berkeley <- as.data.frame(UCBAdmissions)
head(berkeley)
## Admit Gender Dept Freq
## 1 Admitted Male A 512
## 2 Rejected Male A 313
## 3 Admitted Female A 89
## 4 Rejected Female A 19
## 5 Admitted Male B 353
## 6 Rejected Male B 207
Logit model corresponding to the Log Linear Model
berk.logit2 <- glm(Admit == "Admitted" ~ Dept + Gender,data = berkeley, weights = Freq, family = "binomial")
summary(berk.logit2)
##
## Call:
## glm(formula = Admit == "Admitted" ~ Dept + Gender, family = "binomial",
## data = berkeley, weights = Freq)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -25.3424 -13.0584 -0.1631 16.0167 21.3199
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.58205 0.06899 8.436 <2e-16 ***
## DeptB -0.04340 0.10984 -0.395 0.693
## DeptC -1.26260 0.10663 -11.841 <2e-16 ***
## DeptD -1.29461 0.10582 -12.234 <2e-16 ***
## DeptE -1.73931 0.12611 -13.792 <2e-16 ***
## DeptF -3.30648 0.16998 -19.452 <2e-16 ***
## GenderFemale 0.09987 0.08085 1.235 0.217
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 6044.3 on 23 degrees of freedom
## Residual deviance: 5187.5 on 17 degrees of freedom
## AIC: 5201.5
##
## Number of Fisher Scoring iterations: 6
The summary of the logit model shows that the coefficients for departments decline as we go from Dept. A to Dept. F. GenderFemale coefficient [exp(0:0999) = 1.105] indicates the women more likely to be admitted. They have around 10.5% advantage over men.
Logit model allowing 1 df term for Dept. A
berkeley <- within(berkeley,
dept1AG <- (Dept=='A')*(Gender=='Female'))
berk.logit3 <- glm(Admit=="Admitted" ~ Dept + Gender + dept1AG,
data=berkeley, weights=Freq, family="binomial")
summary(berk.logit3)
##
## Call:
## glm(formula = Admit == "Admitted" ~ Dept + Gender + dept1AG,
## family = "binomial", data = berkeley, weights = Freq)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -24.6314 -13.1867 0.0142 15.8566 22.1022
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.49212 0.07175 6.859 6.94e-12 ***
## DeptB 0.05206 0.11187 0.465 0.642
## DeptC -1.08802 0.11425 -9.523 < 2e-16 ***
## DeptD -1.14250 0.11157 -10.240 < 2e-16 ***
## DeptE -1.56102 0.13272 -11.762 < 2e-16 ***
## DeptF -3.15321 0.17336 -18.189 < 2e-16 ***
## GenderFemale -0.03069 0.08676 -0.354 0.724
## dept1AG 1.08277 0.27666 3.914 9.09e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 6044.3 on 23 degrees of freedom
## Residual deviance: 5169.8 on 16 degrees of freedom
## AIC: 5185.8
##
## Number of Fisher Scoring iterations: 6
Computing likelihood-ratio tests of the terms in a model
library(car)
Anova(berk.logit2)
## Analysis of Deviance Table (Type II tests)
##
## Response: Admit == "Admitted"
## LR Chisq Df Pr(>Chisq)
## Dept 763.40 5 <2e-16 ***
## Gender 1.53 1 0.2159
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Anova(berk.logit3)
## Analysis of Deviance Table (Type II tests)
##
## Response: Admit == "Admitted"
## LR Chisq Df Pr(>Chisq)
## Dept 646.72 5 < 2.2e-16 ***
## Gender 0.13 1 0.7236
## dept1AG 17.65 1 2.658e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1