228
Based on the parameters of the problem
25% return rate at Grease, 75% at Sweet 93% return rate at Sweet, 7% at Grease
model <- function(Snaught, Gnaught)
{
sweet <- Snaught
grease <- Gnaught
df <- data.frame(i=c(0), Sweet=c(sweet), Grease=c(grease))
for(i in 1:100)
{
sweet1 <- 0.25 * grease + 0.07 * sweet
grease1 <- 0.75 * grease + 0.93 * sweet
sweet <- sweet1
grease <- grease1
df <- rbind(df, cbind(i=c(i), Sweet=sweet, Grease=grease))
}
return(df)
}
Snaught <- 50
Gnaught <- 50
df5050 <- model(Snaught, Gnaught)
knitr::kable(head(df5050,20))
| i | Sweet | Grease |
|---|---|---|
| 0 | 50.00000 | 50.00000 |
| 1 | 16.00000 | 84.00000 |
| 2 | 22.12000 | 77.88000 |
| 3 | 21.01840 | 78.98160 |
| 4 | 21.21669 | 78.78331 |
| 5 | 21.18100 | 78.81900 |
| 6 | 21.18742 | 78.81258 |
| 7 | 21.18626 | 78.81374 |
| 8 | 21.18647 | 78.81353 |
| 9 | 21.18643 | 78.81356 |
| 10 | 21.18644 | 78.81356 |
| 11 | 21.18644 | 78.81356 |
| 12 | 21.18644 | 78.81356 |
| 13 | 21.18644 | 78.81356 |
| 14 | 21.18644 | 78.81356 |
| 15 | 21.18644 | 78.81356 |
| 16 | 21.18644 | 78.81356 |
| 17 | 21.18644 | 78.81356 |
| 18 | 21.18644 | 78.81356 |
| 19 | 21.18644 | 78.81356 |
Steady state is reached after 10 iterations.
232
Figure 6.11
#Speakers are in parallel
speakers <- 0.99 + 0.99 - (0.99*0.99)
speakers
## [1] 0.9999
#radio and CD in parallel
radiocd <- 0.98 + 0.97 - (0.98*0.97)
radiocd
## [1] 0.9994
#PA is solo
PA <- 0.95
reliability <- PA * radiocd * speakers
reliability
## [1] 0.9493351
240
Use the basic linear model y = ax+b to fit the folowing data sets. Provide the model, provide the values of SSE, SSR, and \(R^2\), and provide a residual plot.
Table 2.7
height <- c(60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)
weight <- c(132,136,141,145,150,155,160,165,170,175,180,185,190,195,201,206,212,218,223,229,234)
df <- data.frame(height, weight)
m <- nrow(df)
a <- (m * sum(df$height * df$weight) - sum(df$height) * sum(df$weight)) /
(m * sum(df$height^2) - sum(df$height)^2)
b <- (sum(df$height^2) * sum(df$weight) - sum(df$height * df$weight) * sum(df$height)) /
(m * sum(df$height^2) - sum(df$height)^2)
#linear regression model
#SSE
SSE <- sum((df$weight - (a * df$height + b))^2)
SSE
## [1] 24.6342
#SST
ybar <- mean(df$weight)
SST <- sum((df$weight - ybar)^2)
SST
## [1] 20338.95
#SSR
SSR <- SST - SSE
SSR
## [1] 20314.32
#Coefficient of determination
R2 <- 1 - (SSE / SST)
R2
## [1] 0.9987888
df$y_hat <- (a * df$height + b)
df$residual <- df$weight - df$y_hat
head(df)
## height weight y_hat residual
## 1 60 132 129.6840 2.31601732
## 2 61 136 134.8203 1.17965368
## 3 62 141 139.9567 1.04329004
## 4 63 145 145.0931 -0.09307359
## 5 64 150 150.2294 -0.22943723
## 6 65 155 155.3658 -0.36580087