library(tidyverse)
Final <- read_csv("Desktop/Final.csv")
C<-Final$CIK
SC<-Final$SIC
SQRTL<-sqrt(Final$LAG)
B4<-factor(Final$BIG4)
BZ<-factor(Final$BUSY)
FGC<-factor(Final$GC)
LOS<-factor(Final$LOSS)
S<-Final$SALES
I<-Final$NI
A<-Final$TA
LS<-log(S)
LA<-log(A)
STO<-S/A
ROS<-I/S
hist(SQRTL)

Question A
resultA<-lm(SQRTL~LA+B4+BZ+FGC+LOS+STO+ROS)
summary(resultA)
Call:
lm(formula = SQRTL ~ LA + B4 + BZ + FGC + LOS + STO + ROS)
Residuals:
Min 1Q Median 3Q Max
-5.1563 -0.4468 -0.0396 0.3994 5.7533
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.548464 0.141469 81.633 < 2e-16 ***
LA -0.165475 0.007069 -23.409 < 2e-16 ***
B41 -0.351120 0.030441 -11.534 < 2e-16 ***
BZ1 0.104631 0.029802 3.511 0.000451 ***
FGC1 0.450492 0.077374 5.822 6.25e-09 ***
LOS1 0.224634 0.029912 7.510 7.20e-14 ***
STO -0.007488 0.003112 -2.406 0.016168 *
ROS 0.001011 0.000848 1.192 0.233299
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.7914 on 4155 degrees of freedom
Multiple R-squared: 0.3126, Adjusted R-squared: 0.3114
F-statistic: 269.9 on 7 and 4155 DF, p-value: < 2.2e-16
cINTa=11.548464
cLAa=-0.165475
cB4a=-0.351120
cBZa=0.104631
cFGCa=0.450492
cLOSa=0.224634
cSTOa=-0.007488
cROSa=0.001011
nLA=log(800000000)
nB4=1
nBZ=1
nFGC=0
nLOS=0
nSTO=700000000/800000000
nROS=28000000/800000000
SOLUTIONa<-(cINTa+cLAa*nLA+cB4a*nB4+cBZa*nBZ+cFGCa*nFGC+cLOSa*nLOS+cSTOa*nSTO+cROSa*nROS)^2
print(SOLUTIONa)
[1] 62.46058
Question B
FINALB<-subset(Final,SIC>2000 & SIC<3999)
bC<-FINALB$CIK
bSC<-FINALB$SIC
bSQRTL<-sqrt(FINALB$LAG)
bB4<-factor(FINALB$BIG4)
bBZ<-factor(FINALB$BUSY)
bFGC<-factor(FINALB$GC)
bLOS<-factor(FINALB$LOSS)
bS<-FINALB$SALES
bI<-FINALB$NI
bA<-FINALB$TA
bLS<-log(bS)
bLA<-log(bA)
bSTO<-bS/bA
bROS<-bI/bS
resultB<-lm(bSQRTL~bLA+bB4+bBZ+bFGC+bLOS+bSTO+bROS)
summary(resultB)
Call:
lm(formula = bSQRTL ~ bLA + bB4 + bBZ + bFGC + bLOS + bSTO +
bROS)
Residuals:
Min 1Q Median 3Q Max
-2.9886 -0.4126 -0.0311 0.3755 4.9748
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 12.676714 0.248782 50.955 < 2e-16 ***
bLA -0.231536 0.012834 -18.041 < 2e-16 ***
bB41 -0.119601 0.053797 -2.223 0.026362 *
bBZ1 -0.010586 0.043980 -0.241 0.809817
bFGC1 0.209953 0.108425 1.936 0.053023 .
bLOS1 0.185632 0.048407 3.835 0.000131 ***
bSTO -0.005552 0.003302 -1.681 0.092984 .
bROS 0.006784 0.003021 2.246 0.024866 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.7432 on 1391 degrees of freedom
Multiple R-squared: 0.396, Adjusted R-squared: 0.393
F-statistic: 130.3 on 7 and 1391 DF, p-value: < 2.2e-16
cINTb=12.676714
cLAb=-0.231536
cB4b=-0.119601
cBZb=-0.010586
cFGCb=0.209953
cLOSb=0.185632
cSTOb=-0.005552
cROSb=0.006784
SOLUTIONb<-(cINTb+cLAb*nLA+cB4b*nB4+cBZb*nBZ+cFGCb*nFGC+cLOSb*nLOS+cSTOb*nSTO+cROSb*nROS)^2
print(SOLUTIONb)
[1] 60.76811
Question C
FINALC<-subset(Final,SIC>6020 & SIC<6023)
cC<-FINALC$CIK
cSC<-FINALC$SIC
cSQRTL<-sqrt(FINALC$LAG)
cB4<-factor(FINALC$BIG4)
cBZ<-factor(FINALC$BUSY)
cFGC<-factor(FINALC$GC)
cLOS<-factor(FINALC$LOSS)
cS<-FINALC$SALES
cI<-FINALC$NI
cA<-FINALC$TA
cLS<-log(cS)
cLA<-log(cA)
cSTO<-cS/cA
cROS<-cI/cS
resultC<-lm(cSQRTL~cLA+cB4+cBZ+cFGC+cLOS+cSTO+cROS)
summary(resultC)
Call:
lm(formula = cSQRTL ~ cLA + cB4 + cBZ + cFGC + cLOS + cSTO +
cROS)
Residuals:
Min 1Q Median 3Q Max
-1.7006 -0.3391 -0.0508 0.3009 4.9393
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.497921 0.613952 23.614 <2e-16 ***
cLA -0.266749 0.027447 -9.719 <2e-16 ***
cB41 0.035156 0.092779 0.379 0.7050
cBZ1 -0.312962 0.264542 -1.183 0.2377
cFGC1 0.573001 0.461294 1.242 0.2151
cLOS1 -0.081953 0.245237 -0.334 0.7385
cSTO -0.001510 0.006153 -0.245 0.8063
cROS -0.615477 0.304999 -2.018 0.0444 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.6305 on 327 degrees of freedom
Multiple R-squared: 0.3416, Adjusted R-squared: 0.3275
F-statistic: 24.23 on 7 and 327 DF, p-value: < 2.2e-16
cINTc=14.497921
cLAc=-0.266749
cB4c=0.035156
cBZc=-0.312962
cFGCc=0.573001
cLOSc=-0.081953
cSTOc=-0.001510
cROSc=-0.615477
nB4c=0
SOLUTIONc<-(cINTc+cLAc*nLA+cB4c*nB4c+cBZc*nBZ+cFGCc*nFGC+cLOSc*nLOS+cSTOc*nSTO+cROSc*nROS)^2
print(SOLUTIONc)
[1] 75.58058
LS0tCnRpdGxlOiAiQUNHIDY0NTUgRmluYWwiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCmBgYHtyfQpsaWJyYXJ5KHRpZHl2ZXJzZSkKRmluYWwgPC0gcmVhZF9jc3YoIkRlc2t0b3AvRmluYWwuY3N2IikKYGBgCgpgYGB7cn0KQzwtRmluYWwkQ0lLClNDPC1GaW5hbCRTSUMKU1FSVEw8LXNxcnQoRmluYWwkTEFHKQpCNDwtZmFjdG9yKEZpbmFsJEJJRzQpCkJaPC1mYWN0b3IoRmluYWwkQlVTWSkKRkdDPC1mYWN0b3IoRmluYWwkR0MpCkxPUzwtZmFjdG9yKEZpbmFsJExPU1MpClM8LUZpbmFsJFNBTEVTCkk8LUZpbmFsJE5JCkE8LUZpbmFsJFRBCkxTPC1sb2coUykKTEE8LWxvZyhBKQpTVE88LVMvQQpST1M8LUkvUwpgYGAKCmBgYHtyfQpoaXN0KFNRUlRMKQpgYGAKIyBRdWVzdGlvbiBBCmBgYHtyfQpyZXN1bHRBPC1sbShTUVJUTH5MQStCNCtCWitGR0MrTE9TK1NUTytST1MpCnN1bW1hcnkocmVzdWx0QSkKYGBgCgpgYGB7cn0KY0lOVGE9MTEuNTQ4NDY0CmNMQWE9LTAuMTY1NDc1CmNCNGE9LTAuMzUxMTIwCmNCWmE9MC4xMDQ2MzEKY0ZHQ2E9MC40NTA0OTIKY0xPU2E9MC4yMjQ2MzQKY1NUT2E9LTAuMDA3NDg4CmNST1NhPTAuMDAxMDExCgpuTEE9bG9nKDgwMDAwMDAwMCkKbkI0PTEKbkJaPTEKbkZHQz0wCm5MT1M9MApuU1RPPTcwMDAwMDAwMC84MDAwMDAwMDAKblJPUz0yODAwMDAwMC84MDAwMDAwMDAKClNPTFVUSU9OYTwtKGNJTlRhK2NMQWEqbkxBK2NCNGEqbkI0K2NCWmEqbkJaK2NGR0NhKm5GR0MrY0xPU2EqbkxPUytjU1RPYSpuU1RPK2NST1NhKm5ST1MpXjIKCnByaW50KFNPTFVUSU9OYSkKYGBgCgojIFF1ZXN0aW9uIEIKYGBge3J9CkZJTkFMQjwtc3Vic2V0KEZpbmFsLFNJQz4yMDAwICYgU0lDPDM5OTkpCmJDPC1GSU5BTEIkQ0lLCmJTQzwtRklOQUxCJFNJQwpiU1FSVEw8LXNxcnQoRklOQUxCJExBRykKYkI0PC1mYWN0b3IoRklOQUxCJEJJRzQpCmJCWjwtZmFjdG9yKEZJTkFMQiRCVVNZKQpiRkdDPC1mYWN0b3IoRklOQUxCJEdDKQpiTE9TPC1mYWN0b3IoRklOQUxCJExPU1MpCmJTPC1GSU5BTEIkU0FMRVMKYkk8LUZJTkFMQiROSQpiQTwtRklOQUxCJFRBCmJMUzwtbG9nKGJTKQpiTEE8LWxvZyhiQSkKYlNUTzwtYlMvYkEKYlJPUzwtYkkvYlMKYGBgCgpgYGB7cn0KcmVzdWx0QjwtbG0oYlNRUlRMfmJMQStiQjQrYkJaK2JGR0MrYkxPUytiU1RPK2JST1MpCnN1bW1hcnkocmVzdWx0QikKYGBgCgpgYGB7cn0KY0lOVGI9MTIuNjc2NzE0CmNMQWI9LTAuMjMxNTM2CmNCNGI9LTAuMTE5NjAxCmNCWmI9LTAuMDEwNTg2CmNGR0NiPTAuMjA5OTUzCmNMT1NiPTAuMTg1NjMyCmNTVE9iPS0wLjAwNTU1MgpjUk9TYj0wLjAwNjc4NAoKU09MVVRJT05iPC0oY0lOVGIrY0xBYipuTEErY0I0YipuQjQrY0JaYipuQlorY0ZHQ2IqbkZHQytjTE9TYipuTE9TK2NTVE9iKm5TVE8rY1JPU2IqblJPUyleMgoKcHJpbnQoU09MVVRJT05iKQpgYGAKCiMgUXVlc3Rpb24gQwpgYGB7cn0KRklOQUxDPC1zdWJzZXQoRmluYWwsU0lDPjYwMjAgJiBTSUM8NjAyMykKY0M8LUZJTkFMQyRDSUsKY1NDPC1GSU5BTEMkU0lDCmNTUVJUTDwtc3FydChGSU5BTEMkTEFHKQpjQjQ8LWZhY3RvcihGSU5BTEMkQklHNCkKY0JaPC1mYWN0b3IoRklOQUxDJEJVU1kpCmNGR0M8LWZhY3RvcihGSU5BTEMkR0MpCmNMT1M8LWZhY3RvcihGSU5BTEMkTE9TUykKY1M8LUZJTkFMQyRTQUxFUwpjSTwtRklOQUxDJE5JCmNBPC1GSU5BTEMkVEEKY0xTPC1sb2coY1MpCmNMQTwtbG9nKGNBKQpjU1RPPC1jUy9jQQpjUk9TPC1jSS9jUwpgYGAKCmBgYHtyfQpyZXN1bHRDPC1sbShjU1FSVEx+Y0xBK2NCNCtjQlorY0ZHQytjTE9TK2NTVE8rY1JPUykKc3VtbWFyeShyZXN1bHRDKQpgYGAKCmBgYHtyfQpjSU5UYz0xNC40OTc5MjEKY0xBYz0tMC4yNjY3NDkgCmNCNGM9MC4wMzUxNTYKY0JaYz0tMC4zMTI5NjIKY0ZHQ2M9MC41NzMwMDEKY0xPU2M9LTAuMDgxOTUzCmNTVE9jPS0wLjAwMTUxMApjUk9TYz0tMC42MTU0NzcKCm5CNGM9MAoKU09MVVRJT05jPC0oY0lOVGMrY0xBYypuTEErY0I0YypuQjRjK2NCWmMqbkJaK2NGR0NjKm5GR0MrY0xPU2MqbkxPUytjU1RPYypuU1RPK2NST1NjKm5ST1MpXjIKCnByaW50KFNPTFVUSU9OYykKYGBgCg==