIHRoZSBjb21tYW5kIA0Kc2NhdHRlci5zbW9vdGgocG9zLHNhbGVzKQ0KYGBgDQo8c3BhbiBzdHlsZT0iY29sb3I6cmVkIj4NCiMjIyMjIDJCKSBTaGFyZSB5b3VyIG9ic2VydmF0aW9ucyBvbiB0cmVuZHMgYW5kIHJlbGF0aW9uc2hpcHMuIEhvdyBkbyB5b3VyIG9ic2VydmF0aW9ucyByZWNvbmNpbGUgd2l0aCB5b3VyIGZpbmRpbmdzIGZyb20gbGFiMDQ/DQo8L3NwYW4+DQojIyMjIyBUaGUgc2NhdHRlciBwbG95cyBzaG93cyB0aGUgc3Ryb25nIHBvc2l0aXZlIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIFRWIGFuZCBzYWxlcy4gQXMgdGhlIG51bWJlciBvZiB0diBpbmNyZWFzZSwgdGhlIGFtb3VudCBvZiBzYWxlcyBpbmNyZWFzZXMgYXMgd2VsbCwgd2hpY2ggbWVhbnMgaXQgd291bGQgYmUgYmVuZWZpY2lhbCBmb3IgcHJlZGljdGl2ZSB2YXJpYWJsZXMgZm9yIHByb2R1Y3Qgc2FsZXMsIGFuZCBpdHMgZm9sbG93IGJ5IGxhYjQuIEhvd2V2ZXIsIHRoZXJlIGlzIG5lYXIgbmVnYXRpdmUgY29ycmVsYXRpb24gYmV0d2VlbiBQYXBlciBhbmQgc2FsZXMuIEFzIHRoZSBudW1iZXIgb2YgcGFwZXIgYWRzIGluY3JlYXNlLCB0aGUgYW1vdW50IG9mIHNhbGVzIGRlY3JlYXNlcywgc28gaXQgbWlnaHQgbm90IGJlIHVzZWZ1bCBpbiBhIG1vZGVsIHNlZWtpbmcgdG8gcHJlZGljdCBwcm9kdWN0IHNhbGVzLGl0IGFsc28gaGFzIHNhbWUgcmVzdWx0IGluIGxhYjQuIFRoZSByZWxhdGl2ZWx5IHBvc2l0aXZlIGNvcnJlbGF0aW9uIGJldHdlZW4gc2FsZXMgYW5kIHBvcyBpcyBzaG93biBpbiBib3RoIGxhYnMgYnV0IGlzIHdlYWtlciB0aGFuIHRoZSBvdGhlcnMuDQoNCkFzIHBhcnQgb2YgYW55IGRhdGEgYW5seXRpY3MgaXQgaXMgaW1wb3J0YW50IHRvIGNvbnNpZGVyIGJvdGggcXVhbGl0YXRpdmUgYW5kIHF1YW50aXRhdGl2ZSBhbmFseXNpcy4gIFNjYXR0ZXIgcGxvdHMgcHJvdmlkZSB1cyB3aXRoIHF1YWxpdGF0aXZlIGluc2lnaHRzIG9uIHBvc3NpYmxlIHRyZW5kcyBhbmQgcmVsYXRpb25zaGlwcy4gIFRvIHF1YW50aWZ5IHRoZSBzdHJlbmd0aCBvZiBhbnkgcmVsYXRpb25zaGlwcyBpbiB0aGUgZGF0YSwgd2UgbmVlZCB0byBsb29rIGF0IHRoZSBjb3JyZWxhdGlvbiBiZXR3ZWVuIHR3byB2YXJpYWJsZXMuDQoNCkhvdyB0byBjb21wdXRlIGNvcnJlbGF0aW9uDQpgYGB7cn0NCmNvcihzYWxlcyxyYWRpbykNCmBgYA0KDQo8c3BhbiBzdHlsZT0iY29sb3I6cmVkIj4NCiMjIyMjIDJDKSBSZXBlYXQgdGhlIGNvcnJlbGF0aW9uIGNhbGN1bGF0aW9uIGZvciB0aGUgZm9sbG93aW5nIHBhaXIgb2YgdmFyaWFibGVzICAoc2FsZXMsdHYpLCAoc2FsZXMscGFwZXIpLCBhbmQgKHNhbGVzLHBvcykNCjwvc3Bhbj4NCmBgYHtyfQ0KY29yKHNhbGVzLHR2KQ0KYGBgDQpgYGB7cn0NCmNvcihzYWxlcyxQYXBlcikNCmBgYA0KYGBge3J9DQpjb3Ioc2FsZXMscG9zKQ0KYGBgDQo8c3BhbiBzdHlsZT0iY29sb3I6cmVkIj4NCiMjIyMjIDJEKSBXaGljaCBwYWlyIGhhcyB0aGUgaGlnaGVzdCBjb3JyZWxhdGlvbj8gSG93IGRvIHRoZXNlIHJlc3VsdHMgcmVjb25jaWxlIHdpdGggeW91ciBzY2F0dGVyIHBsb3RzIG9ic2VydmF0aW9ucz8gDQo8L3NwYW4+DQojIyMjIFRoZSBzYWxlcyBhbmQgdHYgaGFzaGlnaGVzdCBjb3JyZWxhdGlvbiwgd2hpY2ggaXMgdmVyeSBjbG9zaW5nIHRvIGEgcGVyZmVjdCBwb3NpdGl2ZSBjb3JyZWxhdGlvbiB2YWx1ZSBvZiAxLiBUaGVzZSByZXN1bHRzIGNvbmZpcm0gdGhlIGZpbmRpbmdzIGZyb20gdGhlIHNjYXR0ZXIgcGxvdCBvYnNlcnZhdGlvbnMuVGhlIHNjYXR0ZXIgcGxvdCBhbHNvIHNob3dzIHRoZSBuZWdhdGl2ZSByZXN1bHQgaW4gc2FsZXMgdnMgcGFwZXIgYW5kIHRoZSBjYWxjdWxhdGlvbiBzaG93cyB0aGF0IHRoZSBuZWdhdGl2ZSBjb3JyZWxhdGlvbiBpcyBsb3cuIA0KDQotLS0tLS0tLS0tDQoNCiMjIyBUYXNrIDMgLSBCYXNpYyBWaXN1YWwgQW5hbHl0aWNzIGluIFRhYmxlYXUNCg0KRm9sbG93IHRoZSBkaXJlY3Rpb25zIG9uIHRoZSB3b3Jrc2hlZXQsIGRvd25sb2FkIHRhYmxlYXUgYWNhZGVtaWMgb24geW91ciBwZXJzb25hbCBjb21wdXRlciBvciB1c2Ugb25lIG9mIHRoZSBsYWJzIGNvbXB1dGVycy4gTWFrZSBzdXJlIHRvIGRvd25sb2FkIHRoZSBhY2FkZW1pYyB2ZXJzaW9uIGFuZCBub3QgdGhlIGZyZWUgbGltaXRlZCB0cmlhbCB2ZXJzaW9uLg0KDQotLSBEb3dubG9hZCBUYWJsZWF1IGFjYWRlbWljIGhlcmU6IGh0dHBzOi8vd3d3LnRhYmxlYXUuY29tL2FjYWRlbWljL3N0dWRlbnRzDQoNCi0tIFJlZmVyIHRvIGZpbGUgJ2NyZWRpdHJpc2suY3N2JyBpbiB0aGUgZGF0YSBmb2xkZXINCg0KLS0gU3RhcnQgVGFibGVhdSBhbmQgZW50ZXIgeW91ciBMVUMgZW1haWwgaWYgcHJvbXB0ZWQuDQoNCi0tIEltcG9ydCB0aGUgZmlsZSBpbnRvIFRhYmxlYXUuIENob29zZSB0aGUgVGV4dCBGaWxlIG9wdGlvbiB3aGVuIGltcG9ydGluZw0KDQohW10oaW1ncy90YWJsZWF1X2ltcG9ydGZpbGUucG5nKQ0KDQotLS0tLS0tLS0tLS0tLS0tLS0tLS0tDQoNCi0tIFVuZGVyIHRoZSBkaW1lbnNpb25zIHRhYiBsb2NhdGVkIG9uIHRoZSBsZWZ0IHNpZGUgb2YgdGhlIHNjcmVlbiBET1VCTEUgY2xpY2sgb24gdGhlICdMb2FuIFB1cnBvc2UnLCB0aGVuIERPVUJMRSBjbGljayBvbiAnTnVtYmVyIG9mIFJlY29yZHMnIHZhcmlhYmxlIGxvY2F0ZWQgdW5kZXIgTWVhc3VyZXMgb24gdGhlIGJvdHRvbSBsZWZ0IG9mIHRoZSBzY3JlZW4uIA0KDQohW10oaW1ncy90YWJsZWF1X3ZhcmlhYmxlcy5wbmcpDQoNCg0KDQotLSBGcm9tIHRoZSB1cHBlciByaWdodCBjb3JuZXIgb2YgdGhlIHNjcmVlbiBzZWxlY3QgdGhlIGhvcml6b250YWwgYmFycyB2aWV3IGFuZCBub3RlIHRoZSBuZXcgY2hhcnQuICBGYW1pbGlhcml6ZSB5b3Vyc2VsZiB3aXRoIHRoZSB0b29sIGJ5IHRyeWluZyBvdGhlciB2aWV3cy4gT25seSB2YWxpZCB2aWV3cyB3aWxsIGJlIGhpZ2hsaWdodGVkIGluIHRoZSBtZW51LiAgDQoNCiFbXShpbWdzL3RhYmxlYXVfc2hvd21lLnBuZykNCg0KDQotLSBDcmVhdGUgYSBuZXcgc2hlZXQgYnkgY2xpY2tpbmcgb24gdGhlIGljb24gaW4gdGhlIGJvdHRvbSBuZXh0IHRvIHlvdXIgY3VycmVudCBzaGVldC4NCg0KIVtdKGltZ3MvdGFibGVhdV9uZXdzaGVldC5wbmcpDQoNCjxzcGFuIHN0eWxlPSJjb2xvcjpyZWQiPg0KIyMjIyMgM0EpIERvdWJsZS1jbGljayBvbiB0aGUgJ0FnZScgdmFyaWFibGUgaW4gTWVhc3VyZXMgYW5kIHNlbGVjdCB0aGUgJ0hpc3RvZ3JhbScgdmlldy4gIENhcHR1cmUgYSBzY3JlZW4gc2hvdCBhbmQgaW5jbHVkZSBoZXJlLiAgV2hpY2ggYWdlIGJpbiBoYXMgdGhlIGhpZ2hlc3QgYWdlIGNvdW50IGFuZCB3aGF0IGlzIHRoZSBjb3VudD8gDQo8L3NwYW4+DQohW10oaW1ncy8xLnBuZykNCg0KIyMjIyMgRnJvbSBoaXN0b2dyYW0gd2UgY2FuIHNlZSB0aGF0IHRoZSBoaWdoZXN0IGJpbiBpcyAyMiB3aXRoIGEgY291bnQgb2YgOTcuDQoNCg0KPHNwYW4gc3R5bGU9ImNvbG9yOnJlZCI+DQojIyMjIyAzQikgRHJhZy1kcm9wIHRoZSB2YXJpYWJsZSAnTWFyaXRhbCBTdGF0dXMnZm91bmQgdW5kZXIgRGltZW5zaW9ucyBpbnRvIHRoZSBNYXJrcyBDb2xvciBib3guICBDYXB0dXJlIGEgc2NyZWVuIHNob3QgYW5kIGluY2x1ZGUgaGVyZS4gIFdoaWNoIGFnZSBiaW4gaGFzIHRoZSBoaWdoZXN0IGRpdm9yY2UgY291bnQgYW5kIHdoYXQgaXMgdGhlIGNvdW50PyAgDQo8L3NwYW4+DQoNCiFbXShpbWdzL3RhYmxlYXVfbWFya3MucG5nKQ0KIVtdKGltZ3MvMi5wbmcpDQoNCiMjIyMjIyBUaGUgYmluIHRoYXQgaGFzIHRoZSBoaWdoZXN0IGRpdm9yY2UgY291bnQgaXMgMjIgd2l0aCBhIGNvdW50IG9mIDQ2Lg0KDQo8c3BhbiBzdHlsZT0iY29sb3I6cmVkIj4NCiMjIyMjIDNDKSBDcmVhdGUgYW5vdGhlciBuZXcgc2hlZXQuIERvdWJsZS1jbGljayAnTW9udGhzIEVtcGxveWVkJyBhbmQgdGhlbiBkb3VibGUtY2xpY2sgJ0FnZScuIE1ha2Ugc3VyZSBBZ2UgYXBwZWFycyBpbiB0aGUgY29sdW1ucyBmaWVsZCBhcyBzaG93biBpbiB0aGUgaW1hZ2UgYmVsb3cuIEZyb20gdGhlIFN1bShBZ2UpIGRyb3AgZG93biBtZW51IHNlbGVjdCBEaW1lbnNpb24uIFJlcGVhdCBmb3IgU3VtKE1vbnRocyBFbXBsb3llZCkuIEFkZCBhbm90aGVyIHZhcmlhYmxlIHRvIHRoZSBzY2F0dGVyIHBsb3QgYnkgZHJhZy1kcm9wIHRoZSBkaW1lbnNpb24gdmFyaWFibGUgJ0dlbmRlcicgaW50byB0aGUgTWFya3MgQ29sb3IgYm94LiBDYXB0dXJlIGEgc2NyZWVuIHNob3QgYW5kIGluY2x1ZGUgaGVyZS4gU2hhcmUgYSBzdG9yeSBvbiB3aGF0IHRoZSBkYXRhIGlzIHRlbGxpbmcgdXMNCjwvc3Bhbj4NCg0KIVtdKGltZ3MvdGFibGVhdV9kaW1lbnNpb24ucG5nKQ0KIVtdKGltZ3MvMy5wbmcpDQoNCiMjIyMgRnJvbSB0aGUgZ3JhcGgsIHdlIGNhbiBzZWUgdGhhdCB5b3VuZyBhZ2UgdGVuZHMgdG8gaGF2ZSB0aGUgbG93ZXIgbnVtYmVyIG9mIG1vbnRocyBlbXBsb3llZCwgYW5kIHdoaWxlIHRoZSBhZ2UgaXMgaW5jcmVhc2luZyB0aGUgbnVtYmVyIG9mIG1vbnRocyBlbXBsb3llZCBzdGFydHMgdG8gcmlzZSBhcyB3ZWxsLg0KDQoNCg0KDQoNCjxzcGFuIHN0eWxlPSJjb2xvcjpyZWQiPg0KIyMjIyMgM0QpIEluIGEgbmV3IHNoZWV0IGdlbmVyYXRlIGEgdmlldyBvZiBHZW5kZXIsIE51bWJlciBvZiBSZWNvcmRzLCBhbmQgTWFyaXRhbCBTdGF0dXMuIENob29zZSB0aGUgYmVzdCBmaXR0aW5nIHZpZXcgb2YgeW91ciBjaG9pY2UgZm9yIHRoZSBpbnRlbmRlZCBzY29wZS4gICBDYXB0dXJlIGEgc2NyZWVuIHNob3QgYW5kIGluY2x1ZGUgaGVyZS4gU2hhcmUgYSBzdG9yeSBvbiB3aGF0IHRoZSBkYXRhIGlzIHRlbGxpbmcgdXMuDQo8L3NwYW4+DQohW10oaW1ncy80LnBuZykNCg0KIyMjIyBGcm9tIHRoZSBncmFwaCwgd2UgY2FuIHRlbGwgdGhhdCB0aGUgbnVtYmVyIG9mIGRpdm9yY2VkIGZlbWFsZSBpcyBsYWdlciB0aGFuIG1hbGUuIFdoaWxlIHRoZSBmZW1hbGUgZGl2b3JjZWQsIG1vc3Qgb2YgdGhlIG1hbGUgaXMgc2luZ2xlLiAgDQotLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tDQoNCg0K