setwd("~/Dropbox/Fernando 2018/archives/data")
library("lme4", lib.loc="/Library/Frameworks/R.framework/Versions/3.5/Resources/library")
## Loading required package: Matrix
enemy<- read.table("invas_fam_out_2.csv", sep = ",", header = T)
attach(enemy)
damage<-as.factor(damage)
fam<-as.factor(fam)
##Modelo sin interacciónes
fit1<-lmer(rel.fit.origen~damage+(1|pop)+(1|pop:fam))
summary(fit1) 
## Linear mixed model fit by REML ['lmerMod']
## Formula: rel.fit.origen ~ damage + (1 | pop) + (1 | pop:fam)
## 
## REML criterion at convergence: 407.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.4975 -0.4383  0.0682  0.4839  4.8566 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pop:fam  (Intercept) 0.02069  0.1439  
##  pop      (Intercept) 0.00000  0.0000  
##  Residual             0.15440  0.3929  
## Number of obs: 376, groups:  pop:fam, 52; pop, 4
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  1.05174    0.03512  29.946
## damage1     -0.10296    0.04079  -2.524
## 
## Correlation of Fixed Effects:
##         (Intr)
## damage1 -0.583
##Probando efectos fijos (damage) con la correción Kenward-Roger para datos desbalanceados
library(pbkrtest)
modtodos<-lmer(rel.fit.origen~damage+(1|pop)+(1|pop:fam), REML = F)
modsindamage<-lmer(rel.fit.origen~1+(1|pop)+(1|pop:fam), REML = F)
p.damage<-KRmodcomp(modtodos,modsindamage)
p.damage
## F-test with Kenward-Roger approximation; computing time: 0.17 sec.
## large : rel.fit.origen ~ damage + (1 | pop) + (1 | pop:fam)
## small : rel.fit.origen ~ 1 + (1 | pop) + (1 | pop:fam)
##           stat      ndf      ddf F.scaling p.value  
## Ftest   6.3568   1.0000 332.4978         1 0.01216 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Podemos mejorar la presición de la estimación con un boostrap paramétrico
pboost.damage<-PBmodcomp(modtodos,modsindamage) #Demora un minuto o dos dependiendo del equipo
summary (pboost.damage)
## Parametric bootstrap test; time: 23.81 sec; samples: 1000 extremes: 14;
## large : rel.fit.origen ~ damage + (1 | pop) + (1 | pop:fam)
## small : rel.fit.origen ~ 1 + (1 | pop) + (1 | pop:fam)
##            stat     df    ddf p.value  
## PBtest   6.3111               0.01499 *
## Gamma    6.3111               0.01449 *
## Bartlett 6.0349 1.0000        0.01403 *
## F        6.3111 1.0000 45.701 0.01559 *
## LRT      6.3111 1.0000        0.01200 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Probando efectos aleatorios
library(lmerTest)
## 
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
## 
##     lmer
## The following object is masked from 'package:stats':
## 
##     step
ranova(fit1)
## ANOVA-like table for random-effects: Single term deletions
## 
## Model:
## rel.fit.origen ~ damage + (1 | pop) + (1 | pop:fam)
##               npar  logLik    AIC    LRT Df Pr(>Chisq)    
## <none>           5 -203.75 417.50                         
## (1 | pop)        4 -203.75 415.50  0.000  1  0.9999997    
## (1 | pop:fam)    4 -209.91 427.81 12.314  1  0.0004496 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Ajustando valores de p para efectos aleatorios con Restricted Likelihood Ratio Test (diseño no balanceado) 
detach("package:lmerTest", unload=TRUE)
mod.solo.fam<-lmer(rel.fit.origen~damage+(1|pop:fam))
mod.solo.pop<-lmer(rel.fit.origen~damage+(1|pop))
library(RLRsim)
#Probando pop
exactRLRT(mod.solo.pop, fit1, mod.solo.fam)
## 
##  simulated finite sample distribution of RLRT.
##  
##  (p-value based on 10000 simulated values)
## 
## data:  
## RLRT = 1.1369e-13, p-value = 0.3752
#Probando fam
exactRLRT(mod.solo.fam, fit1, mod.solo.pop)
## 
##  simulated finite sample distribution of RLRT.
##  
##  (p-value based on 10000 simulated values)
## 
## data:  
## RLRT = 12.314, p-value = 3e-04
#Finalmente el diagnostico de residuales del modelo...
plot(residuals(fit1)~predict(fit1,type="link"), xlab=expression(hat(eta)), ylab="Deviance residuals")

#...y los intervalos de confianza para las familias y poblaciones
library(lattice)
ranef(fit1)
## $`pop:fam`
##                 (Intercept)
## morelos:1      -0.080502061
## morelos:3      -0.092532154
## morelos:4       0.003853304
## morelos:5       0.123464174
## morelos:7       0.035207610
## morelos:8      -0.034468625
## morelos:9      -0.001682416
## morelos:10     -0.106467401
## morelos:15     -0.025486917
## morelos:17      0.115643737
## morelos:18      0.207928470
## morelos:19     -0.010390399
## morelos:25     -0.150359917
## morelos:26      0.052346215
## morelos:27     -0.023477700
## teotihuacan:1  -0.061878471
## teotihuacan:2   0.170877619
## teotihuacan:4  -0.027024722
## teotihuacan:6  -0.103051641
## teotihuacan:7   0.068884457
## teotihuacan:8  -0.136702618
## teotihuacan:9  -0.208659212
## teotihuacan:11 -0.068679222
## teotihuacan:12 -0.105719253
## teotihuacan:13 -0.085564530
## teotihuacan:16  0.177191077
## teotihuacan:18 -0.039530163
## teotihuacan:19  0.135076880
## teotihuacan:21 -0.080502061
## teotihuacan:22 -0.049462744
## teotihuacan:23  0.053258001
## teotihuacan:24  0.067723186
## teotihuacan:25  0.062411572
## teotihuacan:27  0.172237538
## teotihuacan:29 -0.009489636
## valdeflores:2   0.046650090
## valdeflores:3   0.076847099
## valdeflores:8  -0.052738139
## valdeflores:9  -0.196515299
## valdeflores:15 -0.004509932
## valdeflores:17  0.111865133
## valdeflores:18  0.130883853
## valdeflores:24 -0.032815723
## valdeflores:27  0.003336049
## valdeflores:28 -0.063012733
## zubia:5        -0.044564828
## zubia:12        0.049828723
## zubia:13        0.043471458
## zubia:15       -0.088098934
## zubia:18       -0.129202940
## zubia:19        0.192272004
## zubia:22        0.011832138
## 
## $pop
##             (Intercept)
## morelos               0
## teotihuacan           0
## valdeflores           0
## zubia                 0
dput(cl<-ranef(fit1,condVar=T))
## structure(list(`pop:fam` = structure(list(`(Intercept)` = c(-0.0805020607974984, 
## -0.0925321537094571, 0.00385330437305278, 0.123464174083789, 
## 0.035207610116433, -0.0344686247682464, -0.00168241607126479, 
## -0.106467400634651, -0.0254869167238369, 0.115643736627259, 0.207928469822918, 
## -0.0103903992107641, -0.150359916943788, 0.0523462150249431, 
## -0.0234776999950628, -0.0618784707909731, 0.170877618775708, 
## -0.0270247223408065, -0.103051641372293, 0.0688844567768601, 
## -0.136702617522689, -0.208659211591878, -0.0686792216798531, 
## -0.105719252582019, -0.0855645302468602, 0.177191077267429, -0.0395301626033523, 
## 0.135076879897902, -0.0805020609357988, -0.049462743981656, 0.0532580012768604, 
## 0.067723186253659, 0.0624115721656215, 0.172237538451322, -0.00948963581795184, 
## 0.0466500902452007, 0.0768470993293142, -0.0527381385483701, 
## -0.196515299301221, -0.00450993233028608, 0.111865133312319, 
## 0.13088385252592, -0.0328157232906337, 0.00333604909234633, -0.0630127325041027, 
## -0.0445648278009957, 0.0498287226339945, 0.0434714575976958, 
## -0.0880989340972051, -0.129202939807469, 0.192272004175527, 0.0118321381749186
## )), class = "data.frame", row.names = c("morelos:1", "morelos:3", 
## "morelos:4", "morelos:5", "morelos:7", "morelos:8", "morelos:9", 
## "morelos:10", "morelos:15", "morelos:17", "morelos:18", "morelos:19", 
## "morelos:25", "morelos:26", "morelos:27", "teotihuacan:1", "teotihuacan:2", 
## "teotihuacan:4", "teotihuacan:6", "teotihuacan:7", "teotihuacan:8", 
## "teotihuacan:9", "teotihuacan:11", "teotihuacan:12", "teotihuacan:13", 
## "teotihuacan:16", "teotihuacan:18", "teotihuacan:19", "teotihuacan:21", 
## "teotihuacan:22", "teotihuacan:23", "teotihuacan:24", "teotihuacan:25", 
## "teotihuacan:27", "teotihuacan:29", "valdeflores:2", "valdeflores:3", 
## "valdeflores:8", "valdeflores:9", "valdeflores:15", "valdeflores:17", 
## "valdeflores:18", "valdeflores:24", "valdeflores:27", "valdeflores:28", 
## "zubia:5", "zubia:12", "zubia:13", "zubia:15", "zubia:18", "zubia:19", 
## "zubia:22"), postVar = structure(c(0.0106771175731766, 0.00998654592798574, 
## 0.00998654592798574, 0.00998654592798574, 0.00998654592798574, 
## 0.00998654592798574, 0.0114702904482406, 0.00998654592798574, 
## 0.00998654592798574, 0.00998654592798574, 0.00998654592798574, 
## 0.00998654592798574, 0.0106771175731766, 0.0106771175731766, 
## 0.00937987685753643, 0.0106771175731766, 0.0106771175731766, 
## 0.0114702904482406, 0.0114702904482406, 0.00998654592798574, 
## 0.0106771175731766, 0.00998654592798574, 0.0134718637865095, 
## 0.0114702904482406, 0.00998654592798574, 0.00998654592798574, 
## 0.0106771175731766, 0.00998654592798574, 0.0106771175731766, 
## 0.0106771175731766, 0.0106771175731766, 0.00998654592798574, 
## 0.0123907653730333, 0.00998654592798574, 0.0147596479996296, 
## 0.00998654592798574, 0.00998654592798574, 0.0106771175731766, 
## 0.00998654592798574, 0.00998654592798574, 0.0134718637865095, 
## 0.00998654592798574, 0.00998654592798574, 0.0106771175731766, 
## 0.00998654592798574, 0.0106771175731766, 0.00998654592798574, 
## 0.00998654592798574, 0.0106771175731766, 0.0106771175731766, 
## 0.0106771175731766, 0.0106771175731766), .Dim = c(1L, 1L, 52L
## ))), pop = structure(list(`(Intercept)` = c(0, 0, 0, 0)), class = "data.frame", row.names = c("morelos", 
## "teotihuacan", "valdeflores", "zubia"), postVar = structure(c(0, 
## 0, 0, 0), .Dim = c(1L, 1L, 4L)))), class = "ranef.mer")
dotplot(cl)
## $`pop:fam`

## 
## $pop