N <- 40 #Total number of faculty members
m <- 8 #Total number of accounting faculty members
k <- 5 #Number of draws
x <- 1 #Number of accounting faculty members selected
phyper(q = x-1, m = m, n = N-m, k = k, lower.tail = FALSE)
## [1] 0.6939612
5/40
## [1] 0.125
5/40
## [1] 0.125
N = 10 #Total number of professors selected.
p = 0.2 #Probability of a professor catches a cold during winter
x = 2 #Number of professor catching a cold
pbinom(q = x-1, size = N, prob = p, lower.tail = FALSE)
## [1] 0.6241904
1/0.1
## [1] 10
dpois(x = 0, lambda = 5 * 0.1)
## [1] 0.6065307
N <- 10
p <- 0.74
x <- 2
pbinom(q = x-1, size = N, prob = p, lower.tail = FALSE)
## [1] 0.9999584
c <- c(N*p, sqrt(N*p*(1-p)))
names(c) <- c("mean", "sd")
c
## mean sd
## 7.400000 1.387083
####(a) between 10 and 30 seconds?
punif(q = 30, min = 0, max = 120) - punif(q = 10, min = 0, max = 120)
## [1] 0.1666667
####(b) What is the expected value and the standard deviation of the time between arrivals?
q4b <- c(
(120 + 0)/2,
sqrt((120 - 0)^2 * 1/12)
)
names(q4b) <- c("Epected Value a", "Standard Deviation")
q4b
## Epected Value a Standard Deviation
## 60.00000 34.64102
UTILITY <- readxl::read_xls("UTILITY.xls")
qqnorm(UTILITY$`Utility Charge`)
qqline(UTILITY$`Utility Charge`)
probability <- c(0.1, 0.2, 0.3, 0.25, 0.15)
corporate_bonds <- c(-40, 60, 80, 105, 100)
common_stocks <- c(-120, -30, 115, 170, 230)
investments <- data.frame(probability, corporate_bonds, common_stocks)
w <- 0.4
corporate_bonds_expected <- sum(apply(investments, 1, function(x) x[1]*x[2]))
common_stocks_expected <- sum(apply(investments, 1, function(x) x[1]*x[3]))
corporate_bonds_var <- sum(apply(investments, 1, function(x) x[1]*(x[2]-corporate_bonds_expected)^2))
common_stocks_var <- sum(apply(investments, 1, function(x) x[1]*(x[3]-common_stocks_expected)^2))
corporate_common_covar <- sum(apply(investments, 1, function(x){
(x[2]-corporate_bonds_expected) * (x[3]-common_stocks_expected) * x[1]
}))
expected_return <- w * corporate_bonds_expected + (1-w) * common_stocks_expected
risk <- sqrt(
w^2 * corporate_bonds_var +
(1-w)^2 * common_stocks_var +
2*w*(1-w)*corporate_common_covar
)
portfolio <- c(expected_return, risk)
names(portfolio) <- c("expected return (per $1,000)", "risk (per $1,000)")
portfolio
## expected return (per $1,000) risk (per $1,000)
## 85.40000 80.53161
a <- pnorm(q = 89, mean = 73, sd = 8) - pnorm(q = 65, mean = 73, sd = 8)
a <- percent(a)
a
## [1] "81.9%"
b <- qnorm(p = .05, mean = 73, sd = 8, lower.tail = FALSE)
b
## [1] 86.15883
exam1 <- pnorm(q = 81, mean = 73, sd = 8, lower.tail = FALSE)
exam2 <- pnorm(q = 68, mean = 62, sd = 3, lower.tail = FALSE)
q7c <- c(exam1, exam2)
names(q7c) <- c("exam1", "exam2")
q7c
## exam1 exam2
## 0.15865525 0.02275013