10/15/2018

Outline

Last lecture:

Autoregressive Model (AR): representation and stationary results.

This lecture:

Complex roots for AR(p), Moving Average Model (MA), Stationary results for general AR(p) and MA(q).

AR and Noises

  • Recall that the recursive representation of the series \(Y_{t}\) contains its initial condition \(Y_1\) and a sequence of noises \(\{\phi^k \varepsilon_{t-k}\}_{k=0}^{t-1}\).

  • For an AR(p) \(Y_{t} = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \cdots + \phi_p Y_{t-p} + \varepsilon_t\) becomes: \[\phi(\mathbb{L})Y_{t}= \varepsilon_{t}\] \[\phi(\mathbb{L})= 1-\phi_{1}\mathbb{L}-\cdots-\phi_{p}\mathbb{L}^{p}\]

  • We have an operator \(\phi(\mathbb{L})\) of \(Y_t\) on the left and a white noise on the right.

AR(1) and Noises

  • When \(\phi(\mathbb{L})= 1-\phi_{1}\mathbb{L}\) and \(|\phi_{1}|<1\), this AR(1) process can be represented as \[Y_{t}= (1- \phi_1(\mathbb{L}))^{-1}\varepsilon_{t}= \sum_{j=0}^{\infty} (\phi_1 \mathbb{L})^j \varepsilon_t \\ = (1 + \phi_1 \mathbb{L} + (\phi_1 \mathbb{L})^2 + \cdots ) \varepsilon_t = \varepsilon_t +\phi_1 \epsilon_{t-1} + \phi_1^2 \epsilon_{t-2} + \cdots\]

  • A sequence of an infinit amount of white noises.

  • \(\mathbb{L}^{\infty}\varepsilon_t=\varepsilon_{-\infty}\) seems like a noise at the emergence of the universe. But the impact of this noise to the current \(Y_t\) is negligible because \(\phi^{\infty} \rightarrow 0\) when \(|\phi|<1\).

AR(p) and Noises

  • Let’s return to the discussion about the stationarity of AR(p) but from the viewpoint of the noises.

  • For a general AR(p) \[\phi(\mathbb{L})Y_{t}= \varepsilon_{t}\] where \(\phi(\mathbb{L})= 1-\phi_{1}\mathbb{L}-\cdots-\phi_{p}\mathbb{L}^{p}\). Suppose the process \(Y_t\) can be represented in terms of noises: \[Y_{t}= \phi(\mathbb{L})^{-1} \varepsilon_{t}\] and these noises are “well-behaved” (for example, constant means, finite variances), then \(Y_{t}\) should be stationary.

Existence of \(\phi(\mathbb{L})^{-1}\)

  • The “well-behaved” noises sequence in fact means a convergent series formed by \(\phi(\mathbb{L})^{-1}\). But \(\phi(\mathbb{L})^{-1}\) is an operator of \(\mathbb{L}\) so it is difficult to be dealed with.

  • \(\phi(z)=0\) is a polynomial of \(z\). (\(\phi(z)\) is called the generating function or characteristic equation.)

  • Finding the roots of \(\phi(z)=0\) is a one-to-one problem of detecting whether \(\phi(\mathbb{L})^{-1}\) is convergent.

Existence of \(\phi(\mathbb{L})^{-1}\)

  • \(\phi(\mathbb{L})^{-1}= (1- \phi_1(\mathbb{L}))^{-1}\) is convergent when \(|\phi_1|<1\). Similarly, when \(|\phi_1|<1\), the root \(z = \frac{1}{\phi_1}\) of \[\phi(z)= (1-\phi_1 z) =0\] lies outside the unit \(|z|>1\).

Existence of \(\phi(\mathbb{L})^{-1}\)

  • Extend the idea to AR(p): The roots of \[\phi(z)= 1-\phi_{1} z-\cdots-\phi_{p} z^{p}=0\] always exist on a complex plane. (Fundamental theorem of algebra)

  • For example the roots of \[ 1- \phi_{1} z -\phi_2 z^2 =0\] \(z = -\frac{\phi_1 \pm \sqrt{\phi_1^2 + 4\phi_2}}{2 \phi_2}\) always exsits as complex numbers even if \(\sqrt{\phi_1^2 + 4\phi_2}<0\).

Existence of \(\phi(\mathbb{L})^{-1}\)

  • The roots of the polynomial \(\phi(z)=0\) must all exceed unity circle on a complex plane for holding a stationary process.

  • \(AR(2): Y_t = -0.25Y_{t-2} +\varepsilon_t\) is stationary. \((4+z^2)/4=0\) gives \(z=\pm 2i\). The absolute value of \(\pm 2i\) is \(2\).

  • \(AR(2): Y_t = Y_{t-1} - 0.25Y_{t-2} +\varepsilon_t\) is stationary. \((z^2-4z+4)/4=(z-2)^2/4=0\) gives \(z=2\).

AR(2): Gold Price

library(Quandl)
library(xts)
gold_price = Quandl("LBMA/GOLD", type = "xts", collapse = "daily",  
                      start_date="2017-09-01", end_date="2018-10-12")
head(gold_price,2)
##            USD (AM) USD (PM) GBP (AM) GBP (PM) EURO (AM) EURO (PM)
## 2017-09-01   1318.4   1320.4  1020.18  1019.74   1107.98   1114.15
## 2017-09-04   1334.6   1333.1  1030.98  1029.02   1120.53   1119.67

AR(2): Gold Price

plot.ts(gold_price[,5], xlab="",ylab="Price",main="Daily closing price of gold (GBP) ")

AR(2): Gold Price

ar2 = arima(gold_price[,5],order=c(2,0,0), method="ML")
ar2
## 
## Call:
## arima(x = gold_price[, 5], order = c(2, 0, 0), method = "ML")
## 
## Coefficients:
##          ar1      ar2  intercept
##       0.9983  -0.0208  1077.8396
## s.e.  0.0603   0.0608    12.1462
## 
## sigma^2 estimated as 27.4:  log likelihood = -871.57,  aic = 1751.13
  • Gold price under AR(2) follows: \(Y_t = 1077 + 0.99 Y_{t-1} - 0.02Y_{t-2} + \varepsilon_t\)

AR(2): Gold Price

polyroot(c(1, -ar2$coef[1:2]))
## [1]  1.023493-0i 47.076927+0i

Wold’s Decomposition

Any weakly stationary time series \(\{Y_{t}\}\) has the following representation form

\[Y_{t}= \mu+\sum_{j=0}^{\infty}\psi_{j}\varepsilon_{t-j},\;\varepsilon_{t}\sim WN(0,\sigma^{2})\] \[\psi_{0}= 1,\quad\sum_{j=0}^{\infty}\psi_{j}^{2}<\infty\]

  • \(\mathbb{E}[Y_{t}]= \mu\)

  • \(\gamma_{0}= \mbox{Var}(Y_{t})=\sigma^{2}\sum_{j=0}^{\infty}\psi_{j}^{2}<\infty\)

  • \(\gamma_{i}= \mathbb{E}[(Y_{t}-\mu)(Y_{t-i}-\mu)]=\sigma^{2}(\psi_{i}+\psi_{i+1}\psi_{1}+\cdots)=\sigma^{2}\sum_{k=0}^{\infty}\psi_{k}\psi_{k+i}.\)

Remark

  • A dual representation can exist between the AR process \(Y_t\) and the sequence of white noises.

  • The stationarity of AR(p) depends on the linear combinations of white noises.

  • One can decompose a stationary process into noises.

  • Motivate us to study a purely noises driven process.

MA(1)

\[Y_{t}= \mu+\varepsilon_{t}+\theta\varepsilon_{t-1}=\mu+\theta(L)\varepsilon_{t}\]

\[\theta(\mathbb{L})= 1+\theta\mathbb{L},\quad\varepsilon_{t}\sim WN(0,\sigma^{2})\]

  • Moments of MA(1): \[\mathbb{E}[Y_{t}]= \mu\] \[\mbox{Var}(Y_{t})= \gamma_{0}=\mathbb{E}\left[Y_{t}-\mu\right]^{2}\] \[= \mathbb{E}\left[\varepsilon_{t}+\theta\varepsilon_{t-1}\right]^{2}\] \[= \sigma^{2}(1+\theta^{2})\]

MA(1)

Autocovariances and Autocorrelations: \[\gamma_{1}= \mathbb{E}[(Y_{t}-\mu)(Y_{t-1}-\mu)]\] \[= \mathbb{E}\left[(\varepsilon_{t}+\theta\varepsilon_{t-1})(\varepsilon_{t-1}+\theta\varepsilon_{t-2})\right] = \sigma^{2}\theta\] \[\rho_{1}= \frac{\gamma_{1}}{\gamma_{0}}=\frac{\theta}{1+\theta^{2}}\] \[\gamma_{j}= 0,\quad j>1\]

MA(1)

y1 = arima.sim(n=250,list(ar=0,ma=.95))
y2 = arima.sim(n=250,list(ar=0,ma=.4))
y3 = arima.sim(n=250,list(ar=0,ma=-.4))
y4 = arima.sim(n=250,list(ar=0,ma=-.95))
# plot time series
layout(matrix(c(1,3,2,4),2,2))
plot(y1); abline(h=0)
mtext("q = 0.95")
plot(y2); abline(h=0)
mtext("q = 0.40")
plot(y3); abline(h=0)
mtext("q = -0.95")
plot(y4); abline(h=0)
mtext("q = -0.40")

MA(1)

ACF for MA(1)

MA(q)

  • MA(q): A process \(Y_t\) linearly depends on a finite number \(q\) of previous noises.

  • It has a compact notation: \[Y_t = \theta(\mathbb{L}) \varepsilon_t\] where \(\theta(\mathbb{L})= 1 + \theta_1 \mathbb{L} + \theta_2 \mathbb{L}^2 + \cdots + \theta_q \mathbb{L}^{q}.\)

AR and MA

Similarly, we can transfer MA models into a AR model with infinite lags: \[Y_{t}-\mu= (1+\theta\mathbb{L})\varepsilon_{t},\quad|\theta|<1\] \[= (1-\theta^{*}\mathbb{L})\varepsilon_{t}\quad\theta^{*}=-\theta\]

then \[(1-\theta^{*}\mathbb{L})^{-1}(Y_{t}-\mu)= \varepsilon_{t}\] \[\sum_{j=0}^{\infty}(\theta^{*})^{j}\mathbb{L}^{j}(Y_{t}-\mu)= \varepsilon_{t}\]

AR and MA

  • Hence:\[\varepsilon_{t}= (Y_{t}-\mu)+\theta^{*}(Y_{t-1}-\mu)+(\theta^{*})^{2}(Y_{t-2}-\mu)+\dots\] AR model with infinite lags.

  • AR(p): \(\phi(\mathbb{L}) Y_t =\varepsilon_t\), with \(\phi(\mathbb{L}) =1 -\phi_1 \mathbb{L} -\cdots - \phi_p \mathbb{L}^p\).

  • MA(q): \(Y_t = \theta(\mathbb{L}) \varepsilon_t\), with \(\phi(\mathbb{L}) =1 + \theta_1 \mathbb{L} -\cdots - \theta_q \mathbb{L}^q\).

  • A combination leads to a more general representation - ARMA(p,q): \[ \phi(\mathbb{L}) Y_t = \theta(\mathbb{L}) \varepsilon_t.\]

AR and MA

  • Similarly, ARMA(p,q) can be represented by either AR or MA when the operators of \(\phi(\mathbb{L})\) and \(\theta(\mathbb{L})\) are convergent \[ Y_t = \phi(\mathbb{L})^{-1} \theta(\mathbb{L}) \varepsilon_t \\ \theta(\mathbb{L})^{-1} \phi(\mathbb{L}) Y_t = \varepsilon_t .\]

  • Hence, for the stationary process \(Y_t\), the dual representation (AR or MA) can enhance one’s understanding.

Summary

  • Stable (non-explosive) operators induce stationary processes

  • Study the processes with the standpoint of noises.

  • AR and MA structure can form a duality.