Try to use the Quandl API. It is free. If you want to make more than 50 calls in a day you need to request an API key.
Here is the link to the webpage to learn about the Quandl R package.
The example on this page uses data from FRED about the GDP. Take a look at the FRED website and all of the data available. Also try out the visualization tools.
# install.packages("Quandl")
library(Quandl)
mydata <- Quandl("FRED/GDP")
mydata
plot(mydata)
mydata <- Quandl("FRED/GDP", start_date="2001-12-31", end_date="2005-12-31")
plot(mydata)
mydata <- Quandl("FRED/GDP", collapse="annual")
plot(mydata)
Note that there are different ways to download data from FRED. When downloading time series data it is best to download it in a time series R format, such as ts.
mydata <- Quandl("FRED/GDP", type="ts")
mydata
Qtr1 Qtr2 Qtr3 Qtr4
1947 243.164 245.968 249.585 259.745
1948 265.742 272.567 279.196 280.366
1949 275.034 271.351 272.889 270.627
1950 280.828 290.383 308.153 319.945
1951 336.000 344.090 351.385 356.178
1952 359.820 361.030 367.701 380.812
1953 387.980 391.749 391.171 385.970
1954 385.345 386.121 390.996 399.734
1955 413.073 421.532 430.221 437.092
1956 439.746 446.010 451.191 460.463
1957 469.779 472.025 479.490 474.864
1958 467.540 471.978 485.841 499.555
1959 510.330 522.653 525.034 528.600
1960 542.648 541.080 545.604 540.197
1961 545.018 555.545 567.664 580.612
1962 594.013 600.366 609.027 612.280
1963 621.672 629.752 644.444 653.938
1964 669.822 678.674 692.031 697.319
1965 717.790 730.191 749.323 771.857
1966 795.734 804.981 819.638 833.302
1967 844.170 848.983 865.233 881.439
1968 909.387 934.344 950.825 968.030
1969 993.337 1009.020 1029.956 1038.147
1970 1051.200 1067.375 1086.059 1088.608
1971 1135.156 1156.271 1177.675 1190.297
1972 1230.609 1266.369 1290.566 1328.904
1973 1377.490 1413.887 1433.838 1476.289
1974 1491.209 1530.056 1560.026 1599.679
1975 1616.116 1651.853 1709.820 1761.831
1976 1820.487 1852.332 1886.558 1934.273
1977 1988.648 2055.909 2118.473 2164.270
1978 2202.760 2331.633 2395.053 2476.949
1979 2526.610 2591.247 2667.565 2723.883
1980 2789.842 2797.352 2856.483 2985.557
1981 3124.206 3162.532 3260.609 3280.818
1982 3274.302 3331.972 3366.322 3402.561
1983 3473.413 3578.848 3689.179 3794.706
1984 3908.054 4009.601 4084.250 4148.551
1985 4230.168 4294.887 4386.773 4444.094
1986 4507.894 4545.340 4607.669 4657.627
1987 4722.156 4806.160 4884.555 5007.994
1988 5073.372 5190.036 5282.835 5399.509
1989 5511.253 5612.463 5695.365 5747.237
1990 5872.701 5960.028 6015.116 6004.733
1991 6035.178 6126.862 6205.937 6264.540
1992 6363.102 6470.763 6566.641 6680.803
1993 6729.459 6808.939 6882.098 7013.738
1994 7115.652 7246.931 7331.075 7455.288
1995 7522.289 7580.997 7683.125 7772.586
1996 7868.468 8032.840 8131.408 8259.771
1997 8362.655 8518.825 8662.823 8765.907
1998 8866.480 8969.699 9121.097 9293.991
1999 9417.264 9524.152 9681.856 9899.378
2000 10002.857 10247.679 10319.825 10439.025
2001 10472.879 10597.822 10596.294 10660.294
2002 10788.952 10893.207 10992.051 11071.463
2003 11183.507 11312.875 11567.326 11769.275
2004 11920.169 12108.987 12303.340 12522.425
2005 12761.337 12910.022 13142.873 13332.316
2006 13603.933 13749.806 13867.469 14037.228
2007 14208.569 14382.363 14535.003 14681.501
2008 14651.039 14805.611 14835.187 14559.543
2009 14394.547 14352.850 14420.312 14628.021
2010 14721.350 14926.098 15079.917 15240.843
2011 15285.828 15496.189 15591.850 15796.460
2012 16019.758 16152.257 16257.151 16358.863
2013 16569.591 16637.926 16848.748 17083.137
2014 17102.932 17425.766 17719.836 17838.454
2015 17970.422 18221.299 18331.093 18354.372
2016 18409.130 18640.732 18799.648 18979.245
2017 19162.550 19359.123 19588.074 19831.829
2018 20041.047 20411.924
ts.plot(mydata)
mydata <- Quandl("FRED/GDP", type="ts", start_date="2001-12-31", end_date="2005-12-31")
ts.plot(mydata)
mydata <- Quandl("FRED/GDP", type="ts", collapse="annual")
mydata
Time Series:
Start = 1947
End = 2018
Frequency = 1
[1] 259.745 280.366 270.627 319.945 356.178 380.812 385.970
[8] 399.734 437.092 460.463 474.864 499.555 528.600 540.197
[15] 580.612 612.280 653.938 697.319 771.857 833.302 881.439
[22] 968.030 1038.147 1088.608 1190.297 1328.904 1476.289 1599.679
[29] 1761.831 1934.273 2164.270 2476.949 2723.883 2985.557 3280.818
[36] 3402.561 3794.706 4148.551 4444.094 4657.627 5007.994 5399.509
[43] 5747.237 6004.733 6264.540 6680.803 7013.738 7455.288 7772.586
[50] 8259.771 8765.907 9293.991 9899.378 10439.025 10660.294 11071.463
[57] 11769.275 12522.425 13332.316 14037.228 14681.501 14559.543 14628.021
[64] 15240.843 15796.460 16358.863 17083.137 17838.454 18354.372 18979.245
[71] 19831.829 20411.924
ts.plot(mydata)
Look up the unemployment rate on FRED.
mydata <- Quandl("FRED/UNRATE", type="ts")
mydata
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1948 3.4 3.8 4.0 3.9 3.5 3.6 3.6 3.9 3.8 3.7 3.8 4.0
1949 4.3 4.7 5.0 5.3 6.1 6.2 6.7 6.8 6.6 7.9 6.4 6.6
1950 6.5 6.4 6.3 5.8 5.5 5.4 5.0 4.5 4.4 4.2 4.2 4.3
1951 3.7 3.4 3.4 3.1 3.0 3.2 3.1 3.1 3.3 3.5 3.5 3.1
1952 3.2 3.1 2.9 2.9 3.0 3.0 3.2 3.4 3.1 3.0 2.8 2.7
1953 2.9 2.6 2.6 2.7 2.5 2.5 2.6 2.7 2.9 3.1 3.5 4.5
1954 4.9 5.2 5.7 5.9 5.9 5.6 5.8 6.0 6.1 5.7 5.3 5.0
1955 4.9 4.7 4.6 4.7 4.3 4.2 4.0 4.2 4.1 4.3 4.2 4.2
1956 4.0 3.9 4.2 4.0 4.3 4.3 4.4 4.1 3.9 3.9 4.3 4.2
1957 4.2 3.9 3.7 3.9 4.1 4.3 4.2 4.1 4.4 4.5 5.1 5.2
1958 5.8 6.4 6.7 7.4 7.4 7.3 7.5 7.4 7.1 6.7 6.2 6.2
1959 6.0 5.9 5.6 5.2 5.1 5.0 5.1 5.2 5.5 5.7 5.8 5.3
1960 5.2 4.8 5.4 5.2 5.1 5.4 5.5 5.6 5.5 6.1 6.1 6.6
1961 6.6 6.9 6.9 7.0 7.1 6.9 7.0 6.6 6.7 6.5 6.1 6.0
1962 5.8 5.5 5.6 5.6 5.5 5.5 5.4 5.7 5.6 5.4 5.7 5.5
1963 5.7 5.9 5.7 5.7 5.9 5.6 5.6 5.4 5.5 5.5 5.7 5.5
1964 5.6 5.4 5.4 5.3 5.1 5.2 4.9 5.0 5.1 5.1 4.8 5.0
1965 4.9 5.1 4.7 4.8 4.6 4.6 4.4 4.4 4.3 4.2 4.1 4.0
1966 4.0 3.8 3.8 3.8 3.9 3.8 3.8 3.8 3.7 3.7 3.6 3.8
1967 3.9 3.8 3.8 3.8 3.8 3.9 3.8 3.8 3.8 4.0 3.9 3.8
1968 3.7 3.8 3.7 3.5 3.5 3.7 3.7 3.5 3.4 3.4 3.4 3.4
1969 3.4 3.4 3.4 3.4 3.4 3.5 3.5 3.5 3.7 3.7 3.5 3.5
1970 3.9 4.2 4.4 4.6 4.8 4.9 5.0 5.1 5.4 5.5 5.9 6.1
1971 5.9 5.9 6.0 5.9 5.9 5.9 6.0 6.1 6.0 5.8 6.0 6.0
1972 5.8 5.7 5.8 5.7 5.7 5.7 5.6 5.6 5.5 5.6 5.3 5.2
1973 4.9 5.0 4.9 5.0 4.9 4.9 4.8 4.8 4.8 4.6 4.8 4.9
1974 5.1 5.2 5.1 5.1 5.1 5.4 5.5 5.5 5.9 6.0 6.6 7.2
1975 8.1 8.1 8.6 8.8 9.0 8.8 8.6 8.4 8.4 8.4 8.3 8.2
1976 7.9 7.7 7.6 7.7 7.4 7.6 7.8 7.8 7.6 7.7 7.8 7.8
1977 7.5 7.6 7.4 7.2 7.0 7.2 6.9 7.0 6.8 6.8 6.8 6.4
1978 6.4 6.3 6.3 6.1 6.0 5.9 6.2 5.9 6.0 5.8 5.9 6.0
1979 5.9 5.9 5.8 5.8 5.6 5.7 5.7 6.0 5.9 6.0 5.9 6.0
1980 6.3 6.3 6.3 6.9 7.5 7.6 7.8 7.7 7.5 7.5 7.5 7.2
1981 7.5 7.4 7.4 7.2 7.5 7.5 7.2 7.4 7.6 7.9 8.3 8.5
1982 8.6 8.9 9.0 9.3 9.4 9.6 9.8 9.8 10.1 10.4 10.8 10.8
1983 10.4 10.4 10.3 10.2 10.1 10.1 9.4 9.5 9.2 8.8 8.5 8.3
1984 8.0 7.8 7.8 7.7 7.4 7.2 7.5 7.5 7.3 7.4 7.2 7.3
1985 7.3 7.2 7.2 7.3 7.2 7.4 7.4 7.1 7.1 7.1 7.0 7.0
1986 6.7 7.2 7.2 7.1 7.2 7.2 7.0 6.9 7.0 7.0 6.9 6.6
1987 6.6 6.6 6.6 6.3 6.3 6.2 6.1 6.0 5.9 6.0 5.8 5.7
1988 5.7 5.7 5.7 5.4 5.6 5.4 5.4 5.6 5.4 5.4 5.3 5.3
1989 5.4 5.2 5.0 5.2 5.2 5.3 5.2 5.2 5.3 5.3 5.4 5.4
1990 5.4 5.3 5.2 5.4 5.4 5.2 5.5 5.7 5.9 5.9 6.2 6.3
1991 6.4 6.6 6.8 6.7 6.9 6.9 6.8 6.9 6.9 7.0 7.0 7.3
1992 7.3 7.4 7.4 7.4 7.6 7.8 7.7 7.6 7.6 7.3 7.4 7.4
1993 7.3 7.1 7.0 7.1 7.1 7.0 6.9 6.8 6.7 6.8 6.6 6.5
1994 6.6 6.6 6.5 6.4 6.1 6.1 6.1 6.0 5.9 5.8 5.6 5.5
1995 5.6 5.4 5.4 5.8 5.6 5.6 5.7 5.7 5.6 5.5 5.6 5.6
1996 5.6 5.5 5.5 5.6 5.6 5.3 5.5 5.1 5.2 5.2 5.4 5.4
1997 5.3 5.2 5.2 5.1 4.9 5.0 4.9 4.8 4.9 4.7 4.6 4.7
1998 4.6 4.6 4.7 4.3 4.4 4.5 4.5 4.5 4.6 4.5 4.4 4.4
1999 4.3 4.4 4.2 4.3 4.2 4.3 4.3 4.2 4.2 4.1 4.1 4.0
2000 4.0 4.1 4.0 3.8 4.0 4.0 4.0 4.1 3.9 3.9 3.9 3.9
2001 4.2 4.2 4.3 4.4 4.3 4.5 4.6 4.9 5.0 5.3 5.5 5.7
2002 5.7 5.7 5.7 5.9 5.8 5.8 5.8 5.7 5.7 5.7 5.9 6.0
2003 5.8 5.9 5.9 6.0 6.1 6.3 6.2 6.1 6.1 6.0 5.8 5.7
2004 5.7 5.6 5.8 5.6 5.6 5.6 5.5 5.4 5.4 5.5 5.4 5.4
2005 5.3 5.4 5.2 5.2 5.1 5.0 5.0 4.9 5.0 5.0 5.0 4.9
2006 4.7 4.8 4.7 4.7 4.6 4.6 4.7 4.7 4.5 4.4 4.5 4.4
2007 4.6 4.5 4.4 4.5 4.4 4.6 4.7 4.6 4.7 4.7 4.7 5.0
2008 5.0 4.9 5.1 5.0 5.4 5.6 5.8 6.1 6.1 6.5 6.8 7.3
2009 7.8 8.3 8.7 9.0 9.4 9.5 9.5 9.6 9.8 10.0 9.9 9.9
2010 9.8 9.8 9.9 9.9 9.6 9.4 9.4 9.5 9.5 9.4 9.8 9.3
2011 9.1 9.0 9.0 9.1 9.0 9.1 9.0 9.0 9.0 8.8 8.6 8.5
2012 8.3 8.3 8.2 8.2 8.2 8.2 8.2 8.1 7.8 7.8 7.7 7.9
2013 8.0 7.7 7.5 7.6 7.5 7.5 7.3 7.2 7.2 7.2 6.9 6.7
2014 6.6 6.7 6.7 6.3 6.3 6.1 6.2 6.2 5.9 5.7 5.8 5.6
2015 5.7 5.5 5.5 5.4 5.5 5.3 5.2 5.1 5.0 5.0 5.0 5.0
2016 4.9 4.9 5.0 5.0 4.7 4.9 4.9 4.9 5.0 4.9 4.6 4.7
2017 4.8 4.7 4.5 4.4 4.3 4.3 4.3 4.4 4.2 4.1 4.1 4.1
2018 4.1 4.1 4.1 3.9 3.8 4.0 3.9 3.9 3.7
ts.plot(mydata)