library(TSA)
##
## Attaching package: 'TSA'
## The following objects are masked from 'package:stats':
##
## acf, arima
## The following object is masked from 'package:utils':
##
## tar
library(ggplot2)
library(forecast)
\[ Y_t=5+e_t-\frac12e_{t-1}+\frac14e_{t-2} \]
\[ E(Y_t)=0 \\ .............................................................\\ Var(Y_t)=Var(5+e_t-\frac12e_{t-1}+\frac14e_{t-2})\\ .............................................................\\ =\sigma^2+\frac14\sigma^2+\frac1{16}\sigma^2\\ .............................................................\\ =\frac{21}{16}\sigma^2 \]
\[ Cov(y_t,y_{t-1})=Cov(5+e_t-\frac12e_{t-1}+\frac14e_{t-2},e_{t-1}-\frac12e_{t-2}+\frac14e_{t-3})\\ .............................................................\\ =-\frac12cov(e_{t-1},e_{t-1})+(-\frac12)(\frac14)cov(e_{t-2}.e_{t-2})\\ .............................................................\\ =-\frac12\sigma^2-\frac18\sigma^2\\ .............................................................\\ =-\frac58\sigma^2\\ .............................................................\\ Cov(y_t,y_{t-2})=Cov(5+e_t-\frac12e_{t-1}+\frac14e_{t-2},e_{t-2}-\frac12e_{t-3}+\frac14e_{t-4})\\ .............................................................\\ =\frac14cov(e_{t-2},e_{t-2})\\ .............................................................\\ =\frac14\sigma^2 \]
\[ \rho_0=1\\ .............................................................\\ \rho_1=\frac{\frac58\sigma^2}{\frac{21}{16}\sigma^2}=-{\frac{10}{21}}\\ .............................................................\\ \rho_2=\frac{\frac14\sigma^2}{\frac{21}{16}\sigma^2}=\frac4{21}\\ .............................................................\\ \rho_3=0 \]
\[ a)\theta=-0.5\text{ y }\theta_2=-0.4\\ .............................................................\\ b)\theta_1=-1.2\text{ y }\theta_2=0.7\\ .............................................................\\ c)\theta_1=1\text{ y }\theta_2=0.6 \]
ma2.1 <- arima.sim(model=list(ma = c(-0.5,-0.4)), n=100)
plot(ma2.1,col="red",type='l', main='a);theta1=-0.5, theta2=-0.4')
ma2.2 <- arima.sim(model=list(ma = c(-1.2,0.7)), n=100)
plot(ma2.2,col="green",type='l', main='b);theta1=-1.2, theta2=0.7')
ma2.3 <- arima.sim(model=list(ma = c(1,0.6)), n=100)
plot(ma2.3,col="blue",type='l', main='c);theta1=1, theta2=0.6')
ma1<- arima.sim(model=list(ma = 0.7), n=100)
plot(ma1,col="orange",type='l', main='MA(1); theta=0.5')
ma1.2 <- arima.sim(model=list(ma = 1/0.7), n=100)
plot(ma1.2,col="magenta",type='l', main='MA(1); theta=1/0.5')
\[ a)\phi_1=0.6\\ .............................................................\\ b)\phi_1=-0.6\\ .............................................................\\ c)\phi_1=0.95\text{(hacerlo para 20 rezagos)}\\\ .............................................................\\ d)\phi_1=0.3 \]
par(mfrow=c(2,2))
ACF1 <- ARMAacf(ar=0.6,lag.max=10)
ACF2 <- ARMAacf(ar=-0.6,lag.max=10)
ACF3 <- ARMAacf(ar=-0.95,lag.max=20)
ACF4 <- ARMAacf(ar=-0.3,lag.max=10)
plot(y=ACF1[-1],x=1:10,main='phi=0.6',col="darkgoldenrod4",xlab='Lag',ylab='ACF',type='h'); abline(h=0)
plot(y=ACF2[-1],x=1:10,main='phi=-0.6',col="darkblue",xlab='Lag',ylab='ACF',type='h'); abline(h=0)
plot(y=ACF3[-1],x=1:20,main='phi=-0.95',col="darkmagenta",xlab='Lag',ylab='ACF',type='h'); abline(h=0)
plot(y=ACF4[-1],x=1:10,main='phi=-0.3',col="darkslategray",xlab='Lag',ylab='ACF',type='h'); abline(h=0)
\[ \text{Usar la formula recursiva } \rho_k=\phi_1\rho_{k-1}+\phi_2\rho_{k-2}\text{ 2 (ecuacion Yule-Walker) para calcular y gr??ficar las funciones}\\ \text{de autocorrelacion para los siguientes procesos AR(2)con los par??metros especificados.}\\ \text{En cada caso especifique si las ra??ces de la ecuacion caracter??stica son reales o complejas.} \]
\[ a)\phi_1=0.6\text{ y }\phi_2=0.3\\ .............................................................\\ b)\phi_1=-0.4\text{ y }\phi_2=0.5\\ .............................................................\\ c)\phi_1=1.2\text{ y }\phi_2=-0.7\\ .............................................................\\ d)\phi_1=-1\text{ y }\phi_2=-0.6\\ .............................................................\\ e)\phi_1=0.5\text{ y }\phi_2=-0.9\\ .............................................................\\ f)\phi_1=-0.5\text{ y }\phi_2=-0.6\\ .............................................................\\ \] \[ a)\\ 0.6+\frac{\sqrt(0.6)^2+4(0.3)}{-2(0.3)}=-3.08\\ 0.6-\frac{\sqrt(0.6)^2+4(0.3)}{-2(0.3)}=1.08\\ .............................................................\\ b)\\ -0.4+\frac{\sqrt(-0.4)^2+4(0.5)}{-2(0.5)}=-1.06\\ -0.4-\frac{\sqrt(-0.4)^2+4(0.5)}{-2(0.5)}=1.86\\ .............................................................\\ c)\\ 1.2+\frac{\sqrt(1.2)^2+4(-0.7)}{-2(-0.7)}=1.2+\frac{\sqrt(-1.36)}{1.4}\\ 1.2-\frac{\sqrt(1.2)^2+4(-0.7)}{-2(-0.7)}=1.2-\frac{\sqrt(-1.36)}{1.4}\\ .............................................................\\ d)\\ -1+\frac{\sqrt(-1)^2+4(-0.6)}{-2(-0.6)}=-1+\frac{\sqrt(-1.4)}{1.2}\\ -1-\frac{\sqrt(-1)^2+4(-0.6)}{-2(-0.6)}=-1-\frac{\sqrt(-1.4)}{1.2}\\ .............................................................\\ e)\\ 0.5+\frac{\sqrt(0.5)^2+4(-0.9)}{-2(-0.9)}=0.5+\frac{\sqrt(-3.35)}{1.8}\\ 0.5-\frac{\sqrt(0.5)^2+4(-0.9)}{-2(-0.9)}=0.5-\frac{\sqrt(-3.35)}{1.8}\\ .............................................................\\ f)\\ -0.5+\frac{\sqrt(-0.5)^2+4(-0.6)}{-2(-0.6)}=-0.5+\frac{\sqrt(-2.15)}{1.2}\\ -0.5-\frac{\sqrt(-0.5)^2+4(-0.6)}{-2(-0.6)}=-0.5-\frac{\sqrt(-2.15)}{1.2} \]
par(mfrow=c(3,3))
ACF.a <- ARMAacf(ar=c(0.6,0.3),lag.max=15)
ACF.b <- ARMAacf(ar=c(-0.4,0.5),lag.max=15)
ACF.c <- ARMAacf(ar=c(1.2,-0.7),lag.max=15)
ACF.d <- ARMAacf(ar=c(-1,-0.6),lag.max=15)
ACF.e <- ARMAacf(ar=c(0.5,-0.9),lag.max=15)
ACF.f <- ARMAacf(ar=c(-0.5,-0.6),lag.max=15)
plot(y=ACF.a[-1],x=1:15,main='phi1=0.6, phi2=0.3',col="deeppink4",xlab='Lag',ylab='ACF',type='h'); abline(h=0)
plot(y=ACF.b[-1],x=1:15,main='phi1=-0.4, phi2=0.5',col="indianred4",xlab='Lag',ylab='ACF',type='h'); abline(h=0)
plot(y=ACF.c[-1],x=1:15,main='phi1=1.2,phi2=--0.7',col="mediumorchid4",xlab='Lag',ylab='ACF',type='h'); abline(h=0)
plot(y=ACF.d[-1],x=1:15,main='phi1=-1, phi2=-0.6',col="red4",xlab='Lag',ylab='ACF',type='h'); abline(h=0)
plot(y=ACF.e[-1],x=1:15,main='phi1=0.5, phi2=-0.9',col="magenta",xlab='Lag',ylab='ACF',type='h'); abline(h=0)
plot(y=ACF.f[-1],x=1:15,main='phi1=-0.5,phi2=-0.6',col="palevioletred4",xlab='Lag',ylab='ACF',type='h'); abline(h=0)
\[ a)\text{ARMA}(1,1)\text{ con }\phi=0.7\text{ y }\theta=-0.4\\ .............................................................\\ b)\text{ARMA}(1,1)\text{ con }\phi=0.7\text{ y }\theta=0.4 \]
par(mfrow=c(2,2))
ACF.a2 <- ARMAacf(ar=c(0.7,-0.4),lag.max=15)
plot(y=ACF.a2[-1],x=1:15,main='phi1=0.7, theta=-0.4',xlab='Lag',col="red",ylab='ACF',type='h'); abline(h=0)
ACF.b2 <- ARMAacf(ar=c(0.7,0.4),lag.max=15)
plot(y=ACF.a2[-1],x=1:15,main='phi1=0.7, theta=0.4',xlab='Lag',col="turquoise4",ylab='ACF',type='h'); abline(h=0)
\[ \text{Considere el proceso MA(2), uno con }\theta_1=\theta_2=-{\frac16}\text{ y otro con }\theta_1=1\text{ y }\theta_2=-6 \]
par(mfrow=c(2,2))
ACF.a3 <- ARMAacf(ar=c(-(1/6),-(1/6)),lag.max=15)
plot(y=ACF.a3[-1],x=1:15,main='theta1=-(1/6),theta2=-(1/6)',col="slateblue4",xlab='Lag',ylab='ACF',type='h'); abline(h=0)
ACF.b3 <- ARMAacf(ar=c(1,-6),lag.max=15)
plot(y=ACF.b3[-1],x=1:15,main='theta1=1,theta2=-6',col="orangered2",xlab='Lag',ylab='ACF',type='h'); abline(h=0)